DIRAC serial starts by allocating 120000000 words ( 915.53 MB - 0.894 GB) of memory out of the allowed maximum of 2147483648 words ( 16384.00 MB - 16.000 GB) Note: maximum allocatable memory for serial run can be set by pam --aw/--ag ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Trond Saue Universite Toulouse III France * * Lucas Visscher Vrije Universiteit Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast UiT The Arctic University of Norway * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer University of Aarhus Denmark * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Erik D. Hedegaard Lund University Sweden * * Trygve Helgaker University of Oslo Norway * * Benjamin Helmich-Paris Max Planck Institute f. Coal Res. Germany * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak Bhabha Atomic Research Centre India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Jogvan Magnus H. Olsen University of Southern Denmark Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Avijit Shee University of Michigan USA * * Jetze Sikkema Vrije Universiteit Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen Vrije Universiteit Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For more information about the DIRAC code see http://diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC18 (2018), * * written by T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, E. D. Hedegaard, T. Helgaker, * * J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, * * O. Kullie, J. K. Laerdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, * * M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, J. M. H. Olsen, * * Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, * * P. Salek, B. Schimmelpfennig, A. Shee, J. Sikkema, A. J. Thorvaldsen, * * J. Thyssen, J. van Stralen, S. Villaume, O. Visser,T. Winther, * * and S. Yamamoto (see http://diracprogram.org). * * * ******************************************************************************* Version information ------------------- Branch | miro/master-fixes Commit hash | 17fabb0 Commit author | Lucas Commit date | Fri Dec 21 07:30:32 2018 +0000 Configuration and build information ----------------------------------- Who compiled | milias Compiled on server | lxir127 Operating system | Linux-3.16.0-4-amd64 CMake version | 3.0.2 CMake generator | Unix Makefiles CMake build type | release Configuration time | 2018-12-27 12:06:39.312181 Python version | 2.7.9 Fortran compiler | /cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/bin/intel64/ifort Fortran compiler version | 17.0 Fortran compiler flags | -w -assume byterecl -g -traceback -DVAR_IFORT -i8 -w -assume byterecl -g -traceback -DVAR_IFORT -i8 C compiler | /cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/bin/intel64/icc C compiler version | 17.0 C compiler flags | -g -wd981 -wd279 -wd383 -wd1572 -wd177 -g -wd981 -wd279 -wd383 -wd1572 -wd177 C++ compiler | /cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/bin/intel64/icpc C++ compiler version | 17.0.4 C++ compiler flags | -Wno-unknown-pragmas -Wno-unknown-pragmas Static linking | False 64-bit integers | True MPI parallelization | False MPI launcher | unknown Math libraries | -Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_lapack95_ilp64.a;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_intel_ilp64.so;-openmp;-Wl,--end-group;-Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_intel_ilp64.so;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_intel_thread.so;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/usr/lib/x86_64-linux-gnu/libm.so;-openmp;-Wl,--end-group Builtin BLAS library | OFF Builtin LAPACK library | OFF Explicit libraries | unknown Compile definitions | MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;BUILD_GEN1INT;HAS_PELIB;MOD_QCORR;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ESR;MOD_KRCC;MOD_SRDFT Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Thu Dec 27 14:54:32 2018 Host name : lxir127 Contents of the input file -------------------------- **DIRAC .TITLE atomic test calculations .WAVE FUNCTION .ANALYZE .4INDEX **GENERAL .PCMOUT **INTEGRALS *READIN .UNCONTRACTED **HAMILTONIAN .X2C *AMFI .AMFICH +2 **WAVE FUNCTION .SCF .RELCCSD *SCF # Pm-like (Z=61) : ... 4f(14) 5s(0) .CLOSED SHELL 28 32 #.OPEN SHELL #1 #1/2,0 .MAXITR 55 **ANALYZE .MULPOP *MULPOP .VECPOP 1..oo 1..oo **MOLTRA # exactly 33 correlated electrons... .ACTIVE energy -50.0 50.0 1.0 energy -50.0 50.0 1.0 **RELCC !.ENERGY .FOCKSP .TIMING .PRINT 1 # 33 correlated electrons, 5s(1) open-shell !.NELEC !6 7 10 10 *CCENER .NTOL 7 *CCFSPC .DOEA ! 5s, 5p12, 5p32 active shells .NACTP 1 1 3 3 .NTOL 8 *CCSORT !.USEOE *END OF Contents of the molecule file ----------------------------- INTGRL Ir atom dyall.v2z C 1 77. 1 Ir .0000000000 .0000000000 0.0 LARGE BASIS dyall.v2z FINISH ************************************************************************** *********************** atomic test calculations *********************** ************************************************************************** Jobs in this run: * Wave function * Analysis * Transformation to Molecular Spinor basis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * MO-coefficients written to formatted file DFPCMO * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 Nuclear model: Gaussian charge distribution. Two-electron integrals not calculated. Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated. Changes of defaults for *READIN ------------------------------- Uncontracted basis forced, irrespective of basis input file. *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- Ir atom dyall.v2z Nuclear Gaussian exponent for atom of charge 77.000 : 1.4398142103D+08 SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 Symmetry point group found: D(oo,h) The following symmetry elements were found: X Y Z Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Full group is: D(oo,h) Represented as: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Isotopic Masses --------------- Ir 192.962917 Total mass: 192.962917 amu Natural abundance: 62.600 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000 Atoms and basis sets -------------------- Number of atom types : 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- Ir 1 77 243 243 L - [24s19p12d9f|24s19p12d9f] ---------------------------------------------------------------------- 243 243 L - large components ---------------------------------------------------------------------- total: 1 77 243 243 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 3 1 Ir x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 1 Ir 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry B3u( 2) 1 Ir x 1 Symmetry B2u( 3) 2 Ir y 2 Symmetry B1u( 5) 3 Ir z 3 This is an atomic calculation. GETLAB: AO-labels ----------------- * Large components: 20 1 L Ir 1 s 2 L Ir 1 px 3 L Ir 1 py 4 L Ir 1 pz 5 L Ir 1 dxx 6 L Ir 1 dxy 7 L Ir 1 dxz 8 L Ir 1 dyy 9 L Ir 1 dyz 10 L Ir 1 dzz 11 L Ir 1 fxxx 12 L Ir 1 fxxy 13 L Ir 1 fxxz 14 L Ir 1 fxyy 15 L Ir 1 fxyz 16 L Ir 1 fxzz 17 L Ir 1 fyyy 18 L Ir 1 fyyz 19 L Ir 1 fyzz 20 L Ir 1 fzzz * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 20 1 L Ag Ir s 2 L Ag Ir dxx 3 L Ag Ir dyy 4 L Ag Ir dzz 5 L B3uIr px 6 L B3uIr fxxx 7 L B3uIr fxyy 8 L B3uIr fxzz 9 L B2uIr py 10 L B2uIr fxxy 11 L B2uIr fyyy 12 L B2uIr fyzz 13 L B1gIr dxy 14 L B1uIr pz 15 L B1uIr fxxz 16 L B1uIr fyyz 17 L B1uIr fzzz 18 L B2gIr dxz 19 L B3gIr dyz 20 L Au Ir fxyz * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 60 46 46 12 46 12 12 9 Number of large orbitals in each symmetry: 60 46 46 12 46 12 12 9 Number of small orbitals in each symmetry: 0 0 0 0 0 0 0 0 * Large component functions Symmetry Ag ( 1) 24 functions: Ir s 12 functions: Ir dxx 12 functions: Ir dyy 12 functions: Ir dzz Symmetry B3u( 2) 19 functions: Ir px 9 functions: Ir fxxx 9 functions: Ir fxyy 9 functions: Ir fxzz Symmetry B2u( 3) 19 functions: Ir py 9 functions: Ir fxxy 9 functions: Ir fyyy 9 functions: Ir fyzz Symmetry B1g( 4) 12 functions: Ir dxy Symmetry B1u( 5) 19 functions: Ir pz 9 functions: Ir fxxz 9 functions: Ir fyyz 9 functions: Ir fzzz Symmetry B2g( 6) 12 functions: Ir dxz Symmetry B3g( 7) 12 functions: Ir dyz Symmetry Au ( 8) 9 functions: Ir fxyz *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set ******************************************************************************* ************************** AMFI/RELSCF input reading ************************** ******************************************************************************* =========================================================================== Set-up for AMFI/RELSCF calculations =========================================================================== * AMFI code print level: 0 * RELSCF code print level: 0 * RELSCF maximum number of iterations: 50 * AMFI mean-field summations on individual atoms are modified due to the artificial charge of the system: 2 * order of AMFI contributions to the X2C Hamiltonian: 2 --> adding spin-same orbit MFSSO2 terms. ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF RELCCSD Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Run RELCCSD code =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Closed shell SCF calculation with 60 electrons in 14 orbitals in Fermion irrep 1 and 16 orbitals in Fermion irrep 2 - INFO: bare nucleus correction disabled because abs(molecular charge) .gt. 10 * Sum of atomic potentials used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 to improve convergence (default value). The final open-shell orbital energies are recalculated with 1.0 scaling, such that all occupied orbital energies correspond to Koopmans' theorem ionization energies. ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 55 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. =========================================================================== **RELCC: Set-up for Coupled Cluster calculations =========================================================================== EHMIN: 1000.00000 EHMAX: 100.00000 EPMIN: -1.00000 EPMAX: -1000.00000 *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Mulliken population analysis =========================================================================== POPINP: Mulliken population analysis =========================================================================== * Gross populations * Label definitions based on SO-labels * Number of spinors analyzed: - Orbitals in fermion ircop E1g :1..oo - Orbitals in fermion ircop E1u :1..oo * Print level: 1 =========================================================================== TRPINP: Property integral transformation =========================================================================== * Print level: 0 *The following operators will be transformed: 1 XDIPLEN B3u T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : XDIPLEN +00+ 1.0000000000000 (real) ........................................................................... 2 YDIPLEN B2u T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : YDIPLEN +00+ 1.0000000000000 (real) ........................................................................... 3 ZDIPLEN B1u T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : ZDIPLEN +00+ 1.0000000000000 (real) ........................................................................... --------------------------------------------------------------------------- =========================================================================== TRAINP: Set-up for index transformation =========================================================================== * General print level : 0 * Electronic orbitals only. * Total active space. Fermion ircop:E1g No explicit orbitals specified Fermion ircop:E1u No explicit orbitals specified * Set-up for 2-index transformation * LS Integrals not included in core Fock-matrix * SS Integrals not included in core Fock-matrix * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 * Set-up for 4-index transformation * Following scheme : 6 - write half-transformed integrals (ij|rs) to disk - sorting of intermediate 1HT integrals is disabled * Screening threshold :1.00E-14 * MO integral threshold :1.00E-14 * LS Integrals not transformed. * SS Integrals not transformed. * Gaunt Integrals not transformed. * 4-index transformed integrals written to file. * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- Ir atom dyall.v2z Nuclear Gaussian exponent for atom of charge 77.000 : 1.4398142103D+08 SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 Symmetry point group found: D(oo,h) The following symmetry elements were found: X Y Z Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Full group is: D(oo,h) Represented as: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Isotopic Masses --------------- Ir 192.962917 Total mass: 192.962917 amu Natural abundance: 62.600 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000 Atoms and basis sets -------------------- Number of atom types : 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- Ir 1 77 243 243 L - [24s19p12d9f|24s19p12d9f] ---------------------------------------------------------------------- 243 243 L - large components 550 550 S - small components ---------------------------------------------------------------------- total: 1 77 793 793 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 3 1 Ir x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 1 Ir 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry B3u( 2) 1 Ir x 1 Symmetry B2u( 3) 2 Ir y 2 Symmetry B1u( 5) 3 Ir z 3 This is an atomic calculation. Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Total time used in ONEGEN (CPU) 0.31200000s and (WALL) 0.37524915s Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.20E-03 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 S B3u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.16E-06 S B2u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.16E-06 S B1u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.16E-06 S Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.21E-01 L B3u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B2u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B1u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.31E-01 S Ag * Deleted: 55(Proj: 55, Lindep: 0) Smin: 0.12E-06 S B1g * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.59E-07 S B2g * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.59E-07 S B3g * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.59E-07 ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! * Applied SL-regrouping on AO2MO tranf.matrix in SLSORT. Output from AMFIIN ------------------ The total nonzero charge of the system: 2 factor is : 2.00000000000000 1 .atom-nucleus charge: 77 partial charge: 2.00000000000000 Sum of all charges (real): 2.00000000000000 Total charge of the system is : 2 *** number of unique nuclei (from file MNF.INP): 1 *** calculate AMFI for atom type 1 with atomic charge 77 *** number of nuclei with identical atom type: 1 unique nuclei index: 1 *** file with AMFI integrals for this center: AOPROPER_MNF.77.1 ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators charge on the calculated atom: 2 Mean-field summation for electrons #: 75 ...electronic occupation of Re: [Xe+4f^14]6s^2 5d^5 **** Written to the file TOSCF for "relscf" **** charge: 77.000 nprimit: 24 19 12 9 closed sh.: 6 4 2 1 open sh.: 0 0 5 0 *** PROGRAM AT34 - ALLIANT - @V *** ----------------------------------- SYMMETRY SPECIES S P D F NUMBER OF BASIS FUNCTIONS: 24 19 12 9 NUMBER OF CLOSED SHELLS : 6 4 2 1 OPEN SHELL OCCUPATION : 0 0 5 0 ### SCF ITERATIONS ### ### NON-RELATIVISTIC APPROX. ### 1. iteration, total energy: 0.000000000000 2. iteration, total energy: -8838.407209685240 3. iteration, total energy: -15345.019132836052 4. iteration, total energy: -15652.560706010296 5. iteration, total energy: -16493.845366449572 6. iteration, total energy: -16766.056432632500 7. iteration, total energy: -16556.778204483478 8. iteration, total energy: -16676.681606795479 9. iteration, total energy: -16725.989716431668 10. iteration, total energy: -16790.985614281759 11. iteration, total energy: -16791.082773081758 12. iteration, total energy: -16795.480147891769 13. iteration, total energy: -16804.574976844546 14. iteration, total energy: -16804.848010009406 15. iteration, total energy: -16804.852977476141 16. iteration, total energy: -16804.853483998479 17. iteration, total energy: -16804.854867254893 18. iteration, total energy: -16804.854864161181 19. iteration, total energy: -16804.854865208286 20. iteration, total energy: -16804.854865110618 21. iteration, total energy: -16804.854869698582 22. iteration, total energy: -16804.854867796243 23. iteration, total energy: -16804.854867758851 24. iteration, total energy: -16804.854867781600 25. iteration, total energy: -16804.854869685045 25. iteration, total energy: -16804.854867772265 ### NON-RELATIVISTIC APPROX. ### 25 -0.1680485487D+05 -0.3360978403D+05 0.1680492916D+05 -0.1999995579D+01 ### SCF ITERATIONS ### ### EV APPROX. ### 1. iteration, total energy: -17312.648135111158 2. iteration, total energy: -17808.160134356876 3. iteration, total energy: -17808.726595797518 4. iteration, total energy: -17808.866637938565 5. iteration, total energy: -17809.572280757126 6. iteration, total energy: -17809.573508854508 7. iteration, total energy: -17809.573587055718 8. iteration, total energy: -17809.573628043559 9. iteration, total energy: -17809.573952656159 10. iteration, total energy: -17809.573951488528 11. iteration, total energy: -17809.573951441685 12. iteration, total energy: -17809.573951544771 13. iteration, total energy: -17809.573952967465 14. iteration, total energy: -17809.573951718154 15. iteration, total energy: -17809.573951720165 16. iteration, total energy: -17809.573951718412 17. iteration, total energy: -17809.573952967687 17. iteration, total energy: -17809.573951719442 ### EV OPERATOR RESULT ### 17 -0.1780957395D+05 -0.3824231625D+05 0.2043274230D+05 -0.1871619369D+01 *** AMFIIN: ADDING nucleus 1 with charge 77 to the BSSn Hamiltonian. ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* >>> CPU time used in mk_h2c is 2.21 seconds >>> WALL time used in mk_h2c is 2.26 seconds Nuclear Gaussian exponent for atom of charge 77.000 : 1.4398142103D+08 SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 Symmetry point group found: D(oo,h) The following symmetry elements were found: X Y Z Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Total time used in ONEGEN (CPU) 0.06800000s and (WALL) 0.07285094s Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.20E-03 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B3u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B2u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B1u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.31E-01 Output from LINSYM ------------------ Parity MJ Functions(total) Functions(LC) Functions(SC) 1 1/2 48 48 0 1 -3/2 24 24 0 1 5/2 12 12 0 -1 1/2 56 56 0 -1 -3/2 37 37 0 -1 5/2 18 18 0 -1 -7/2 9 9 0 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 84 120 204 No. of positronic orbitals (NPSH): 0 0 0 Total no. of orbitals (NORB): 84 120 204 >>> CPU time used in PAMSET is 2.65 seconds >>> WALL time used in PAMSET is 2.78 seconds ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by a sum of atomic screening potentials. ########## START ITERATION NO. 1 ########## Thu Dec 27 14:54:35 2018 E_HOMO...E_LUMO, symmetry 1: 14 -10.36882 15 -3.58141 E_HOMO...E_LUMO, symmetry 2: 100 -2.18563 101 -2.18563 => Calculating sum of orbital energies It. 1 -10961.22785362 0.00D+00 0.00D+00 0.00D+00 0.23600000s Atom. scrpot Thu Dec 27 ########## START ITERATION NO. 2 ########## Thu Dec 27 14:54:35 2018 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 4.34% 18.99% 0.87% 19.57% 1.03600001s >>> CPU time used in SO Fock is 1.25 seconds >>> WALL time used in SO Fock is 1.25 seconds E_HOMO...E_LUMO, symmetry 1: 14 -27.10999 15 -15.84909 E_HOMO...E_LUMO, symmetry 2: 100 -16.69536 101 -15.02627 >>> Total wall time: 1.26815796s, and total CPU time : 1.26000000s ########## END ITERATION NO. 2 ########## Thu Dec 27 14:54:36 2018 It. 2 -17729.23227709 6.77D+03 6.68D+01 1.57D+01 1.26815796s LL Thu Dec 27 ########## START ITERATION NO. 3 ########## Thu Dec 27 14:54:36 2018 3 *** Differential density matrix. DCOVLP = 0.9785 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.08% 18.00% 0.00% 19.25% 1.18400002s >>> CPU time used in SO Fock is 1.20 seconds >>> WALL time used in SO Fock is 1.19 seconds E_HOMO...E_LUMO, symmetry 1: 14 -25.15241 15 -15.01714 E_HOMO...E_LUMO, symmetry 2: 100 -15.63507 101 -13.86118 >>> Total wall time: 1.20950413s, and total CPU time : 1.20000000s ########## END ITERATION NO. 3 ########## Thu Dec 27 14:54:37 2018 It. 3 -17734.10124463 4.87D+00 7.35D+00 1.21D+01 DIIS 2 1.20950413s LL Thu Dec 27 ########## START ITERATION NO. 4 ########## Thu Dec 27 14:54:37 2018 4 *** Differential density matrix. DCOVLP = 0.9633 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.16% 18.90% 0.00% 19.07% 0.97599983s >>> CPU time used in SO Fock is 0.98 seconds >>> WALL time used in SO Fock is 0.98 seconds E_HOMO...E_LUMO, symmetry 1: 14 -24.89016 15 -14.76671 E_HOMO...E_LUMO, symmetry 2: 100 -15.92623 101 -13.36275 >>> Total wall time: 0.98881483s, and total CPU time : 0.98800000s ########## END ITERATION NO. 4 ########## Thu Dec 27 14:54:38 2018 It. 4 -17736.30849679 2.21D+00 -3.17D+00 1.06D+00 DIIS 3 0.98881483s LL Thu Dec 27 ########## START ITERATION NO. 5 ########## Thu Dec 27 14:54:38 2018 5 *** Differential density matrix. DCOVLP = 0.9963 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.21% 21.92% 0.00% 18.48% 1.23600006s >>> CPU time used in SO Fock is 1.24 seconds >>> WALL time used in SO Fock is 1.24 seconds E_HOMO...E_LUMO, symmetry 1: 14 -24.91226 15 -14.76499 E_HOMO...E_LUMO, symmetry 2: 100 -15.98726 101 -13.34446 >>> Total wall time: 1.24568415s, and total CPU time : 1.24000000s ########## END ITERATION NO. 5 ########## Thu Dec 27 14:54:40 2018 It. 5 -17736.32071095 1.22D-02 -1.00D-01 1.35D-01 DIIS 4 1.24568415s LL Thu Dec 27 ########## START ITERATION NO. 6 ########## Thu Dec 27 14:54:40 2018 6 *** Differential density matrix. DCOVLP = 1.0003 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.38% 27.36% 0.00% 17.33% 1.21200037s >>> CPU time used in SO Fock is 1.22 seconds >>> WALL time used in SO Fock is 1.22 seconds E_HOMO...E_LUMO, symmetry 1: 14 -24.91256 15 -14.76485 E_HOMO...E_LUMO, symmetry 2: 100 -15.98993 101 -13.34378 >>> Total wall time: 1.22839904s, and total CPU time : 1.22400000s ########## END ITERATION NO. 6 ########## Thu Dec 27 14:54:41 2018 It. 6 -17736.32098633 2.75D-04 2.52D-02 9.14D-03 DIIS 5 1.22839904s LL Thu Dec 27 ########## START ITERATION NO. 7 ########## Thu Dec 27 14:54:41 2018 7 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.56% 32.93% 0.00% 16.06% 1.19200039s >>> CPU time used in SO Fock is 1.19 seconds >>> WALL time used in SO Fock is 1.20 seconds E_HOMO...E_LUMO, symmetry 1: 14 -24.91233 15 -14.76475 E_HOMO...E_LUMO, symmetry 2: 100 -15.98992 101 -13.34365 >>> Total wall time: 1.20549011s, and total CPU time : 1.19600000s ########## END ITERATION NO. 7 ########## Thu Dec 27 14:54:42 2018 It. 7 -17736.32098899 2.66D-06 -3.93D-04 1.49D-03 DIIS 6 1.20549011s LL Thu Dec 27 ########## START ITERATION NO. 8 ########## Thu Dec 27 14:54:42 2018 8 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.92% 36.73% 0.00% 15.19% 1.16399956s >>> CPU time used in SO Fock is 1.17 seconds >>> WALL time used in SO Fock is 1.17 seconds E_HOMO...E_LUMO, symmetry 1: 14 -24.91233 15 -14.76475 E_HOMO...E_LUMO, symmetry 2: 100 -15.98993 101 -13.34365 >>> Total wall time: 1.18014693s, and total CPU time : 1.17600000s ########## END ITERATION NO. 8 ########## Thu Dec 27 14:54:43 2018 It. 8 -17736.32098906 6.92D-08 -3.13D-04 9.05D-05 DIIS 7 1.18014693s LL Thu Dec 27 ########## START ITERATION NO. 9 ########## Thu Dec 27 14:54:43 2018 9 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.88% 44.03% 0.00% 13.36% 1.13199997s >>> CPU time used in SO Fock is 1.13 seconds >>> WALL time used in SO Fock is 1.13 seconds E_HOMO...E_LUMO, symmetry 1: 14 -24.91233 15 -14.76475 E_HOMO...E_LUMO, symmetry 2: 100 -15.98993 101 -13.34365 >>> Total wall time: 1.14826202s, and total CPU time : 1.14400000s ########## END ITERATION NO. 9 ########## Thu Dec 27 14:54:44 2018 It. 9 -17736.32098906 1.34D-09 -3.30D-06 2.54D-05 DIIS 8 1.14826202s LL Thu Dec 27 ########## START ITERATION NO. 10 ########## Thu Dec 27 14:54:44 2018 10 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 3.05% 47.12% 0.00% 12.47% 1.10400009s >>> CPU time used in SO Fock is 1.11 seconds >>> WALL time used in SO Fock is 1.11 seconds E_HOMO...E_LUMO, symmetry 1: 14 -24.91233 15 -14.76475 E_HOMO...E_LUMO, symmetry 2: 100 -15.98993 101 -13.34365 >>> Total wall time: 1.11659503s, and total CPU time : 1.11200000s ########## END ITERATION NO. 10 ########## Thu Dec 27 14:54:46 2018 It. 10 -17736.32098906 1.53D-10 1.63D-06 3.15D-06 DIIS 9 1.11659503s LL Thu Dec 27 ########## START ITERATION NO. 11 ########## Thu Dec 27 14:54:46 2018 11 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 5.61% 53.22% 0.00% 10.86% 1.04799938s >>> CPU time used in SO Fock is 1.06 seconds >>> WALL time used in SO Fock is 1.06 seconds E_HOMO...E_LUMO, symmetry 1: 14 -24.91233 15 -14.76475 E_HOMO...E_LUMO, symmetry 2: 100 -15.98993 101 -13.34365 >>> Total wall time: 1.06249499s, and total CPU time : 1.06400000s ########## END ITERATION NO. 11 ########## Thu Dec 27 14:54:47 2018 It. 11 -17736.32098906 -7.28D-12 -2.39D-07 4.45D-07 DIIS 9 1.06249499s LL Thu Dec 27 ########## START ITERATION NO. 12 ########## Thu Dec 27 14:54:47 2018 12 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 10.27% 57.81% 0.01% 9.44% 0.98400021s >>> CPU time used in SO Fock is 0.98 seconds >>> WALL time used in SO Fock is 0.98 seconds >>> Total wall time: 0.99269199s, and total CPU time : 0.98800000s ########## END ITERATION NO. 12 ########## Thu Dec 27 14:54:48 2018 It. 12 -17736.32098906 1.09D-11 -3.60D-08 6.36D-08 DIIS 9 0.99269199s LL Thu Dec 27 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -10961.22785362 0.00D+00 0.00D+00 0.00D+00 0.23600000s Atom. scrpot Thu Dec 27 It. 2 -17729.23227709 6.77D+03 