DIRAC serial starts by allocating 64000000 words (488 MB) of memory out of the allowed maximum of 2147483648 words (16384 MB) Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Lucas Visscher Vrije Universiteit Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast UiT The Arctic University of Norway * * Trond Saue Universite Toulouse III France * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer University of Copenhagen Denmark * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Erik D. Hedegård Lund University Sweden * * Trygve Helgaker University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak Bhabha Atomic Research Centre India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Jógvan Magnus H. Olsen University of Southern Denmark Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema Vrije Universiteit Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen Vrije Universiteit Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC17 (2017), * * written by L. Visscher, H. J. Aa. Jensen, R. Bast, and T. Saue, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, * * Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, * * C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, * * G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, * * R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, * * A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, * * T. Winther, and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* Version information ------------------- Branch | master Commit hash | 3e4b688 Commit author | Miroslav Ilias Commit date | Fri Aug 18 09:52:27 2017 +0200 Configuration and build information ----------------------------------- Who compiled | milias Compiled on server | lxir127 Operating system | Linux-3.16.0-4-amd64 CMake version | 3.5.0 CMake generator | Unix Makefiles CMake build type | release Configuration time | 2017-08-18 14:50:17.595981 Python version | 2.7.9 Fortran compiler | /cvmfs/it.gsi.de/compiler/intel/15.0/bin/ifort Fortran compiler version | 15.0 Fortran compiler flags | -xHost -w -assume byterecl -g -traceback -DVAR_IFORT -i8 -xHost -w -assume byterecl -g -traceback -DVAR_IFORT -i8 C compiler | /cvmfs/it.gsi.de/compiler/intel/15.0/bin/icc C compiler version | 15.0 C compiler flags | -xHost -g -wd981 -wd279 -wd383 -wd1572 -wd177 -xHost -g -wd981 -wd279 -wd383 -wd1572 -wd177 C++ compiler | /cvmfs/it.gsi.de/compiler/intel/15.0/bin/icpc C++ compiler version | 15.0.3 C++ compiler flags | -xHost -Wno-unknown-pragmas -xHost -Wno-unknown-pragmas Static linking | False 64-bit integers | True MPI parallelization | False MPI launcher | unknown Math libraries | -Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_lapack95_ilp64.a;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_intel_ilp64.so;-openmp;-Wl,--end-group;-Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_intel_ilp64.so;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_intel_thread.so;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/usr/lib/x86_64-linux-gnu/libm.so;-openmp;-Wl,--end-group Builtin BLAS library | OFF Builtin LAPACK library | OFF Explicit libraries | unknown Compile definitions | MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;BUILD_GEN1INT;HAS_PELIB;MOD_QCORR;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ESR;MOD_KRCC;MOD_SRDFT Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Fri Aug 18 18:20:21 2017 Host name : lxir127 Contents of the input file -------------------------- **DIRAC .TITLE generic input .WAVE FUNCTION #.ANALYZE **GENERAL .PCMOUT **INTEGRALS *READIN .UNCONTRACTED **HAMILTONIAN .X2C #.DFT #BP86 *AMFI .AMFICH +4 **WAVE FUNCTION .SCF *SCF .EVCCNV 1.0D-7 5.0D-5 .MAXITR 60 **ANALYZE .MULPOP *MULPOP .VECPOP all all *END OF Contents of the molecule file ----------------------------- INTGRL UF6 molecule (Oh),D2h, v2z basis d(UF)=1.999A (Seip,Acta Chem.Scand,19,1955(1965)). C 2 3 Z Y XA 92.0 1 U 0.000 0.000 0.000 LARGE BASIS dyall.v2z 9.0 3 F 1.999 0.000 0.000 F 0.000 1.999 0.000 F 0.000 0.000 1.999 LARGE BASIS dyall.v2z FINISH ************************************************************************* **************************** generic input **************************** ************************************************************************* Jobs in this run: * Wave function ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * MO-coefficients written to formatted file DFPCMO * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 Nuclear model: Gaussian charge distribution. Two-electron integrals not calculated. Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated. Changes of defaults for *READIN ------------------------------- Uncontracted basis forced, irrespective of basis input file. *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- UF6 molecule (Oh),D2h, v2z basis d(UF)=1.999A (Seip,Acta Chem.Scand,19,1955(1965)). Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 92.000 : 1.2700881714D+08 Nuclear Gaussian exponent for atom of charge 9.000 : 5.3546911034D+08 Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Point group: D2h * The point group was generated by: Reflection in the xy-plane Reflection in the xz-plane Reflection in the yz-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B1u | 1 1 -1 -1 -1 -1 1 1 B2u | 1 -1 1 -1 -1 1 -1 1 B3g | 1 -1 -1 1 1 -1 -1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2g | 1 -1 1 -1 1 -1 1 -1 B1g | 1 1 -1 -1 1 1 -1 -1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B1u B2u B3g B3u B2g B1g Au -----+---------------------------------------- Ag | Ag B1u B2u B3g B3u B2g B1g Au B1u | B1u Ag B3g B2u B2g B3u Au B1g B2u | B2u B3g Ag B1u B1g Au B3u B2g B3g | B3g B2u B1u Ag Au B1g B2g B3u B3u | B3u B2g B1g Au Ag B1u B2u B3g B2g | B2g B3u Au B1g B1u Ag B3g B2u B1g | B1g Au B3u B2g B2u B3g Ag B1u Au | Au B1g B2g B3u B3g B2u B1u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B1u i B2u j B3g k B3u k B2g j B1g i Au 1 QM-QM nuclear repulsion energy : 1529.242131011943 Isotopic Masses --------------- U 238.050785 F 1 18.998403 F 2 18.998403 F 1 18.998403 F 2 18.998403 F 1 18.998403 F 2 18.998403 Total mass: 352.041203 amu Natural abundance: 99.275 % Center-of-mass coordinates (a.u.): -0.000000 -0.000000 -0.000000 Atoms and basis sets -------------------- Number of atom types : 2 Total number of atoms: 7 label atoms charge prim cont basis ---------------------------------------------------------------------- U 1 92 347 347 L - [26s23p17d12f2g|26s23p17d12f2g] F 6 9 34 34 L - [10s6p1d|10s6p1d] ---------------------------------------------------------------------- 551 551 L - large components ---------------------------------------------------------------------- total: 7 146 551 551 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 1s-3s: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 21 1 U x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 4 F 1 x 3.7775625417 5 y 0.0000000000 6 z 0.0000000000 7 F 2 x -3.7775625417 8 y 0.0000000000 9 z 0.0000000000 10 F 1 x 0.0000000000 11 y 3.7775625417 12 z 0.0000000000 13 F 2 x 0.0000000000 14 y -3.7775625417 15 z 0.0000000000 16 F 1 x 0.0000000000 17 y 0.0000000000 18 z 3.7775625417 19 F 2 x 0.0000000000 20 y 0.0000000000 21 z -3.7775625417 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 7 U 0.0000000000 0.0000000000 0.0000000000 F 1.9990000000 0.0000000000 0.0000000000 F -1.9990000000 0.0000000000 0.0000000000 F 0.0000000000 1.9990000000 0.0000000000 F 0.0000000000 -1.9990000000 0.0000000000 F 0.0000000000 0.0000000000 1.9990000000 F 0.0000000000 0.0000000000 -1.9990000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 3 4 4 2 4 2 2 0 Symmetry Ag ( 1) 1 F x [ 4 - 7 ]/2 2 F y [ 11 - 14 ]/2 3 F z [ 18 - 21 ]/2 Symmetry B1u( 2) 4 U z 3 5 F z [ 6 + 9 ]/2 6 F z [ 12 + 15 ]/2 7 F z [ 18 + 21 ]/2 Symmetry B2u( 3) 8 U y 2 9 F y [ 5 + 8 ]/2 10 F y [ 11 + 14 ]/2 11 F y [ 17 + 20 ]/2 Symmetry B3g( 4) 12 F z [ 12 - 15 ]/2 13 F y [ 17 - 20 ]/2 Symmetry B3u( 5) 14 U x 1 15 F x [ 4 + 7 ]/2 16 F x [ 10 + 13 ]/2 17 F x [ 16 + 19 ]/2 Symmetry B2g( 6) 18 F z [ 6 - 9 ]/2 19 F x [ 16 - 19 ]/2 Symmetry B1g( 7) 20 F y [ 5 - 8 ]/2 21 F x [ 10 - 13 ]/2 Interatomic separations (in Angstroms): --------------------------------------- U F 1 F 2 F 1 F 2 F 1 U 0.000000 F 1 1.999000 0.000000 F 2 1.999000 3.998000 0.000000 F 1 1.999000 2.827013 2.827013 0.000000 F 2 1.999000 2.827013 2.827013 3.998000 0.000000 F 1 1.999000 2.827013 2.827013 2.827013 2.827013 0.000000 F 2 1.999000 2.827013 2.827013 2.827013 2.827013 3.998000 F 2 F 2 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: F 1 U 1.999000 bond distance: F 2 U 1.999000 bond distance: F 1 U 1.999000 bond distance: F 2 U 1.999000 bond distance: F 1 U 1.999000 bond distance: F 2 U 1.999000 Bond angles (degrees): ---------------------- atom 1 atom 2 atom 3 angle ------ ------ ------ ----- bond angle: F 2 U F 1 180.000 bond angle: F 1 U F 1 90.000 bond angle: F 1 U F 2 90.000 bond angle: F 2 U F 1 90.000 bond angle: F 2 U F 2 90.000 bond angle: F 2 U F 1 180.000 bond angle: F 1 U F 1 90.000 bond angle: F 1 U F 2 90.000 bond angle: F 1 U F 1 90.000 bond angle: F 1 U F 2 90.000 bond angle: F 2 U F 1 90.000 bond angle: F 2 U F 2 90.000 bond angle: F 2 U F 1 90.000 bond angle: F 2 U F 2 90.000 bond angle: F 2 U F 1 180.000 Nuclear repulsion energy : 1529.242131011943 Hartree GETLAB: AO-labels ----------------- * Large components: 95 1 L U 1 s 2 L U 1 px 3 L U 1 py 4 L U 1 pz 5 L U 1 dxx 6 L U 1 dxy 7 L U 1 dxz 8 L U 1 dyy 9 L U 1 dyz 10 L U 1 dzz 11 L U 1 fxxx 12 L U 1 fxxy 13 L U 1 fxxz 14 L U 1 fxyy 15 L U 1 fxyz 16 L U 1 fxzz 17 L U 1 fyyy 18 L U 1 fyyz 19 L U 1 fyzz 20 L U 1 fzzz 21 L U 1 g400 22 L U 1 g310 23 L U 1 g301 24 L U 1 g220 25 L U 1 g211 26 L U 1 g202 27 L U 1 g130 28 L U 1 g121 29 L U 1 g112 30 L U 1 g103 31 L U 1 g040 32 L U 1 g031 33 L U 1 g022 34 L U 1 g013 35 L U 1 g004 36 L F 1 s 37 L F 2 s 38 L F 1 px 39 L F 1 py 40 L F 1 pz 41 L F 2 px 42 L F 2 py 43 L F 2 pz 44 L F 1 dxx 45 L F 1 dxy 46 L F 1 dxz 47 L F 1 dyy 48 L F 1 dyz 49 L F 1 dzz 50 L F 2 dxx 51 L F 2 dxy 52 L F 2 dxz 53 L F 2 dyy 54 L F 2 dyz 55 L F 2 dzz 56 L F 1 s 57 L F 2 s 58 L F 1 px 59 L F 1 py 60 L F 1 pz 61 L F 2 px 62 L F 2 py 63 L F 2 pz 64 L F 1 dxx 65 L F 1 dxy 66 L F 1 dxz 67 L F 1 dyy 68 L F 1 dyz 69 L F 1 dzz 70 L F 2 dxx 71 L F 2 dxy 72 L F 2 dxz 73 L F 2 dyy 74 L F 2 dyz 75 L F 2 dzz 76 L F 1 s 77 L F 2 s 78 L F 1 px 79 L F 1 py 80 L F 1 pz 81 L F 2 px 82 L F 2 py 83 L F 2 pz 84 L F 1 dxx 85 L F 1 dxy 86 L F 1 dxz 87 L F 1 dyy 88 L F 1 dyz 89 L F 1 dzz 90 L F 2 dxx 91 L F 2 dxy 92 L F 2 dxz 93 L F 2 dyy 94 L F 2 dyz 95 L F 2 dzz * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 95 1 L Ag U s 2 L Ag U dxx 3 L Ag U dyy 4 L Ag U dzz 5 L Ag U g400 6 L Ag U g220 7 L Ag U g202 8 L Ag U g040 9 L Ag U g022 10 L Ag U g004 11 L Ag F s 12 L Ag F px 13 L Ag F dxx 14 L Ag F dyy 15 L Ag F dzz 16 L Ag F s 17 L Ag F py 18 L Ag F dxx 19 L Ag F dyy 20 L Ag F dzz 21 L Ag F s 22 L Ag F pz 23 L Ag F dxx 24 L Ag F dyy 25 L Ag F dzz 26 L B1uU pz 27 L B1uU fxxz 28 L B1uU fyyz 29 L B1uU fzzz 30 L B1uF pz 31 L B1uF dxz 32 L B1uF pz 33 L B1uF dyz 34 L B1uF s 35 L B1uF pz 36 L B1uF dxx 37 L B1uF dyy 38 L B1uF dzz 39 L B2uU py 40 L B2uU fxxy 41 L B2uU fyyy 42 L B2uU fyzz 43 L B2uF py 44 L B2uF dxy 45 L B2uF s 46 L B2uF py 47 L B2uF dxx 48 L B2uF dyy 49 L B2uF dzz 50 L B2uF py 51 L B2uF dyz 52 L B3gU dyz 53 L B3gU g211 54 L B3gU g031 55 L B3gU g013 56 L B3gF dyz 57 L B3gF pz 58 L B3gF dyz 59 L B3gF py 60 L B3gF dyz 61 L B3uU px 62 L B3uU fxxx 63 L B3uU fxyy 64 L B3uU fxzz 65 L B3uF s 66 L B3uF px 67 L B3uF dxx 68 L B3uF dyy 69 L B3uF dzz 70 L B3uF px 71 L B3uF dxy 72 L B3uF px 73 L B3uF dxz 74 L B2gU dxz 75 L B2gU g301 76 L B2gU g121 77 L B2gU g103 78 L B2gF pz 79 L B2gF dxz 80 L B2gF dxz 81 L B2gF px 82 L B2gF dxz 83 L B1gU dxy 84 L B1gU g310 85 L B1gU g130 86 L B1gU g112 87 L B1gF py 88 L B1gF dxy 89 L B1gF px 90 L B1gF dxy 91 L B1gF dxy 92 L Au U fxyz 93 L Au F dyz 94 L Au F dxz 95 L Au F dxy * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 