Getting excited states of ¶
In the following we are interested in getting the ground (
(^2S) : [Xe] 4f(14) 5s(1) 5p1/2(0) 5p3/2(0)
(^2P_1/2) : [Xe] 4f(14) 5s(0) 5p1/2(1) 5p3/2(0)
(^2P_3/2) : [Xe] 4f(14) 5s(0) 5p1/2(0) 5p3/2(1)
For simplicity, we will work with the wo-component Hamiltonian (.X2C) and employ the smallest v2z decontracted basis set by K.Dyall. Due to the convergence problem of the standalone AMFI atomic SCF code we keep the +2 charge (.AMFICH) for mean-field orbitals.
There are two ways to obtain excited states - (i) from the converged SCF state, and, (ii) only at the correlated level from the 2P_aver SCF state.
For subsequent Coupled Cluster (CC) correlated calculations please soften the DHOLU variable in the subroutine DENOM (file src/relccsd/cceqns.F) to the value of 5.0D-4 and recompile DIRAC. Note that this is not recommended approach as the p32 states are in general not well described at the CC level. Nevertheless, with this little trick we can compare desired excited states calculated with both CC and Fock-space CC methods.
The ground state¶
Thanks to the linear symmetry, having two irreps, one can place the unpaired electron the 1st irrep to get the
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2S12.scf_cc33e.2fs.inp
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2S12.scf_cc33e_oe.2fs.inp
Input files to download are
Ir.dyall_v2z.lsym.mol
,
Z61.x2c.2S12.scf_cc33e.2fs.inp
,
Z61.x2c.2S12.scf_cc33e_oe.2fs.inp
.
Corresponding output files are
Z61.x2c.2S12.scf_cc33e.2fs_Ir.dyall_v2z.lsym.out
,
Z61.x2c.2S12.scf_cc33e_oe.2fs_Ir.dyall_v2z.lsym.out
.
The SCF , excited states¶
By placing the unpaired electron into 2nd irrep one gets the
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2P12.scf_cc33e.2fs.inp --get "DFCOEF=DFCOEF.v2z.2P12"
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2P12.scf_cc33e_oe.2fs.inp
Input files to download
Z61.x2c.2P12.scf_cc33e.2fs.inp
,
Z61.x2c.2P12.scf_cc33e_oe.2fs.inp
.
Corresponding output files are
Z61.x2c.2P12.scf_cc33e.2fs_Ir.dyall_v2z.lsym.out
,
Z61.x2c.2P12.scf_cc33e_oe.2fs_Ir.dyall_v2z.lsym.out
.
How to obtain the
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2P32.scf_cc33e.2fs.inp --put "DFCOEF.v2z.2P12=DFCOEF"
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2P32.scf_cc33e_oe.2fs.inp --put "DFCOEF.v2z.2P12=DFCOEF"
Corresponding input files to download are
Z61.x2c.2P32.scf_cc33e.2fs.inp
,
Z61.x2c.2P32.scf_cc33e_oe.2fs.inp
.
Output files are
Z61.x2c.2P12.scf_cc33e.2fs_Ir.dyall_v2z.lsym.out
,
Z61.x2c.2P12.scf_cc33e_oe.2fs_Ir.dyall_v2z.lsym.out
.
The CCSD(T) , excited states¶
The other option is to start from the
First we test the averaged,
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2Paver.scf_cc33e.2fs.inp
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2Paver.scf_cc33e_oe.2fs.inp
Files to download are
Z61.x2c.2Paver.scf_cc33e.2fs.inp
,
Z61.x2c.2Paver.scf_cc33e_oe.2fs.inp
.
Afterwards we can proceed to the individual spin-orbit distinguished states, based on
First the first excited state,
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2Paver.scf_cc33e_2P12.2fs.inp
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2Paver.scf_cc33e_oe_2P12.2fs.inp
Input files to download are
Z61.x2c.2Paver.scf_cc33e_2P12.2fs.inp
,
Z61.x2c.2Paver.scf_cc33e_oe_2P12.2fs.inp
.
Corresponding output files are
Z61.x2c.2Paver.scf_cc33e_2P12.2fs_Ir.dyall_v2z.lsym.out
,
Z61.x2c.2Paver.scf_cc33e_oe_2P12.2fs_Ir.dyall_v2z.lsym.out
.
Then we proceed to the second excited state,
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2Paver.scf_cc33e_2P32.2fs.inp
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.2Paver.scf_cc33e_oe_2P32.2fs.inp
Files to download are
Z61.x2c.2Paver.scf_cc33e_2P32.2fs.inp
,
Z61.x2c.2Paver.scf_cc33e_oe_2P32.2fs.inp
.
Corresponding output files are
Z61.x2c.2Paver.scf_cc33e_2P32.2fs_Ir.dyall_v2z.lsym.out
,
Z61.x2c.2Paver.scf_cc33e_oe_2P32.2fs_Ir.dyall_v2z.lsym.out
.
The , and FSCCSD states¶
Simple and very stable approach to obtain ground and multiple excited states in one step is through the Fock-space Coupled Cluster method.
Starting from the closed-shell system,
pam --noarch --mw=120 --mol=Ir.dyall_v2z.lsym.mol --inp=Z61.x2c.scf_fscc01_33ce_5s5p.2fs.inp
The input file to download is
Z61.x2c.scf_fscc01_33ce_5s5p.2fs.inp
.
Corresponding output file is
Z61.x2c.scf_fscc01_33ce_5s5p.2fs_Ir.dyall_v2z.lsym.out
.
Overview of excitation energies¶
In the following table we summarize excitation energies. All values are in a.u. Energies in the Table are not rounded, the are cut to 8 decimal places (“oe” means orbital energies used in CC denominators, otherwise recalculated diagonal Fock matrix elements).
Method |
^2S_{1/2} |
^2P_{1/2} |
^P_{3/2} |
2S12-2P12 |
2S12-2P32 |
---|---|---|---|---|---|
(SCF ref) |
|||||
SCF |
-17751.10181462 |
-17749.67796221 |
-17748.96107014 |
1.42385 |
2.14074 |
CCSD |
-17751.90589433 |
-17750.48885480 |
-17749.77167089 |
1.41704 |
2.13422 |
CCSDoe |
-17751.90589433 |
-17750.48885479 |
-17749.77167088 |
1.41704 |
2.13422 |
CCSD(T) |
-17751.90998637 |
-17750.49777405 |
-17749.78015403 |
1.41221 |
2.12983 |
CCSD(T)oe |
-17751.90999205 |
-17750.49779342 |
-17749.78020119 |
1.41220 |
2.12979 |
(CC ref) |
|||||
CCSD |
-17751.90589433 |
-17750.48895732 |
-17749.77154045 |
1.41694 |
2.13435 |
CCSDoe |
-17751.90589433 |
-17750.48895728 |
-17749.77154043 |
1.41694 |
2.13435 |
CCSD(T) |
-17751.90998637 |
-17750.49779338 |
-17749.78012458 |
1.41219 |
2.12986 |
CCSD(T)oe |
-17751.90999205 |
-17750.49784867 |
-17749.78024342 |
1.41214 |
2.12974 |
FSCCSD |
-17751.90324662 |
-17750.48431436 |
-17749.76770431 |
1.41893 |
2.13554 |
It seems that quality of computed excitation energies increases in the line SCF-FSCCSD-CCSD-CCSD(T). Triple excitations (CCSD(T) results) are significant.