6.68D+01 1.57D+01 1.26815796s LL Thu Dec 27 It. 3 -17734.10124463 4.87D+00 7.35D+00 1.21D+01 DIIS 2 1.20950413s LL Thu Dec 27 It. 4 -17736.30849679 2.21D+00 -3.17D+00 1.06D+00 DIIS 3 0.98881483s LL Thu Dec 27 It. 5 -17736.32071095 1.22D-02 -1.00D-01 1.35D-01 DIIS 4 1.24568415s LL Thu Dec 27 It. 6 -17736.32098633 2.75D-04 2.52D-02 9.14D-03 DIIS 5 1.22839904s LL Thu Dec 27 It. 7 -17736.32098899 2.66D-06 -3.93D-04 1.49D-03 DIIS 6 1.20549011s LL Thu Dec 27 It. 8 -17736.32098906 6.92D-08 -3.13D-04 9.05D-05 DIIS 7 1.18014693s LL Thu Dec 27 It. 9 -17736.32098906 1.34D-09 -3.30D-06 2.54D-05 DIIS 8 1.14826202s LL Thu Dec 27 It. 10 -17736.32098906 1.53D-10 1.63D-06 3.15D-06 DIIS 9 1.11659503s LL Thu Dec 27 It. 11 -17736.32098906 -7.28D-12 -2.39D-07 4.45D-07 DIIS 9 1.06249499s LL Thu Dec 27 It. 12 -17736.32098906 1.09D-11 -3.60D-08 6.36D-08 DIIS 9 0.99269199s LL Thu Dec 27 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 12 iterations. * Average elapsed time per iteration: No 2-ints : 0.23578501s LL : 1.14965829s TOTAL ENERGY ------------ Electronic energy : -17736.320989056734 Other contributions to the total energy Nuclear repulsion energy : 0.000000000000 Sum of all contributions to the energy Total energy : -17736.320989056734 Eigenvalues ----------- * Block 1 in E1g: Omega = 1/2 * Closed shell, f = 1.0000 -2825.579656331 ( 2) -510.829809621 ( 2) -132.029924922 ( 2) -92.990981582 ( 2) -90.127068941 ( 2) -39.667443554 ( 2) -25.522865342 ( 2) -24.912329443 ( 2) * Virtual eigenvalues, f = 0.0000 -14.764747937 ( 2) -10.419824490 ( 2) -10.294126496 ( 2) -8.287381989 ( 2) -6.347757753 ( 2) -6.290571727 ( 2) -5.303309255 ( 2) -4.193346173 ( 2) -4.175196821 ( 2) -3.193634892 ( 2) 1.123856026 ( 2) 1.452823042 ( 2) 5.459286369 ( 2) 32.486397158 ( 2) 33.639391360 ( 2) 64.176531903 ( 2) 126.049814853 ( 2) 129.324421604 ( 2) 252.044648553 ( 2) 379.639507806 ( 2) 389.064929663 ( 2) 760.986549526 ( 2) 1058.985689433 ( 2) 1088.878934585 ( 2) 2004.156301523 ( 2) 2955.427047931 ( 2) 3063.970268310 ( 2) 4720.407927609 ( 2) 8906.624804412 ( 2) 9423.300691633 ( 2) 9994.813492022 ( 2) 19359.542603953 ( 2) 35104.879881504 ( 2) 60958.609440467 ( 2) 103359.215716285 ( 2) 173880.754560890 ( 2) 294160.297967703 ( 2) 507697.202248819 ( 2) 910950.072731629 ( 2) 1785928.118549593 ( 2) * Block 2 in E1g: Omega = 3/2 * Closed shell, f = 1.0000 -92.990981580 ( 2) -90.127068941 ( 2) -25.522865341 ( 2) -24.912329443 ( 2) * Virtual eigenvalues, f = 0.0000 -10.419824492 ( 2) -10.294126496 ( 2) -6.347757754 ( 2) -6.290571727 ( 2) -4.193346173 ( 2) -4.175196821 ( 2) 1.123856025 ( 2) 1.452823042 ( 2) 32.486397158 ( 2) 33.639391360 ( 2) 126.049814854 ( 2) 129.324421603 ( 2) 379.639507806 ( 2) 389.064929662 ( 2) 1058.985689433 ( 2) 1088.878934585 ( 2) 2955.427047931 ( 2) 3063.970268309 ( 2) 8906.624804412 ( 2) 9423.300691633 ( 2) * Block 3 in E1g: Omega = 5/2 * Closed shell, f = 1.0000 -90.127068942 ( 2) -24.912329445 ( 2) * Virtual eigenvalues, f = 0.0000 -10.294126498 ( 2) -6.290571728 ( 2) -4.175196822 ( 2) 1.452823040 ( 2) 33.639391358 ( 2) 129.324421604 ( 2) 389.064929663 ( 2) 1088.878934585 ( 2) 3063.970268309 ( 2) 9423.300691633 ( 2) * Block 1 in E1u: Omega = 1/2 * Closed shell, f = 1.0000 -489.129593609 ( 2) -429.230472287 ( 2) -122.321675696 ( 2) -109.003601588 ( 2) -35.533888473 ( 2) -32.327940869 ( 2) -16.115940579 ( 2) -15.989927177 ( 2) * Virtual eigenvalues, f = 0.0000 -13.343648589 ( 2) -12.630104610 ( 2) -7.760713488 ( 2) -7.734967625 ( 2) -7.671144225 ( 2) -7.363597938 ( 2) -4.872885879 ( 2) -4.859026720 ( 2) -4.764480358 ( 2) -4.682276264 ( 2) -3.228368640 ( 2) -3.202107344 ( 2) -2.687532269 ( 2) -2.674490318 ( 2) 1.044166125 ( 2) 2.621989506 ( 2) 7.347660599 ( 2) 7.467942786 ( 2) 38.482772947 ( 2) 38.755467863 ( 2) 39.098826035 ( 2) 44.454043683 ( 2) 120.878724924 ( 2) 121.955924165 ( 2) 158.248495607 ( 2) 176.194251219 ( 2) 347.877562849 ( 2) 351.617894604 ( 2) 501.256885716 ( 2) 551.498375503 ( 2) 1093.281596415 ( 2) 1112.447284103 ( 2) 1405.792465947 ( 2) 1539.980061042 ( 2) 3609.501397749 ( 2) 3964.129120629 ( 2) 8634.696787584 ( 2) 9556.711413964 ( 2) 19492.122078766 ( 2) 21792.556759306 ( 2) 42379.167671365 ( 2) 47901.173363435 ( 2) 91594.916382920 ( 2) 104753.132958243 ( 2) 205434.344598555 ( 2) 237782.107890909 ( 2) 516567.878393457 ( 2) 603988.618534502 ( 2) * Block 2 in E1u: Omega = 3/2 * Closed shell, f = 1.0000 -429.230472288 ( 2) -109.003601588 ( 2) -32.327940871 ( 2) -16.115940578 ( 2) -15.989927174 ( 2) * Virtual eigenvalues, f = 0.0000 -12.630104612 ( 2) -7.760713488 ( 2) -7.734967624 ( 2) -7.363597939 ( 2) -4.872885879 ( 2) -4.859026720 ( 2) -4.682276264 ( 2) -3.228368640 ( 2) -3.202107343 ( 2) -2.674490318 ( 2) 2.621989504 ( 2) 7.347660599 ( 2) 7.467942787 ( 2) 38.755467863 ( 2) 39.098826036 ( 2) 44.454043683 ( 2) 120.878724924 ( 2) 121.955924165 ( 2) 176.194251219 ( 2) 347.877562849 ( 2) 351.617894604 ( 2) 551.498375503 ( 2) 1093.281596414 ( 2) 1112.447284103 ( 2) 1539.980061042 ( 2) 3964.129120629 ( 2) 9556.711413963 ( 2) 21792.556759306 ( 2) 47901.173363435 ( 2) 104753.132958244 ( 2) 237782.107890909 ( 2) 603988.618534502 ( 2) * Block 3 in E1u: Omega = 5/2 * Closed shell, f = 1.0000 -16.115940577 ( 2) -15.989927175 ( 2) * Virtual eigenvalues, f = 0.0000 -7.760713489 ( 2) -7.734967625 ( 2) -4.872885879 ( 2) -4.859026721 ( 2) -3.228368641 ( 2) -3.202107344 ( 2) 7.347660598 ( 2) 7.467942786 ( 2) 38.755467863 ( 2) 39.098826035 ( 2) 120.878724925 ( 2) 121.955924165 ( 2) 347.877562849 ( 2) 351.617894604 ( 2) 1093.281596414 ( 2) 1112.447284103 ( 2) * Block 4 in E1u: Omega = 7/2 * Closed shell, f = 1.0000 -15.989927176 ( 2) * Virtual eigenvalues, f = 0.0000 -7.734967627 ( 2) -4.859026721 ( 2) -3.202107345 ( 2) 7.467942784 ( 2) 39.098826035 ( 2) 121.955924165 ( 2) 351.617894604 ( 2) 1112.447284103 ( 2) * Occupation in fermion symmetry E1g * Inactive orbitals 1/2 1/2 1/2 1/2 3/2 5/2 3/2 1/2 1/2 1/2 3/2 5/2 1/2 3/2 * Virtual orbitals 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 1/2 3/2 3/2 1/2 5/2 1/2 1/2 3/2 3/2 5/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 1/2 3/2 5/2 3/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 * Occupation in fermion symmetry E1u * Inactive orbitals 1/2 3/2 1/2 1/2 1/2 3/2 1/2 3/2 1/2 1/2 3/2 5/2 1/2 7/2 5/2 3/2 * Virtual orbitals 1/2 3/2 1/2 5/2 3/2 1/2 7/2 5/2 1/2 3/2 1/2 3/2 1/2 5/2 3/2 1/2 7/2 5/2 1/2 3/2 1/2 3/2 1/2 5/2 3/2 1/2 7/2 5/2 1/2 3/2 1/2 1/2 3/2 1/2 3/2 1/2 5/2 3/2 1/2 7/2 5/2 1/2 3/2 1/2 5/2 1/2 3/2 7/2 5/2 1/2 3/2 3/2 1/2 3/2 1/2 5/2 5/2 3/2 1/2 7/2 1/2 1/2 3/2 3/2 1/2 5/2 5/2 7/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 7/2 5/2 3/2 1/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 3/2 1/2 * Occupation of subblocks E1g: 1/2 3/2 5/2 closed shells (f=1.0000): 8 4 2 virtual shells (f=0.0000): 40 20 10 tot.num. of pos.erg shells: 48 24 12 E1u: 1/2 3/2 5/2 7/2 closed shells (f=1.0000): 8 5 2 1 virtual shells (f=0.0000): 48 32 16 8 tot.num. of pos.erg shells: 56 37 18 9 * HOMO - LUMO gap: E(LUMO) : -14.76474794 au (symmetry E1g) - E(HOMO) : -15.98992717 au (symmetry E1u) ------------------------------------------ gap : 1.22517924 au ************************************************************************** ********************** Mulliken population analysis ********************** ************************************************************************** Fermion ircop E1g ----------------- Fermion ircop E1g ----------------- * Electronic eigenvalue no. 1: -2825.5796563313 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 2: -510.82980962102 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 3: -132.02992492214 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 4: -92.990981581672 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 5: -92.990981580497 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 6: -90.127068941796 (Occupation : f = 1.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 7: -90.127068941493 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 8: -90.127068941466 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 9: -39.667443554027 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 10: -25.522865341731 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 11: -25.522865341407 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 12: -24.912329444811 (Occupation : f = 1.