146 92 92 38 92 38 38 15 Number of large orbitals in each symmetry: 146 92 92 38 92 38 38 15 Number of small orbitals in each symmetry: 0 0 0 0 0 0 0 0 * Large component functions Symmetry Ag ( 1) 26 functions: U s 17 functions: U dxx 17 functions: U dyy 17 functions: U dzz 2 functions: U g400 2 functions: U g220 2 functions: U g202 2 functions: U g040 2 functions: U g022 2 functions: U g004 10 functions: F s 1+2 6 functions: F px 1-2 1 functions: F dxx 1+2 1 functions: F dyy 1+2 1 functions: F dzz 1+2 10 functions: F s 1+2 6 functions: F py 1-2 1 functions: F dxx 1+2 1 functions: F dyy 1+2 1 functions: F dzz 1+2 10 functions: F s 1+2 6 functions: F pz 1-2 1 functions: F dxx 1+2 1 functions: F dyy 1+2 1 functions: F dzz 1+2 Symmetry B1u( 2) 23 functions: U pz 12 functions: U fxxz 12 functions: U fyyz 12 functions: U fzzz 6 functions: F pz 1+2 1 functions: F dxz 1-2 6 functions: F pz 1+2 1 functions: F dyz 1-2 10 functions: F s 1-2 6 functions: F pz 1+2 1 functions: F dxx 1-2 1 functions: F dyy 1-2 1 functions: F dzz 1-2 Symmetry B2u( 3) 23 functions: U py 12 functions: U fxxy 12 functions: U fyyy 12 functions: U fyzz 6 functions: F py 1+2 1 functions: F dxy 1-2 10 functions: F s 1-2 6 functions: F py 1+2 1 functions: F dxx 1-2 1 functions: F dyy 1-2 1 functions: F dzz 1-2 6 functions: F py 1+2 1 functions: F dyz 1-2 Symmetry B3g( 4) 17 functions: U dyz 2 functions: U g211 2 functions: U g031 2 functions: U g013 1 functions: F dyz 1+2 6 functions: F pz 1-2 1 functions: F dyz 1+2 6 functions: F py 1-2 1 functions: F dyz 1+2 Symmetry B3u( 5) 23 functions: U px 12 functions: U fxxx 12 functions: U fxyy 12 functions: U fxzz 10 functions: F s 1-2 6 functions: F px 1+2 1 functions: F dxx 1-2 1 functions: F dyy 1-2 1 functions: F dzz 1-2 6 functions: F px 1+2 1 functions: F dxy 1-2 6 functions: F px 1+2 1 functions: F dxz 1-2 Symmetry B2g( 6) 17 functions: U dxz 2 functions: U g301 2 functions: U g121 2 functions: U g103 6 functions: F pz 1-2 1 functions: F dxz 1+2 1 functions: F dxz 1+2 6 functions: F px 1-2 1 functions: F dxz 1+2 Symmetry B1g( 7) 17 functions: U dxy 2 functions: U g310 2 functions: U g130 2 functions: U g112 6 functions: F py 1-2 1 functions: F dxy 1+2 6 functions: F px 1-2 1 functions: F dxy 1+2 1 functions: F dxy 1+2 Symmetry Au ( 8) 12 functions: U fxyz 1 functions: F dyz 1-2 1 functions: F dxz 1-2 1 functions: F dxy 1-2 *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set ******************************************************************************* ************************** AMFI/RELSCF input reading ************************** ******************************************************************************* =========================================================================== Set-up for AMFI/RELSCF calculations =========================================================================== * AMFI code print level: 0 * RELSCF code print level: 0 * RELSCF maximum number of iterations: 50 * AMFI mean-field summations on individual atoms are modified due to the artificial charge of the system: 4 * order of AMFI contributions to the X2C Hamiltonian: 2 --> adding spin-same orbit MFSSO2 terms. ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Initial Automatic occupation based on: Total charge of atoms = 146 Charge of molecule = 0 i.e. no. of electrons = 146 =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Sum of atomic potentials used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 to improve convergence (default value). The final open-shell orbital energies are recalculated with 1.0 scaling, such that all occupied orbital energies correspond to Koopmans' theorem ionization energies. ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:5.000D-05 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 60 * No quadratic convergent Hartree-Fock * DHF occupation is allowed to change during SCF cycles. * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- UF6 molecule (Oh),D2h, v2z basis d(UF)=1.999A (Seip,Acta Chem.Scand,19,1955(1965)). Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 92.000 : 1.2700881714D+08 Nuclear Gaussian exponent for atom of charge 9.000 : 5.3546911034D+08 Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Point group: D2h * The point group was generated by: Reflection in the xy-plane Reflection in the xz-plane Reflection in the yz-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B1u | 1 1 -1 -1 -1 -1 1 1 B2u | 1 -1 1 -1 -1 1 -1 1 B3g | 1 -1 -1 1 1 -1 -1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2g | 1 -1 1 -1 1 -1 1 -1 B1g | 1 1 -1 -1 1 1 -1 -1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B1u B2u B3g B3u B2g B1g Au -----+---------------------------------------- Ag | Ag B1u B2u B3g B3u B2g B1g Au B1u | B1u Ag B3g B2u B2g B3u Au B1g B2u | B2u B3g Ag B1u B1g Au B3u B2g B3g | B3g B2u B1u Ag Au B1g B2g B3u B3u | B3u B2g B1g Au Ag B1u B2u B3g B2g | B2g B3u Au B1g B1u Ag B3g B2u B1g | B1g Au B3u B2g B2u B3g Ag B1u Au | Au B1g B2g B3u B3g B2u B1u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B1u i B2u j B3g k B3u k B2g j B1g i Au 1 QM-QM nuclear repulsion energy : 1529.242131011943 Isotopic Masses --------------- U 238.050785 F 1 18.998403 F 2 18.998403 F 1 18.998403 F 2 18.998403 F 1 18.998403 F 2 18.998403 Total mass: 352.041203 amu Natural abundance: 99.275 % Center-of-mass coordinates (a.u.): -0.000000 -0.000000 -0.000000 Atoms and basis sets -------------------- Number of atom types : 2 Total number of atoms: 7 label atoms charge prim cont basis ---------------------------------------------------------------------- U 1 92 347 347 L - [26s23p17d12f2g|26s23p17d12f2g] F 6 9 34 34 L - [10s6p1d|10s6p1d] ---------------------------------------------------------------------- 551 551 L - large components 1284 1284 S - small components ---------------------------------------------------------------------- total: 7 146 1835 1835 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 1s-3s: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 