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 13: -24.912329443235 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 14: -24.912329443040 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 15: -14.764747936880 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 16: -10.419824491721 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 17: -10.419824489752 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 18: -10.294126497901 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 19: -10.294126496457 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 20: -10.294126495558 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 21: -8.2873819888528 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 22: -6.3477577542986 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 23: -6.3477577534313 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 24: -6.2905717283314 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 25: -6.2905717274491 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 26: -6.2905717271865 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 27: -5.3033092545382 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 28: -4.1933461733442 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 29: -4.1933461730655 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 30: -4.1751968215235 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 31: -4.1751968212416 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 32: -4.1751968211766 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 33: -3.1936348921956 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 34: 1.1238560246159 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 35: 1.1238560262577 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 36: 1.4528230397606 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 37: 1.4528230419738 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 38: 1.4528230422142 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 39: 5.4592863691900 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 40: 32.486397157750 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 41: 32.486397158200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 42: 33.639391358428 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 43: 33.639391359621 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 44: 33.639391359634 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 45: 64.176531903259 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 46: 126.04981485316 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 47: 126.04981485380 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 48: 129.32442160342 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 49: 129.32442160371 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 50: 129.32442160385 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 51: 252.04464855320 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 52: 379.63950780557 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 53: 379.63950780569 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 54: 389.06492966243 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 55: 389.06492966260 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 56: 389.06492966268 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 57: 760.98654952574 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 58: 1058.9856894329 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 59: 1058.9856894330 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 60: 1088.8789345845 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 61: 1088.8789345848 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 62: 1088.8789345850 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 63: 2004.1563015234 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 64: 2955.4270479308 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 65: 2955.4270479309 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 66: 3063.9702683091 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 67: 3063.9702683093 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 68: 3063.9702683096 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 69: 4720.4079276089 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 70: 8906.6248044118 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 71: 8906.6248044118 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 72: 9423.3006916331 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 73: 9423.3006916332 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 74: 9423.3006916332 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 75: 9994.8134920219 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 76: 19359.542603953 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 77: 35104.879881504 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 78: 60958.609440467 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 79: 103359.21571628 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 80: 173880.75456089 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 81: 294160.29796770 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 82: 507697.20224882 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 83: 910950.07273163 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 84: 1785928.1185496 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 ** Total gross population of fermion ircop E1g ** Gross Total | L Ag Ir s L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------------------------------------- total 28.00000 | 8.00000 2.66667 2.66667 2.66667 4.00000 4.00000 4.00000 Fermion ircop E1u ----------------- Fermion ircop E1u ----------------- * Electronic eigenvalue no. 1: -489.12959360874 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 2: -429.23047228795 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 3: -429.23047228723 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 4: -122.32167569569 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 5: -109.00360158777 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 6: -109.00360158768 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 7: -35.533888473225 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 8: -32.327940870557 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 9: -32.327940869201 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 10: -16.115940578872 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 11: -16.115940578194 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 12: -16.115940576890 (Occupation : f = 1.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 13: -15.989927176894 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 14: -15.989927176455 (Occupation : f = 1.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 15: -15.989927175038 (Occupation : f = 1.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 16: -15.989927173841 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 17: -13.343648589137 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 18: -12.630104611787 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 19: -12.630104610322 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 20: -7.7607134893172 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 21: -7.7607134880440 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 22: -7.7607134878287 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 23: -7.7349676267318 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 24: -7.7349676251205 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 25: -7.7349676248564 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 26: -7.7349676243729 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 27: -7.6711442247607 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 28: -7.3635979387833 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 29: -7.3635979376854 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 30: -4.8728858793525 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 31: -4.8728858788041 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 32: -4.8728858787016 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 33: -4.8590267212926 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 34: -4.8590267206359 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 35: -4.8590267204673 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 36: -4.8590267202818 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 37: -4.7644803576750 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 38: -4.6822762639712 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 39: -4.6822762636793 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 40: -3.2283686412180 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 41: -3.2283686404312 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 42: -3.2283686402962 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 43: -3.2021073448236 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 44: -3.2021073437914 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 45: -3.2021073436187 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 46: -3.2021073433062 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 47: -2.6875322688608 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 48: -2.6744903178465 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 49: -2.6744903178446 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 50: 1.0441661252060 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 51: 2.6219895039526 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 52: 2.6219895059201 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 53: 7.3476605976311 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 54: 7.3476605988996 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 55: 7.3476605989834 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 56: 7.4679427844803 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 57: 7.4679427863020 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 58: 7.4679427863714 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 59: 7.4679427871166 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 60: 38.482772946759 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 61: 38.755467863324 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 62: 38.755467863328 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 63: 38.755467863361 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 64: 39.098826034823 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 65: 39.098826035438 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 66: 39.098826035451 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 67: 39.098826035900 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 68: 44.454043682640 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 69: 44.454043683465 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 70: 120.87872492423 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 71: 120.87872492438 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 72: 120.87872492525 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 73: 121.95592416486 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 74: 121.95592416509 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 75: 121.95592416512 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 76: 121.95592416540 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 77: 158.24849560651 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 78: 176.19425121930 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 79: 176.19425121937 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 80: 347.87756284895 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 81: 347.87756284914 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 82: 347.87756284940 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 83: 351.61789460376 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 84: 351.61789460391 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 85: 351.61789460395 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 86: 351.61789460411 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 87: 501.25688571581 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 88: 551.49837550318 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 89: 551.49837550342 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 90: 1093.2815964143 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 91: 1093.2815964144 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 92: 1093.2815964145 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 93: 1112.4472841028 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 94: 1112.4472841030 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 95: 1112.4472841032 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 96: 1112.4472841033 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 97: 1405.7924659474 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 98: 1539.9800610418 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 99: 1539.9800610420 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 100: 3609.5013977488 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 101: 3964.1291206291 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 102: 3964.1291206291 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 103: 8634.6967875844 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 104: 9556.7114139634 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 105: 9556.7114139637 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 106: 19492.122078766 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 107: 21792.556759306 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 108: 21792.556759306 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 109: 42379.167671365 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 110: 47901.173363435 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 111: 47901.173363435 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 112: 91594.916382920 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 113: 104753.13295824 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 114: 104753.13295824 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 115: 205434.34459856 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 116: 237782.10789091 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 117: 237782.10789091 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 118: 516567.87839346 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 119: 603988.61853450 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 120: 603988.61853450 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 ** Total gross population of fermion ircop E1u ** Gross Total | L B3uIr px L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr py L B2uIr fxxy L B2uIr fyyy -------------------------------------------------------------------------------------------------------------------------------- total 32.00000 | 6.00000 0.80000 1.60000 1.60000 6.00000 1.60000 0.80000 Gross | L B2uIr fyzz L B1uIr pz L B1uIr fxxz L B1uIr fyyz L B1uIr fzzz L Au Ir fxyz -------------------------------------------------------------------------------------------------- total | 1.60000 6.00000 1.60000 1.60000 0.80000 2.00000 *** Total gross population *** Gross Total | L Ag Ir s L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B3uIr px L B3uIr fxxx L B3uIr fxyy -------------------------------------------------------------------------------------------------------------------------------- total 60.00000 | 8.00000 2.66667 2.66667 2.66667 6.00000 0.80000 1.60000 Gross | L B3uIr fxzz L B2uIr py L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1gIr dxy L B1uIr pz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- total | 1.60000 6.00000 1.60000 0.80000 1.60000 4.00000 6.00000 1.60000 Gross | L B1uIr fyyz L B1uIr fzzz L B2gIr dxz L B3gIr dyz L Au Ir fxyz ----------------------------------------------------------------------------------- total | 1.60000 0.80000 4.00000 4.00000 2.00000 =========================================================================== * PCMOUT: Coefficients read from unformatted DFCOEF and written to formatted DFPCMO =========================================================================== ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Thu Dec 27 14:54:48 2018 * REACMO: Coefficients read from file DFCOEF - Total energy: -17736.3209890567232 * Heading : atomic test calculations Thu Dec 27 14:54:47 2018 Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. * Orbital ranges for 4-index transformation: * Fermion ircop E1g Index 1 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 2 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 3 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 4 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 * Fermion ircop E1u Index 1 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 2 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 3 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 4 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 * Core orbital ranges for 2-index transformation: * Fermion ircop E1g Index 1 8 orbitals 1 2 3 4 5 6 7 8 * Fermion ircop E1u Index 1 6 orbitals 1 2 3 4 5 6 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ********************************************************************** **************** Transformation of property integrals **************** ********************************************************************** Transformation started at : Thu Dec 27 14:54:48 2018 * REACMO: Coefficients read from file DFCOEF - Total energy: -17736.3209890567232 * Heading : atomic test calculations Thu Dec 27 14:54:47 2018 Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. * Fermion ircop E1g Index 1 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 2 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 * Fermion ircop E1u Index 1 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 