21 1 U x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 4 F 1 x 3.7775625417 5 y 0.0000000000 6 z 0.0000000000 7 F 2 x -3.7775625417 8 y 0.0000000000 9 z 0.0000000000 10 F 1 x 0.0000000000 11 y 3.7775625417 12 z 0.0000000000 13 F 2 x 0.0000000000 14 y -3.7775625417 15 z 0.0000000000 16 F 1 x 0.0000000000 17 y 0.0000000000 18 z 3.7775625417 19 F 2 x 0.0000000000 20 y 0.0000000000 21 z -3.7775625417 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 7 U 0.0000000000 0.0000000000 0.0000000000 F 1.9990000000 0.0000000000 0.0000000000 F -1.9990000000 0.0000000000 0.0000000000 F 0.0000000000 1.9990000000 0.0000000000 F 0.0000000000 -1.9990000000 0.0000000000 F 0.0000000000 0.0000000000 1.9990000000 F 0.0000000000 0.0000000000 -1.9990000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 3 4 4 2 4 2 2 0 Symmetry Ag ( 1) 1 F x [ 4 - 7 ]/2 2 F y [ 11 - 14 ]/2 3 F z [ 18 - 21 ]/2 Symmetry B1u( 2) 4 U z 3 5 F z [ 6 + 9 ]/2 6 F z [ 12 + 15 ]/2 7 F z [ 18 + 21 ]/2 Symmetry B2u( 3) 8 U y 2 9 F y [ 5 + 8 ]/2 10 F y [ 11 + 14 ]/2 11 F y [ 17 + 20 ]/2 Symmetry B3g( 4) 12 F z [ 12 - 15 ]/2 13 F y [ 17 - 20 ]/2 Symmetry B3u( 5) 14 U x 1 15 F x [ 4 + 7 ]/2 16 F x [ 10 + 13 ]/2 17 F x [ 16 + 19 ]/2 Symmetry B2g( 6) 18 F z [ 6 - 9 ]/2 19 F x [ 16 - 19 ]/2 Symmetry B1g( 7) 20 F y [ 5 - 8 ]/2 21 F x [ 10 - 13 ]/2 Interatomic separations (in Angstroms): --------------------------------------- U F 1 F 2 F 1 F 2 F 1 U 0.000000 F 1 1.999000 0.000000 F 2 1.999000 3.998000 0.000000 F 1 1.999000 2.827013 2.827013 0.000000 F 2 1.999000 2.827013 2.827013 3.998000 0.000000 F 1 1.999000 2.827013 2.827013 2.827013 2.827013 0.000000 F 2 1.999000 2.827013 2.827013 2.827013 2.827013 3.998000 F 2 F 2 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: F 1 U 1.999000 bond distance: F 2 U 1.999000 bond distance: F 1 U 1.999000 bond distance: F 2 U 1.999000 bond distance: F 1 U 1.999000 bond distance: F 2 U 1.999000 Bond angles (degrees): ---------------------- atom 1 atom 2 atom 3 angle ------ ------ ------ ----- bond angle: F 2 U F 1 180.000 bond angle: F 1 U F 1 90.000 bond angle: F 1 U F 2 90.000 bond angle: F 2 U F 1 90.000 bond angle: F 2 U F 2 90.000 bond angle: F 2 U F 1 180.000 bond angle: F 1 U F 1 90.000 bond angle: F 1 U F 2 90.000 bond angle: F 1 U F 1 90.000 bond angle: F 1 U F 2 90.000 bond angle: F 2 U F 1 90.000 bond angle: F 2 U F 2 90.000 bond angle: F 2 U F 1 90.000 bond angle: F 2 U F 2 90.000 bond angle: F 2 U F 1 180.000 Nuclear repulsion energy : 1529.242131011943 Hartree Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 26(Proj: 26, Lindep: 0) Smin: 0.13E-03 L B3g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B2g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B1g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 S B1u * Deleted: 35(Proj: 34, Lindep: 1) Smin: 0.61E-08 S B2u * Deleted: 35(Proj: 34, Lindep: 1) Smin: 0.61E-08 S B3u * Deleted: 35(Proj: 34, Lindep: 1) Smin: 0.61E-08 S Au * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.38E-03 L B1u * Deleted: 13(Proj: 13, Lindep: 0) Smin: 0.85E-03 L B2u * Deleted: 13(Proj: 13, Lindep: 0) Smin: 0.85E-03 L B3u * Deleted: 13(Proj: 13, Lindep: 0) Smin: 0.85E-03 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.22E-01 S Ag * Deleted: 94(Proj: 92, Lindep: 2) Smin: 0.21E-08 S B3g * Deleted: 15(Proj: 14, Lindep: 1) Smin: 0.10E-08 S B2g * Deleted: 15(Proj: 14, Lindep: 1) Smin: 0.10E-08 S B1g * Deleted: 15(Proj: 14, Lindep: 1) Smin: 0.10E-08 *** WARNING *** : 8 functions deleted due to numerical linear dependence. >>> Time used in Lwdn_a is 0.14 seconds ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! * Applied SL-regrouping on AO2MO tranf.matrix in SLSORT. Output from AMFIIN ------------------ The total nonzero charge of the system: 4 factor is : 0.246575342465753 1 .atom-nucleus charge: 92 partial charge: 2.52054794520548 2 .atom-nucleus charge: 9 partial charge: 0.246575342465753 3 .atom-nucleus charge: 9 partial charge: 0.246575342465753 4 .atom-nucleus charge: 9 partial charge: 0.246575342465753 5 .atom-nucleus charge: 9 partial charge: 0.246575342465753 6 .atom-nucleus charge: 9 partial charge: 0.246575342465753 7 .atom-nucleus charge: 9 partial charge: 0.246575342465753 Sum of all charges (real): 4.00000000000000 Total charge of the system is : 4 *** number of unique nuclei (from file MNF.INP): 2 *** calculate AMFI for atom type 1 with atomic charge 92 *** number of nuclei with identical atom type: 1 unique nuclei index: 1 *** file with AMFI integrals for this center: AOPROPER_MNF.92.1 ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators charge on the calculated atom: 3 Mean-field summation for electrons #: 89 ...electronic occupation of Ac: [Rn]7s^2 6d^1 **** Written to the file TOSCF for "relscf" **** charge: 92.000 nprimit: 26 23 17 12 closed sh.: 7 5 3 1 open sh.: 0 0 1 0 *** PROGRAM AT34 - ALLIANT - @V *** ----------------------------------- SYMMETRY SPECIES S P D F NUMBER OF BASIS FUNCTIONS: 26 23 17 12 NUMBER OF CLOSED SHELLS : 7 5 3 1 OPEN SHELL OCCUPATION : 0 0 1 0 ### SCF ITERATIONS ### ### NON-RELATIVISTIC APPROX. ### 1. iteration, total energy: 0.000000000000 2. iteration, total energy: -14798.708356766301 3. iteration, total energy: -23846.153245082889 4. iteration, total energy: -23786.347215840698 5. iteration, total energy: -25118.219468289608 6. iteration, total energy: -25601.881715643183 7. iteration, total energy: -25633.822305472058 8. iteration, total energy: -25651.815048382490 9. iteration, total energy: -25660.556259791527 10. iteration, total energy: -25661.043835516179 11. iteration, total energy: -25661.146553618280 12. iteration, total energy: -25661.179227835572 13. iteration, total energy: -25661.194383850601 14. iteration, total energy: -25661.194773059877 15. iteration, total energy: -25661.194973804679 16. iteration, total energy: -25661.195001943765 17. iteration, total energy: -25661.195038085116 18. iteration, total energy: -25661.195038472521 19. iteration, total energy: -25661.195036963163 20. iteration, total energy: -25661.195038049409 21. iteration, total energy: -25661.195040816780 22. iteration, total energy: -25661.195037677528 23. iteration, total energy: -25661.195037748672 23. iteration, total energy: -25661.195037707563 ### NON-RELATIVISTIC APPROX. ### 23 -0.2566119504D+05 -0.5132246459D+05 0.2566126955D+05 -0.1999997096D+01 ### SCF ITERATIONS ### ### EV APPROX. ### 1. iteration, total energy: -26651.981271014676 2. iteration, total energy: -27943.712613768446 3. iteration, total energy: -27946.521484304736 4. iteration, total energy: -27947.198941516617 5. iteration, total energy: -27947.588757957965 6. iteration, total energy: -27947.598244277331 7. iteration, total energy: -27947.601794905691 8. iteration, total energy: -27947.603175737582 9. iteration, total energy: -27947.603990612246 10. iteration, total energy: -27947.604006258727 11. iteration, total energy: -27947.604014697979 12. iteration, total energy: -27947.604016783996 13. iteration, total energy: -27947.604021425439 14. iteration, total energy: -27947.604018802835 15. iteration, total energy: -27947.604018766106 16. iteration, total energy: -27947.604018804304 17. iteration, total energy: -27947.604021488187 18. iteration, total energy: -27947.604018793849 19. iteration, total energy: -27947.604018796206 20. iteration, total energy: -27947.604018794744 21. iteration, total energy: -27947.604021488354 21. iteration, total energy: -27947.604018795231 ### EV OPERATOR RESULT ### 21 -0.2794760402D+05 -0.6241887272D+05 0.3447126870D+05 -0.1810750665D+01 *** AMFIIN: ADDING nucleus 1 with charge 92 to the BSSn Hamiltonian. *** calculate AMFI for atom type 2 with atomic charge 9 *** number of nuclei with identical atom type: 6 unique nuclei index: 2 *** file with AMFI integrals for this center: AOPROPER_MNF.9.2 ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators charge on the calculated atom: 0 Mean-field summation for electrons #: 9 ...electronic occupation of F: [He]2s^2 2p^5 **** Written to the file TOSCF for "relscf" **** charge: 9.000 nprimit: 10 6 1 0 closed sh.: 2 0 0 0 open sh.: 0 5 0 0 *** PROGRAM AT34 - ALLIANT - @V *** ----------------------------------- SYMMETRY SPECIES S P D F NUMBER OF BASIS FUNCTIONS: 10 6 1 NUMBER OF CLOSED SHELLS : 2 0 0 OPEN SHELL OCCUPATION : 0 5 0 ### SCF ITERATIONS ### ### NON-RELATIVISTIC APPROX. ### 1. iteration, total energy: NaN 2. iteration, total energy: -86.405306716699 3. iteration, total energy: -97.132036996984 4. iteration, total energy: -98.790476780992 5. iteration, total energy: -99.348247397300 6. iteration, total energy: -99.397156747019 7. iteration, total energy: -99.403875517345 8. iteration, total energy: -99.404988216755 9. iteration, total energy: -99.405193569793 10. iteration, total energy: -99.405209892035 11. iteration, total energy: -99.405212634777 12. iteration, total energy: -99.405213097676 13. iteration, total energy: -99.405213181958 14. iteration, total energy: -99.405213190422 15. iteration, total energy: -99.405213191568 16. iteration, total energy: -99.405213191762 16. iteration, total energy: -99.405213191795 ### NON-RELATIVISTIC APPROX. ### 16 -0.9940521319D+02 -0.1988111058D+03 0.9940589264D+02 -0.1999993165D+01 ### SCF ITERATIONS ### ### EV APPROX. ### 1. iteration, total energy: -99.485102998138 2. iteration, total energy: -99.492172102661 3. iteration, total energy: -99.492175436309 4. iteration, total energy: -99.492175906542 5. iteration, total energy: -99.492175988622 6. iteration, total energy: -99.492175997356 7. iteration, total energy: -99.492175998492 8. iteration, total energy: -99.492175998681 9. iteration, total energy: -99.492175997053 10. iteration, total energy: -99.492175998719 10. iteration, total energy: -99.492175998719 ### EV OPERATOR RESULT ### 10 -0.9949217600D+02 -0.1991699616D+03 0.9967778558D+02 -0.1998137904D+01 *** AMFIIN: ADDING nucleus 2 with charge 9 to the BSSn Hamiltonian. *** AMFIIN: ADDING nucleus 3 with charge 9 to the BSSn Hamiltonian. *** AMFIIN: ADDING nucleus 4 with charge 9 to the BSSn Hamiltonian. *** AMFIIN: ADDING nucleus 5 with charge 9 to the BSSn Hamiltonian. *** AMFIIN: ADDING nucleus 6 with charge 9 to the BSSn Hamiltonian. *** AMFIIN: ADDING nucleus 7 with charge 9 to the BSSn Hamiltonian. ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* >>> Time used in mk_h2c is 7.08 seconds Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 92.000 : 1.2700881714D+08 Nuclear Gaussian exponent for atom of charge 9.000 : 5.3546911034D+08 Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 26(Proj: 26, Lindep: 0) Smin: 0.13E-03 L B3g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B2g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B1g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B1u * Deleted: 13(Proj: 13, Lindep: 0) Smin: 0.85E-03 L B2u * Deleted: 13(Proj: 13, Lindep: 0) Smin: 0.85E-03 L B3u * Deleted: 13(Proj: 13, Lindep: 0) Smin: 0.85E-03 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.22E-01 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 228 252 480 No. of positronic orbitals (NPSH): 0 0 0 Total no. of orbitals (NORB): 228 252 480 >>> Time used in PAMSET is 8.03 seconds ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by a sum of atomic screening potentials. ########## START ITERATION NO. 1 ########## Fri Aug 18 18:20:29 2017 * AUTOCC( 0) : Initial occupation: * Closed shell SCF calculation with 146 electrons in 36 orbitals in Fermion irrep 1 and 37 orbitals in Fermion irrep 2 E_HOMO...E_LUMO, symmetry 1: 36 -0.77435 37 -0.42323 E_HOMO...E_LUMO, symmetry 2: 265 -0.73194 266 -0.60163 => Calculating sum of orbital energies It. 1 -16564.35634795 0.00D+00 0.00D+00 0.00D+00 2.89600000s Scr. nuclei Fri Aug 18 ########## START ITERATION NO. 2 ########## Fri Aug 18 18:20:32 2017 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 3.24% 44.09% 0.04% 4.37% 19.57200050s E_HOMO...E_LUMO, symmetry 1: 36 -0.56637 37 0.06641 E_HOMO...E_LUMO, symmetry 