2 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Thu Dec 27 14:54:48 2018 * REACMO: Coefficients read from file DFCOEF - Total energy: -17736.3209890567232 * Heading : atomic test calculations Thu Dec 27 14:54:47 2018 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 17.20% 26.79% 1.15% 17.52% 0.99599934s >>> CPU time used in SO Fock is 1.00 seconds >>> WALL time used in SO Fock is 0.99 seconds * REAFCK: Fock matrix read from file /tmp/milias/DIRAC_Z61.x2c.scf_fscc01_33ce_5s5p.2fs_Ir.dyall_ * Heading : atomic test calculations Thu Dec 27 14:54:35 2018 Core energy (includes nuclear repulsion) : -16075.1458111024 - Electronic part : -16075.1458111024 - One-electron terms : -18681.1303008346 - Two-electron terms : 2605.9844897322 MOLFDIR file MRCONEE is written - Integral class 1 : (LL|??) - Beginning task 1 of 11 after 0. seconds and 0. CPU-seconds - Beginning task 2 of 11 after 0. seconds and 0. CPU-seconds - Beginning task 3 of 11 after 0. seconds and 0. CPU-seconds - Beginning task 4 of 11 after 0. seconds and 0. CPU-seconds - Beginning task 5 of 11 after 1. seconds and 1. CPU-seconds - Beginning task 6 of 11 after 1. seconds and 1. CPU-seconds - Beginning task 7 of 11 after 2. seconds and 2. CPU-seconds - Beginning task 8 of 11 after 3. seconds and 3. CPU-seconds - Beginning task 9 of 11 after 4. seconds and 4. CPU-seconds - Beginning task 10 of 11 after 6. seconds and 6. CPU-seconds - Beginning task 11 of 11 after 8. seconds and 8. CPU-seconds - Integral class 2 : (SS|??) Node 0 finished first half transformation 97589491 HT integrals written ( 66.93%, 2.18 GB) >>> CPU time used in 2HT_all is 32.79 seconds - Binary file MDCINT was written. * Screening statistics: (LL|LL)ints : 0.00% Total : 0.00% ------ Timing report (in CPU seconds) of module integral transformation Time in First halftransformation 10.960 seconds Time in Second halftransformation 32.788 seconds Total wall time used in PAMTRA : 00:00:45 Total CPU time used in PAMTRA (master only) : 00:00:45 Transformation ended at : Thu Dec 27 14:55:33 2018 ---< Process 1 of 1----< Relativistic Coupled Cluster program RELCCSD Written by : Lucas Visscher NASA Ames Research Center (1994) Rijks Universiteit Groningen (1995) Odense Universitet (1996-1997) VU University Amsterdam (1998-present) This module is documented in - Initial implementation : L. Visscher, T.J. Lee and K.G. Dyall, J. Chem. Phys. 105 (1996) 8769. - Fock Space (FSCC): L. Visscher, E. Eliav and U. Kaldor, J. Chem. Phys. 115 (2002) 9720. - Intermediate Hamiltonian E. Eliav, M. J. Vilkas, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 122 (2005) 224113. - Parallelization : M. Pernpointner and L. Visscher, J. Comp. Chem. 24 (2003) 754. - MP2 expectation values : J.N.P. van Stralen, L. Visscher, C.V. Larsen and H.J.Aa. Jensen," Chem. Phys. 311 (2005) 81. - CC expectation values : A. Shee, L. Visscher, and T. Saue, J. Chem. Phys. 145 (2016) 184107. - EOM-IP/EA/EE energies : A. Shee, T. Saue, L. Visscher, and A.S.P. Gomes, J. Chem. Phys. 149 (2018) 174113. Today is : 27 Dec 18 The time is : 14:55:33 Initializing word-addressable I/O : the FORTRAN-interface is used with 16 KB records =========================================================================== **RELCC: Set-up for Coupled Cluster calculations =========================================================================== * General print level : 1 NEL_F1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EHMIN: 1000.00000 EHMAX: 100.00000 EPMIN: -1.00000 EPMAX: -1000.00000 Total memory available : 16384.00 MB 16.000 GB INFO: No old restart file(s) found! Configuration in highest pointgroup Eg Eg Eu Eu Spinor class : occupied 6 6 10 10 Spinor class : virtual 30 30 53 53 Configuration in abelian subgroup 1g -1g 3g -3g 5g -5g 1u -1u Spinor class : occupied 3 3 2 2 1 1 4 4 Spinor class : virtual 15 15 10 10 5 5 22 22 Configuration in abelian subgroup 3u -3u 5u -5u 7u -7u Spinor class : occupied 3 3 2 2 1 1 Spinor class : virtual 16 16 10 10 5 5 Number of electrons : 32 Total charge of the system : 17 Number of virtual spinors : 166 Complex arithmetic mode : F Do integral sorting : F Do energy calculation : F Do gradient calculation : F Do response calculation : F Debug information : F Timing information : T Print level : 1 Memory limit (MWord) : 2048 Interface used : DIRAC6 Leave after calculating the total memory demand : F Memory for reading and sorting integrals : 28500242 8-byte words Memory for reading and sorting integrals : 95752044 8-byte words Core used for Fock space CCSD energies : 2135103206 8-byte words Memory used for active modules : 2135103206 8-byte words Predicted RelCC memory demand: 16289.54 MB Predicted RelCC memory demand: 15.908 GB Fock space CCSD Energy calculations Module written by Ephraim Eliav & Luuk Visscher, July 1999 List of inactive and active spinors (Fock space) Configuration in highest pointgroup Eg Eg Eu Eu Spinor class : inactive occupied 6 6 10 10 Spinor class : active occupied 0 0 0 0 Spinor class : active virtual 1 1 3 3 Spinor class : inactive virtual 29 29 50 50 Configuration in abelian subgroup 1g -1g 3g -3g 5g -5g 1u -1u Spinor class : inactive occupied 3 3 2 2 1 1 4 4 Spinor class : active occupied 0 0 0 0 0 0 0 0 Spinor class : active virtual 1 1 0 0 0 0 2 2 Spinor class : inactive virtual 14 14 10 10 5 5 20 20 Configuration in abelian subgroup 3u -3u 5u -5u 7u -7u Spinor class : inactive occupied 3 3 2 2 1 1 Spinor class : active occupied 0 0 0 0 0 0 Spinor class : active virtual 1 1 0 0 0 0 Spinor class : inactive virtual 15 15 10 10 5 5 Expanding and sorting integrals to unique types : Type OOOO : 39806 integrals Type VOOO : 330356 integrals Type VVOO : 668868 integrals Type VOVO : 2748820 integrals Type VOVV : 5569544 integrals Type VVVV : 11295541 integrals Start sorting of integral classes at 27 Dec 18 14:55:33 Sorting of first 4 classes done at 27 Dec 18 14:56:24 Need 1 passes to sort VOVV integrals Pass 1 ended at 27 Dec 18 14:57:35 VOVV sorting done at 27 Dec 18 14:57:35 Need 1 passes to sort VVVV integrals Pass 1 ended at 27 Dec 18 14:58:59 VVVV sorting done at 27 Dec 18 14:58:59 Reading Coulomb integrals : File date : 27 Dec 18 File time : 14:58:59 # of integrals 45263416 Finished sorting of integrals Checking the orbital energies, the program computes the diagonal elements of the reconstructed Fock matrix. Differences with the reference orbital energies are given if above a treshold or if iprnt > 1 Spinor Abelian Rep. Energy Recalc. Energy Oi 1 1 1g -39.6674435540 -39.6674435602 Oi 2 2 1g -25.5228653417 -25.5228653464 Oi 3 3 1g -24.9123294432 -24.9123294490 Va 4 4 1g -14.7647479369 -14.7647479386 Oi 1 5 -1g -39.6674435540 -39.6674435602 Oi 2 6 -1g -25.5228653417 -25.5228653464 Oi 3 7 -1g -24.9123294432 -24.9123294490 Va 4 8 -1g -14.7647479369 -14.7647479386 Oi 1 9 3g -25.5228653414 -25.5228653463 Oi 2 10 3g -24.9123294430 -24.9123294489 Oi 1 11 -3g -25.5228653414 -25.5228653463 Oi 2 12 -3g -24.9123294430 -24.9123294489 Oi 1 13 5g -24.9123294448 -24.9123294492 Oi 1 14 -5g -24.9123294448 -24.9123294492 Oi 1 15 1u -35.5338884732 -35.5338884785 Oi 2 16 1u -32.3279408692 -32.3279408753 Oi 3 17 1u -16.1159405789 -16.1159405822 Oi 4 18 1u -15.9899271769 -15.9899271809 Va 5 19 1u -13.3436485891 -13.3436485908 Va 6 20 1u -12.6301046103 -12.6301046122 Oi 1 21 -1u -35.5338884732 -35.5338884785 Oi 2 22 -1u -32.3279408692 -32.3279408753 Oi 3 23 -1u -16.1159405789 -16.1159405822 Oi 4 24 -1u -15.9899271769 -15.9899271809 Va 5 25 -1u -13.3436485891 -13.3436485908 Va 6 26 -1u -12.6301046103 -12.6301046122 Oi 1 27 3u -32.3279408706 -32.3279408756 Oi 2 28 3u -16.1159405782 -16.1159405820 Oi 3 29 3u -15.9899271738 -15.9899271804 Va 4 30 3u -12.6301046118 -12.6301046126 Oi 1 31 -3u -32.3279408706 -32.3279408756 Oi 2 32 -3u -16.1159405782 -16.1159405820 Oi 3 33 -3u -15.9899271738 -15.9899271804 Va 4 34 -3u -12.6301046118 -12.6301046126 Oi 1 35 5u -16.1159405769 -16.1159405817 Oi 2 36 5u -15.9899271750 -15.9899271805 Oi 1 37 -5u -16.1159405769 -16.1159405817 Oi 2 38 -5u -15.9899271750 -15.9899271805 Oi 1 39 7u -15.9899271765 -15.9899271807 Oi 1 40 -7u -15.9899271765 -15.9899271807 The diagonal elements of the recomputed Fock matrix (right column) are used in perturbation expressions. Use the perturbative values (MP2, CCSD[T]/(T)/-T) with care, especially in open shell calculations because the orbitals need not always be semi-canonical as was assumed in the derivation of the expressions. The missing terms may be important ! Nuclear repulsion + core energy : -16075.145811102425796 Zero order electronic energy : -755.894926595492279 First order electronic energy : -905.280251358816258 Electronic energy : -1661.175177954308538 SCF energy : -17736.320989056734106 Fock space CCSD options : Maximum number of iterations : 30 