2: 265 -0.47295 266 0.06697 >>> Total wall time:20.07742405s, and total CPU time :20.08000000s ########## END ITERATION NO. 2 ########## Fri Aug 18 18:20:52 2017 It. 2 -28636.04108923 1.21D+04 6.63D+01 1.92D+01 20.08000000s LL Fri Aug 18 ########## START ITERATION NO. 3 ########## Fri Aug 18 18:20:52 2017 3 *** Differential density matrix. DCOVLP = 1.0102 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 3.93% 46.76% 0.03% 4.14% 18.96799850s E_HOMO...E_LUMO, symmetry 1: 36 -0.68878 37 0.03907 E_HOMO...E_LUMO, symmetry 2: 265 -0.66201 266 -0.21506 >>> Total wall time:19.05402112s, and total CPU time :19.05200000s ########## END ITERATION NO. 3 ########## Fri Aug 18 18:21:11 2017 It. 3 -28636.56516971 5.24D-01 -4.13D-01 7.19D-01 DIIS 2 19.05200000s LL Fri Aug 18 ########## START ITERATION NO. 4 ########## Fri Aug 18 18:21:11 2017 4 *** Differential density matrix. DCOVLP = 1.0203 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.47% 48.00% 0.03% 4.10% 19.15199661s E_HOMO...E_LUMO, symmetry 1: 36 -0.68195 37 0.05449 E_HOMO...E_LUMO, symmetry 2: 265 -0.62820 266 -0.04165 >>> Total wall time:19.23852921s, and total CPU time :19.24400000s ########## END ITERATION NO. 4 ########## Fri Aug 18 18:21:31 2017 It. 4 -28636.57343071 8.26D-03 4.37D-01 5.70D-01 DIIS 3 19.24400000s LL Fri Aug 18 ########## START ITERATION NO. 5 ########## Fri Aug 18 18:21:31 2017 5 *** Differential density matrix. DCOVLP = 0.9883 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 5.11% 49.15% 0.04% 4.05% 18.98000336s E_HOMO...E_LUMO, symmetry 1: 36 -0.67190 37 0.05471 E_HOMO...E_LUMO, symmetry 2: 265 -0.62389 266 -0.06385 >>> Total wall time:19.02334189s, and total CPU time :19.02800000s ########## END ITERATION NO. 5 ########## Fri Aug 18 18:21:50 2017 It. 5 -28636.61836750 4.49D-02 -3.61D-01 2.82D-01 DIIS 4 19.02800000s LL Fri Aug 18 ########## START ITERATION NO. 6 ########## Fri Aug 18 18:21:50 2017 6 *** Differential density matrix. DCOVLP = 1.0031 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 7.05% 50.84% 0.04% 3.98% 18.27999878s E_HOMO...E_LUMO, symmetry 1: 36 -0.67224 37 0.05473 E_HOMO...E_LUMO, symmetry 2: 265 -0.62468 266 -0.06679 >>> Total wall time:18.35726118s, and total CPU time :18.36400000s ########## END ITERATION NO. 6 ########## Fri Aug 18 18:22:08 2017 It. 6 -28636.62449819 6.13D-03 9.56D-02 3.41D-02 DIIS 5 18.36400000s LL Fri Aug 18 ########## START ITERATION NO. 7 ########## Fri Aug 18 18:22:08 2017 7 *** Differential density matrix. DCOVLP = 1.0010 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 8.05% 51.98% 0.03% 3.90% 18.02400208s E_HOMO...E_LUMO, symmetry 1: 36 -0.67336 37 0.05465 E_HOMO...E_LUMO, symmetry 2: 265 -0.62572 266 -0.06859 >>> Total wall time:18.07627296s, and total CPU time :18.07600000s ########## END ITERATION NO. 7 ########## Fri Aug 18 18:22:26 2017 It. 7 -28636.62479408 2.96D-04 7.10D-03 1.05D-02 DIIS 6 18.07600000s LL Fri Aug 18 ########## START ITERATION NO. 8 ########## Fri Aug 18 18:22:26 2017 8 *** Differential density matrix. DCOVLP = 1.0003 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 8.91% 52.81% 0.03% 3.82% 17.87200165s E_HOMO...E_LUMO, symmetry 1: 36 -0.67331 37 0.05468 E_HOMO...E_LUMO, symmetry 2: 265 -0.62531 266 -0.06784 >>> Total wall time:17.91272306s, and total CPU time :17.91600000s ########## END ITERATION NO. 8 ########## Fri Aug 18 18:22:44 2017 It. 8 -28636.62486247 6.84D-05 3.57D-03 3.99D-03 DIIS 7 17.91600000s LL Fri Aug 18 ########## START ITERATION NO. 9 ########## Fri Aug 18 18:22:44 2017 9 *** Differential density matrix. DCOVLP = 0.9999 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 10.35% 53.85% 0.04% 3.75% 17.42799377s E_HOMO...E_LUMO, symmetry 1: 36 -0.67350 37 0.05469 E_HOMO...E_LUMO, symmetry 2: 265 -0.62532 266 -0.06751 >>> Total wall time:17.46599698s, and total CPU time :17.47200000s ########## END ITERATION NO. 9 ########## Fri Aug 18 18:23:01 2017 It. 9 -28636.62487771 1.52D-05 3.75D-04 2.16D-03 DIIS 8 17.47200000s LL Fri Aug 18 ########## START ITERATION NO. 10 ########## Fri Aug 18 18:23:01 2017 10 *** Differential density matrix. DCOVLP = 0.9999 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 11.16% 55.04% 0.03% 3.71% 17.09999084s E_HOMO...E_LUMO, symmetry 1: 36 -0.67351 37 0.05469 E_HOMO...E_LUMO, symmetry 2: 265 -0.62528 266 -0.06735 >>> Total wall time:17.17455792s, and total CPU time :17.18000000s ########## END ITERATION NO. 10 ########## Fri Aug 18 18:23:19 2017 It. 10 -28636.62488039 2.67D-06 2.74D-04 7.32D-04 DIIS 9 17.18000000s LL Fri Aug 18 ########## START ITERATION NO. 11 ########## Fri Aug 18 18:23:19 2017 11 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 12.13% 56.32% 0.03% 3.66% 17.14799500s E_HOMO...E_LUMO, symmetry 1: 36 -0.67351 37 0.05469 E_HOMO...E_LUMO, symmetry 2: 265 -0.62528 266 -0.06734 >>> Total wall time:17.24193287s, and total CPU time :17.24000000s ########## END ITERATION NO. 11 ########## Fri Aug 18 18:23:36 2017 It. 11 -28636.62488068 2.95D-07 -9.68D-05 1.17D-04 DIIS 9 17.24000000s LL Fri Aug 18 ########## START ITERATION NO. 12 ########## Fri Aug 18 18:23:36 2017 12 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 14.24% 59.29% 0.03% 3.51% 16.69200134s E_HOMO...E_LUMO, symmetry 1: 36 -0.67351 37 0.05469 E_HOMO...E_LUMO, symmetry 2: 265 -0.62529 266 -0.06734 >>> Total wall time:16.78394103s, and total CPU time :16.78800000s ########## END ITERATION NO. 12 ########## Fri Aug 18 18:23:53 2017 It. 12 -28636.62488069 1.18D-08 -1.04D-05 3.71D-05 DIIS 9 16.78800000s LL Fri Aug 18 ########## START ITERATION NO. 13 ########## Fri Aug 18 18:23:53 2017 13 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 16.23% 60.80% 0.03% 3.36% 16.02400208s E_HOMO...E_LUMO, symmetry 1: 36 -0.67351 37 0.05469 E_HOMO...E_LUMO, symmetry 2: 265 -0.62529 266 -0.06734 >>> Total wall time:16.11541891s, and total CPU time :16.11600000s ########## END ITERATION NO. 13 ########## Fri Aug 18 18:24:09 2017 It. 13 -28636.62488069 1.60D-09 -3.27D-06 1.37D-05 DIIS 9 16.11600000s LL Fri Aug 18 ########## START ITERATION NO. 14 ########## Fri Aug 18 18:24:09 2017 14 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 17.56% 61.47% 0.03% 3.36% 15.86799622s E_HOMO...E_LUMO, symmetry 1: 36 -0.67351 37 0.05469 E_HOMO...E_LUMO, symmetry 2: 265 -0.62529 266 -0.06734 >>> Total wall time:15.91924500s, and total CPU time :15.92400000s ########## END ITERATION NO. 14 ########## Fri Aug 18 18:24:25 2017 It. 14 -28636.62488069 2.40D-10 -1.39D-06 4.73D-06 DIIS 9 15.92400000s LL Fri Aug 18 ########## START ITERATION NO. 15 ########## Fri Aug 18 18:24:25 2017 15 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 20.09% 61.94% 0.04% 3.44% 15.11601257s E_HOMO...E_LUMO, symmetry 1: 36 -0.67351 37 0.05469 E_HOMO...E_LUMO, symmetry 2: 265 -0.62529 266 -0.06734 >>> Total wall time:15.17185593s, and total CPU time :15.16800000s ########## END ITERATION NO. 15 ########## Fri Aug 18 18:24:40 2017 It. 15 -28636.62488069 2.73D-10 1.84D-06 2.39D-06 DIIS 9 15.16800000s LL Fri Aug 18 ########## START ITERATION NO. 16 ########## Fri Aug 18 18:24:40 2017 16 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 22.64% 61.99% 0.06% 3.52% 14.50399780s E_HOMO...E_LUMO, symmetry 1: 36 -0.67351 37 0.05469 E_HOMO...E_LUMO, symmetry 2: 265 -0.62529 266 -0.06734 >>> Total wall time:14.53631091s, and total CPU time :14.54800000s ########## END ITERATION NO. 16 ########## Fri Aug 18 18:24:54 2017 It. 16 -28636.62488069 -2.91D-11 -8.63D-07 5.48D-07 DIIS 9 14.54800000s LL Fri Aug 18 ########## START ITERATION NO. 17 ########## Fri Aug 18 18:24:54 2017 17 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 25.94% 62.00% 0.09% 3.62% 13.95599365s E_HOMO...E_LUMO, symmetry 1: 36 -0.67351 37 0.05469 E_HOMO...E_LUMO, symmetry 2: 265 -0.62529 266 -0.06734 >>> Total wall time:13.99889803s, and total CPU time :14.00000000s ########## END ITERATION NO. 17 ########## Fri Aug 18 18:25:08 2017 It. 17 -28636.62488069 1.27D-10 1.49D-07 1.15D-07 DIIS 9 14.00000000s LL Fri Aug 18 ########## START ITERATION NO. 18 ########## Fri Aug 18 18:25:08 2017 18 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 31.65% 60.14% 0.12% 3.99% 12.83200073s >>> Total wall time:12.85143399s, and total CPU time :12.85200000s ########## END ITERATION NO. 18 ########## Fri Aug 18 18:25:21 2017 It. 18 -28636.62488069 9.46D-11 -7.74D-08 3.42D-08 DIIS 9 12.85200000s LL Fri Aug 18 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:5.000D-05 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -16564.35634795 0.00D+00 0.00D+00 0.00D+00 2.89600000s Scr. nuclei Fri Aug 18 It. 2 -28636.04108923 1.21D+04 6.63D+01 1.92D+01 20.08000000s LL Fri Aug 18 It. 3 -28636.56516971 5.24D-01 -4.13D-01 7.19D-01 DIIS 2 19.05200000s LL Fri Aug 18 It. 4 -28636.57343071 8.26D-03 4.37D-01 5.70D-01 DIIS 3 19.24400000s LL Fri Aug 18 It. 5 -28636.61836750 4.49D-02 -3.61D-01 2.82D-01 DIIS 4 19.02800000s LL Fri Aug 18 It. 6 -28636.62449819 6.13D-03 9.56D-02 3.41D-02 DIIS 5 18.36400000s LL Fri Aug 18 It. 7 -28636.62479408 2.96D-04 7.10D-03 1.05D-02 DIIS 6 18.07600000s LL Fri Aug 18 It. 8 -28636.62486247 6.84D-05 3.57D-03 3.99D-03 DIIS 7 17.91600000s LL Fri Aug 18 It. 9 -28636.62487771 1.52D-05 3.75D-04 2.16D-03 DIIS 8 17.47200000s LL Fri Aug 18 It. 10 -28636.62488039 2.67D-06 2.74D-04 7.32D-04 DIIS 9 17.18000000s LL Fri Aug 18 It. 11 -28636.62488068 2.95D-07 -9.68D-05 1.17D-04 DIIS 9 17.24000000s LL Fri Aug 18 It. 12 -28636.62488069 1.18D-08 -1.04D-05 3.71D-05 DIIS 9 16.78800000s LL Fri Aug 18 It. 13 -28636.62488069 1.60D-09 -3.27D-06 1.37D-05 DIIS 9 16.11600000s LL Fri Aug 18 It. 14 -28636.62488069 2.40D-10 -1.39D-06 4.73D-06 DIIS 9 15.92400000s LL Fri Aug 18 It. 15 -28636.62488069 2.73D-10 1.84D-06 2.39D-06 DIIS 9 15.16800000s LL Fri Aug 18 It. 16 -28636.62488069 -2.91D-11 -8.63D-07 5.48D-07 DIIS 9 14.54800000s LL Fri Aug 18 It. 17 -28636.62488069 1.27D-10 1.49D-07 1.15D-07 DIIS 9 14.00000000s LL Fri Aug 18 It. 18 -28636.62488069 9.46D-11 -7.74D-08 3.42D-08 DIIS 9 12.85200000s LL Fri Aug 18 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 18 iterations. * Average elapsed time per iteration: No 2-ints : 2.89550686s LL : 16.99995089s TOTAL ENERGY ------------ Electronic energy : -30165.867011705901 Other contributions to the total energy Nuclear repulsion energy : 1529.242131011943 Sum of all contributions to the energy Total energy : -28636.624880693958 Eigenvalues ----------- * Fermion symmetry E1g * Closed shell, f = 1.0000 -4272.648967109 ( 2) -805.501321284 ( 2) -206.889095261 ( 2) -139.530338742 ( 4) -132.901409040 ( 2) -132.900449890 ( 4) -54.792934116 ( 2) -30.262539274 ( 4) -28.651681676 ( 2) -28.651358936 ( 4) -26.368961512 ( 6) -13.098144215 ( 2) -4.806543435 ( 4) -4.484396653 ( 4) -4.484386277 ( 2) -2.498320393 ( 2) -1.635032781 ( 4) -1.611655952 ( 2) -0.774532984 ( 4) -0.749227268 ( 4) -0.748037212 ( 2) -0.706571346 ( 2) -0.675236293 ( 4) -0.673506985 ( 2) * Virtual eigenvalues, f = 0.0000 0.054688663 ( 2) 0.117263485 ( 4) 0.131475538 ( 2) 0.201285636 ( 4) 0.203212729 ( 2) 0.223561245 ( 4) 0.249570633 ( 2) 0.441055635 ( 4) 0.649844383 ( 2) 0.773231802 ( 4) 0.815377430 ( 2) 0.815484471 ( 4) 0.848791660 ( 4) 0.851966609 ( 2) 0.987756469 ( 4) 1.001662641 ( 2) 1.016450644 ( 4) 1.017028706 ( 2) 1.186947776 ( 4) 1.200401201 ( 2) 1.305278328 ( 4) 1.306021749 ( 2) 1.557283706 ( 4) 1.586371586 ( 2) 1.988461066 ( 2) 2.134191621 ( 4) 3.337165513 ( 4) 3.340871558 ( 2) 3.434493144 ( 2) 3.435680312 ( 4) 3.473201272 ( 2) 3.692174194 ( 4) 3.714004291 ( 4) 3.729036797 ( 2) 3.729447457 ( 4) 3.737661383 ( 4) 3.738908961 ( 2) 3.872610379 ( 2) 3.873115588 ( 4) 3.968449257 ( 2) 3.968881211 ( 4) 3.989069142 ( 2) 4.092689512 ( 4) 4.171692150 ( 2) 4.182929941 ( 4) 4.206246996 ( 2) 4.281765690 ( 2) 4.307054792 ( 4) 4.637177354 ( 4) 4.637360627 ( 2) 5.243001091 ( 4) 6.531262339 ( 4) 6.808635195 ( 2) 8.461873982 ( 2) 11.718341139 ( 4) 11.724617648 ( 2) 11.806437764 ( 2) 11.812265197 ( 4) 11.935534858 ( 2) 12.238692479 ( 4) 13.694126584 ( 4) 14.127933310 ( 2) 14.352496085 ( 4) 28.299423061 ( 4) 28.566622618 ( 