Maximum size of DIIS space : 8 Convergence criterium : 0.1E-07 INFO: Initializing amplitudes to MP2 ones! Solving equations for sector 00 ...maximum number of iterations for this sector: 30 NIT ENERGY RMS T1-DIAGN 0 -0.889286508261513 1.000000000000000 0.00000 1 -0.755279758274664 0.000046005011531 0.00240 2 -0.784368904803519 0.000014330215178 0.00193 3 -0.785438824729417 0.000006906340638 0.00205 4 -0.784759197132966 0.000002051539734 0.00199 5 -0.784973141141906 0.000000706292975 0.00200 6 -0.784967108005172 0.000000358844269 0.00200 7 -0.784963795260224 0.000000096696451 0.00200 8 -0.784966014114593 0.000000011479633 0.00200 9 -0.784965324694634 0.000000001636966 0.00200 CCSD results SCF energy : -17736.320989056734106 CCSD correlation energy : -0.784965324694634 Total CCSD energy : -17737.105954381429910 T1 diagnostic : 0.001998760083320 Convergence : 0.000000001636966 Number or iterations used : 9 Performance of BLAS GEMM in the largest contractions Contraction type Performance VVVV+VOVV (in B: includes I/O) 15.40 Gflop/s VOVO (in H: only XGEMM) 35.00 Gflop/s VOVO (in T2EQN: includes sort) 22.19 Gflop/s INFO: converged (unconverged if .UNCONVERGED used) amplitudes available for restart Solving equations for sector 01 ...maximum number of iterations for this sector: 30 NIT ENERGY RMS T1-DIAGN 0 -0.784965324694634 1.000000000000000 0.00200 1 -0.784965471210342 0.000198330739785 0.00200 2 -0.784965467102236 0.000038487109774 0.00200 3 -0.784965468187845 0.000011887870216 0.00200 4 -0.784965467124799 0.000003501225451 0.00200 5 -0.784965466551426 0.000000892530574 0.00200 6 -0.784965466535374 0.000002161122780 0.00200 7 -0.784965466422727 0.000002279893146 0.00200 8 -0.784965466404469 0.000000205818182 0.00200 9 -0.784965466334166 0.000000152490972 0.00200 10 -0.784965466287880 0.000000007024741 0.00200 CCSD results T1 diagnostic : 0.001998763828215 Convergence : 0.000000007024741 Number or iterations used : 10 Performance of BLAS GEMM in the largest contractions Contraction type Performance VVVV+VOVV (in B: includes I/O) 15.27 Gflop/s VOVO (in H: only XGEMM) 34.56 Gflop/s VOVO (in T2EQN: includes sort) 22.30 Gflop/s Writing effective Hamiltonian to formatted HEFFF file ( 1 au = 27.2113834378 eV / 219474.631280634 cm-1) Energy eigenvalues in atomic units Level Rel eigenvalue Abs eigenvalue Total Energy Degeneracy 1 0.0000000000 -14.797292102887 -17751.903246625909 ( 2 * ) 2 1.4189322210 -13.378359881849 -17750.484314404872 ( 2 * ) 3 2.1355423715 -12.661749731413 -17749.767704254438 ( 4 * ) Total average: -17750.4807423849 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 1g| -1g| 3g| -3g| 5g| -5g| 7g| -7g| 1 0.000000000 0.000000 1| 1| 0| 0| 0| 0| 0| 0| 2 38.611108739 311419.626024 0| 0| 0| 0| 0| 0| 0| 0| 3 58.111062318 468697.374563 0| 0| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 9g| -9g| 11g|-11g| 13g|-13g| 15g|-15g| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 38.611108739 311419.626024 0| 0| 0| 0| 0| 0| 0| 0| 3 58.111062318 468697.374563 0| 0| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 1u| -1u| 3u| -3u| 5u| -5u| 7u| -7u| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 38.611108739 311419.626024 1| 1| 0| 0| 0| 0| 0| 0| 3 58.111062318 468697.374563 1| 1| 1| 1| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 9u| -9u| 11u|-11u| 13u|-13u| 15u|-15u| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 38.611108739 311419.626024 0| 0| 0| 0| 0| 0| 0| 0| 3 58.111062318 468697.374563 0| 0| 0| 0| 0| 0| 0| 0| Analysis of eigenvectors of the effective Hamiltonian First line : Energy, Eigenvalue other lines : Coefficients of contributing determinants (above a threshold of .1E-02) Irrep 1g State 1 -17751.90324663 -14.79729210 1.00000 | 1g # 1 ( -14.765) | Irrep -1g State 1 -17751.90324663 -14.79729210 1.00000 | -1g # 1 ( -14.765) | Irrep 1u State 1 -17750.48431440 -13.37835988 -1.00000 | 1u # 1 ( -13.344) | Irrep 1u State 2 -17749.76770425 -12.66174973 -1.00000 | 1u # 2 ( -12.630) | Irrep -1u State 1 -17750.48431440 -13.37835988 -1.00000 | -1u # 1 ( -13.344) | Irrep -1u State 2 -17749.76770425 -12.66174973 -1.00000 | -1u # 2 ( -12.630) | Irrep 3u State 1 -17749.76770425 -12.66174973 1.00000 | 3u # 1 ( -12.630) | Irrep -3u State 1 -17749.76770425 -12.66174973 1.00000 | -3u # 1 ( -12.630) | INFO: converged (unconverged if .UNCONVERGED used) amplitudes available for restart -------------------------------------------------------------------------------- Today is : 27 Dec 18 The time is : 14:59:15 Status of the calculations Integral sort # 1 : Completed, restartable Integral sort # 2 : Completed, restartable Fock matrix build : Completed, restartable MP2 energy calculation : Completed, restartable CCSD energy calculation : On menu but not yet called CCSD(T) energy calculation : On menu but not yet called CCSD(T) energy calculation : Never asked for Overview of calculated energies @ SCF energy : -17736.320989056734106 @ MP2 correlation energy : 0.000000000000000 @ CCSD correlation energy : -0.784965466287880 @ 4th order triples correction : 0.000000000000000 @ 5th order triples (T) correction : 0.000000000000000 @ 5th order triples -T correction : 0.000000000000000 @ Total MP2 energy : -17736.320989056734106 @ Total CCSD energy : -17737.105954523023684 @ Total CCSD+T energy : -17737.105954523023684 @ Total CCSD(T) energy : -17737.105954523023684 @ Total CCSD-T energy : -17737.105954523023684 -------------------------------------------------------------------------------- ------ Timing report (in CPU seconds) of module RELCCSD Time in - T1 equations 2.372 seconds Time in --- T1EQNS HOV*T2(A,C,I,K 0.060 seconds Time in --- T1EQNS HV*T / T*HO 0.004 seconds Time in --- T1EQNS VOOO*TAU 0.244 seconds Time in --- T1EQNS VOVV contribution 1.040 seconds Time in --- T1EQNS VOVO * T(C,K) 0.312 seconds Time in -- GOINTM 0.052 seconds Time in -- GVINTM 0.476 seconds Time in -- AINTM 0.200 seconds Time in -- HINTM 4.532 seconds Time in --- HINTM: VOVV*T 1.092 seconds Time in --- HINTM: VVOO contribution 1.428 seconds Time in -- T2 EQNS 6.508 seconds Time in --- T2EQNS: TAU*AINTM contract 0.080 seconds Time in --- T2EQNS: VOVV*T1 0.796 seconds Time in --- T2EQNS: HINTM*T2 2.232 seconds Time in -- BINTM 2.392 seconds Time in - DIIS extrapolation 0.508 seconds Timing of main modules : Wallclock (s) CPU on master (s) Before CC driver : ************ 60.76 Initialization : 0.04 0.04 Integral sorting : 0.00 0.00 Energy calculation : 0.00 0.00 First order properties : 0.00 0.00 Second order properties : 0.00 0.00 Fock space energies : 0.00 222.73 EOMCC energies : 0.00 0.00 Untimed parts : 222.57 0.00 Total time in CC driver : 223. 222.77 Statistics for the word-addressable I/O Number of write calls 3929. Number of read calls 3929. Megabytes written 229.475 Megabytes read 4460.263 Seconds spent in reads 2.242 Seconds spent in writes 2.241 average I/O speed for write (Mb/s) 102.372 average I/O speed for read (Mb/s) 1989.867 CPU time (seconds) used in RELCCSD: 222.7680 CPU time (seconds) used before RELCCSD: 60.7560 CPU time (seconds) used in total sofar: 283.5240 --- Normal end of RELCCSD Run --- ################################################################################ ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Thu Dec 27 14:59:15 2018 Host name : lxir127 Dynamical Memory Usage Summary for Master Mean allocation size (Mb) : 51.67 Largest 10 allocations 915.53 Mb at subroutine pamtra_+0x16b for WORK in PAMTRA 915.53 Mb at subroutine pamana_+0x97 for WORK in PAMANA 915.53 Mb at subroutine psiscf_+0xa9 for WORK in PSISCF 915.53 Mb at subroutine pamset_+0x189f for WORK in PAMSET - 2 915.53 Mb at subroutine gmotra_+0x3c74 for WORK in GMOTRA - part 2 915.53 Mb at subroutine gmotra_+0x5b52 for WORK in GMOTRA 915.53 Mb at subroutine pamset_+0x97 for WORK in PAMSET - 1 915.53 Mb at subroutine MAIN__+0x2b1 for test allocation of work array in DIRAC mai 535.99 Mb at subroutine ccseti_+0x703 for ibuf 535.99 Mb at subroutine ccseti_+0x703 for ibuf Peak memory usage: 915.98 MB Peak memory usage: 0.895 GB reached at subroutine : butobs_no_work_+0x8f for variable : buf in butobs Memory possibly left allocated! dumping list now... <<< Tracked variables, alloc >>> >>> 1 variables so far >>> (de)allocated data details <<< var. name : eigenvalues kind : 8 tot.dim. (<1 if array) : 1 was allocated at : heff1_+0x179 mem.addr. (as integer) : 140172693208576 >>> Done after 1 el. There were 179 allocations/ 178 deallocations Current memory usage (in Mb) is 0.000000000000000E+000 MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 265, stime: 18, minflt: 394366, majflt: 122, nvcsw: 1305, nivcsw: 1913, maxrss: 885536 >>>> Total WALL time used in DIRAC: 4min43s DIRAC pam run in /tmp/milias-dirac-software/trunk-devel/test/tutorial_Ir_16plus