2) 38.340591263 ( 2) 40.314857587 ( 4) 41.597016368 ( 2) 41.743647893 ( 4) 42.884739434 ( 4) 42.917196629 ( 2) 42.934940464 ( 2) 42.970178187 ( 4) 43.066511612 ( 2) 43.286667704 ( 4) 107.873499008 ( 4) 111.119782047 ( 4) 111.149376692 ( 2) 111.519128693 ( 4) 111.602724645 ( 2) 144.182913009 ( 2) 193.942232025 ( 2) 193.951813017 ( 4) 194.445869165 ( 2) 194.478366036 ( 4) 194.535459496 ( 2) 194.646610629 ( 4) 267.974025225 ( 4) 275.809198400 ( 2) 275.892518075 ( 4) 399.846553204 ( 4) 400.042664223 ( 2) 456.563011324 ( 2) 631.077096888 ( 4) 649.996808721 ( 2) 650.061455935 ( 4) 1254.531860274 ( 2) 1438.946866885 ( 4) 1448.972586293 ( 4) 1449.136755717 ( 2) 1486.555232319 ( 2) 1486.604338654 ( 4) 3068.736565476 ( 2) 3228.809152126 ( 4) 3354.221688125 ( 2) 3354.256467102 ( 4) 5598.070999352 ( 4) 5598.189570949 ( 2) 6747.334562542 ( 2) 7208.566255011 ( 4) 7552.103642815 ( 2) 7552.125497814 ( 4) 13435.945053534 ( 2) 16269.778909103 ( 4) 17256.789965672 ( 6) 23519.788687849 ( 4) 23519.844310642 ( 2) 24690.358064762 ( 2) 39187.504126476 ( 4) 42481.305471133 ( 6) 42832.241295981 ( 2) 71600.309614155 ( 2) 117266.798993624 ( 2) 190731.188429508 ( 2) 311730.438708376 ( 2) 519176.646282985 ( 2) 898886.871247601 ( 2) 1700394.662429717 ( 2) * Fermion symmetry E1u * Closed shell, f = 1.0000 -776.144999860 ( 2) -635.515577691 ( 4) -193.485257089 ( 2) -160.744060613 ( 4) -48.693482097 ( 2) -40.046141716 ( 4) -26.368962046 ( 2) -26.368960939 ( 4) -15.736985781 ( 4) -15.735817550 ( 2) -15.319625103 ( 2) -15.319295193 ( 4) -15.318978177 ( 2) -10.628915713 ( 2) -8.578853084 ( 4) -1.778575793 ( 2) -1.678202742 ( 4) -1.504443911 ( 2) -1.226614473 ( 4) -0.725040188 ( 2) -0.721699073 ( 4) -0.706858084 ( 2) -0.706045774 ( 4) -0.671153452 ( 2) -0.625288906 ( 4) * Virtual eigenvalues, f = 0.0000 -0.067337948 ( 2) -0.045716798 ( 4) -0.034677451 ( 2) -0.008402174 ( 4) 0.002445092 ( 2) 0.064391492 ( 2) 0.065169003 ( 4) 0.220006758 ( 2) 0.237363521 ( 4) 0.237808092 ( 2) 0.247347495 ( 2) 0.247350237 ( 4) 0.302865094 ( 2) 0.313003033 ( 4) 0.500538852 ( 2) 0.594025657 ( 2) 0.594484708 ( 4) 0.634637031 ( 2) 0.647011486 ( 4) 0.824400350 ( 2) 0.837993208 ( 4) 0.987788878 ( 2) 0.987836854 ( 4) 1.008199765 ( 2) 1.010509136 ( 4) 1.120556202 ( 2) 1.142752953 ( 2) 1.147963583 ( 4) 1.153701331 ( 2) 1.205534060 ( 4) 1.534495663 ( 2) 1.611895382 ( 4) 1.761724867 ( 2) 1.862046572 ( 4) 3.195908715 ( 4) 3.205149087 ( 2) 3.243876429 ( 2) 3.262415152 ( 4) 3.307259734 ( 2) 3.530473048 ( 4) 3.531196470 ( 2) 3.560330611 ( 2) 3.561782332 ( 4) 3.649316058 ( 4) 3.652170052 ( 2) 3.872358708 ( 4) 3.919439305 ( 2) 3.920207752 ( 4) 3.966988321 ( 2) 4.178199253 ( 4) 4.181346406 ( 2) 4.204632131 ( 2) 4.204742620 ( 4) 4.486829869 ( 2) 4.567041908 ( 4) 6.492986704 ( 2) 6.599568770 ( 4) 6.613691074 ( 2) 7.814671349 ( 4) 11.072128959 ( 2) 11.108559148 ( 4) 11.228056001 ( 2) 11.255737656 ( 4) 11.274637251 ( 2) 11.815310725 ( 4) 11.819061657 ( 2) 11.824237474 ( 4) 11.824744351 ( 2) 12.059412240 ( 4) 12.059796626 ( 2) 26.290638739 ( 2) 28.389463851 ( 4) 28.389486382 ( 2) 31.419517743 ( 4) 34.291486581 ( 2) 34.333580928 ( 4) 34.684547455 ( 2) 34.716739701 ( 4) 34.749807704 ( 2) 42.937381579 ( 4) 42.950043418 ( 2) 42.981949389 ( 4) 42.989112489 ( 2) 43.116150228 ( 2) 43.136179068 ( 4) 91.766522244 ( 2) 94.817419342 ( 2) 94.847592897 ( 4) 95.893174197 ( 2) 95.915078273 ( 4) 95.941216216 ( 2) 107.434782783 ( 4) 111.455971171 ( 4) 111.455975802 ( 2) 193.944394293 ( 4) 193.984390024 ( 2) 194.490823693 ( 4) 194.497093373 ( 2) 194.538559942 ( 2) 194.584861135 ( 4) 249.963856518 ( 2) 249.985282660 ( 4) 253.212440649 ( 2) 253.227689607 ( 4) 253.245060819 ( 2) 278.378790534 ( 2) 321.112178883 ( 4) 399.917390637 ( 6) 669.560955957 ( 2) 669.574516775 ( 4) 680.524537548 ( 2) 680.534009402 ( 4) 680.545094356 ( 2) 764.517350550 ( 2) 873.065574113 ( 4) 1449.032118487 ( 6) 1930.720984016 ( 2) 1998.214077558 ( 2) 1998.221031349 ( 4) 2051.449540316 ( 2) 2051.454322857 ( 4) 2051.460038906 ( 2) 2191.835196537 ( 4) 4502.754001316 ( 2) 5108.069296655 ( 4) 5598.114349613 ( 6) 9759.250710664 ( 2) 11106.360801610 ( 4) 19863.991526195 ( 2) 22712.495818561 ( 4) 23519.809043959 ( 6) 38591.442818222 ( 2) 44343.168038132 ( 4) 73024.397820337 ( 2) 84298.920579945 ( 4) 137451.001917256 ( 2) 159248.338011402 ( 4) 263076.323446822 ( 2) 304914.223948478 ( 4) 527058.091102012 ( 2) 604972.427896977 ( 4) 1158833.046580901 ( 2) 1290420.629870308 ( 4) * HOMO - LUMO gap: E(LUMO) : -0.06733795 au (symmetry E1u) - E(HOMO) : -0.62528891 au (symmetry E1u) ------------------------------------------ gap : 0.55795096 au =========================================================================== * PCMOUT: Coefficients read from unformatted DFCOEF and written to formatted DFPCMO =========================================================================== ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Fri Aug 18 18:25:21 2017 Host name : lxir127 Dynamical Memory Usage Summary for Master Mean allocation size (Mb) : 43.44 Largest 10 allocations 488.28 Mb at subroutine psiscf_+0xa9 for WORK in PSISCF 488.28 Mb at subroutine pamset_+0x1b3d for WORK in PAMSET - 2 488.28 Mb at subroutine gmotra_+0x3ee4 for WORK in GMOTRA - part 2 488.28 Mb at subroutine gmotra_+0x6045 for WORK in GMOTRA 488.28 Mb at subroutine pamset_+0xa8 for WORK in PAMSET - 1 488.28 Mb at subroutine MAIN__+0x295 for test allocation of work array in DIRAC mai 25.69 Mb at subroutine butobs_no_work_+0x8f for buf in butobs 25.69 Mb at subroutine butobs_no_work_+0x8f for buf in butobs 25.69 Mb at subroutine butobs_no_work_+0x8f for buf in butobs 25.69 Mb at subroutine butobs_no_work_+0x8f for buf in butobs Peak memory usage (Mb) : 491.00 reached at subroutine : butobs_no_work_+0x8f for variable : buf in butobs MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 299, stime: 1, minflt: 317124, majflt: 96, nvcsw: 4532, nivcsw: 694, maxrss: 479864 >>>> Total WALL time used in DIRAC: 5min0s DIRAC pam run in /u/milias/Work/qch/software/dirac/trunk/test/tutorial_UF6