DIRAC serial starts by allocating 469000000 words ( 3578.19 MB - 3.494 GB) of memory out of the allowed maximum of 2147483648 words ( 16384.00 MB - 16.000 GB) Note: maximum allocatable memory for serial run can be set by pam --aw/--ag ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Trond Saue Universite Toulouse III France * * Lucas Visscher Vrije Universiteit Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast UiT The Arctic University of Norway * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer University of Aarhus Denmark * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Erik D. Hedegaard Lund University Sweden * * Trygve Helgaker University of Oslo Norway * * Benjamin Helmich-Paris Max Planck Institute f. Coal Res. Germany * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak Bhabha Atomic Research Centre India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Jogvan Magnus H. Olsen University of Southern Denmark Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Avijit Shee University of Michigan USA * * Jetze Sikkema Vrije Universiteit Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen Vrije Universiteit Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For more information about the DIRAC code see http://diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC18 (2018), * * written by T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, E. D. Hedegaard, T. Helgaker, * * J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, * * O. Kullie, J. K. Laerdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, * * M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, J. M. H. Olsen, * * Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, * * P. Salek, B. Schimmelpfennig, A. Shee, J. Sikkema, A. J. Thorvaldsen, * * J. Thyssen, J. van Stralen, S. Villaume, O. Visser,T. Winther, * * and S. Yamamoto (see http://diracprogram.org). * * * ******************************************************************************* Version information ------------------- Branch | miro/master-fixes Commit hash | 17fabb0 Commit author | Lucas Commit date | Fri Dec 21 07:30:32 2018 +0000 Configuration and build information ----------------------------------- Who compiled | milias Compiled on server | lxir127 Operating system | Linux-3.16.0-4-amd64 CMake version | 3.0.2 CMake generator | Unix Makefiles CMake build type | release Configuration time | 2018-12-27 12:06:39.312181 Python version | 2.7.9 Fortran compiler | /cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/bin/intel64/ifort Fortran compiler version | 17.0 Fortran compiler flags | -w -assume byterecl -g -traceback -DVAR_IFORT -i8 -w -assume byterecl -g -traceback -DVAR_IFORT -i8 C compiler | /cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/bin/intel64/icc C compiler version | 17.0 C compiler flags | -g -wd981 -wd279 -wd383 -wd1572 -wd177 -g -wd981 -wd279 -wd383 -wd1572 -wd177 C++ compiler | /cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/bin/intel64/icpc C++ compiler version | 17.0.4 C++ compiler flags | -Wno-unknown-pragmas -Wno-unknown-pragmas Static linking | False 64-bit integers | True MPI parallelization | False MPI launcher | unknown Math libraries | -Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_lapack95_ilp64.a;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_intel_ilp64.so;-openmp;-Wl,--end-group;-Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_intel_ilp64.so;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_intel_thread.so;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/usr/lib/x86_64-linux-gnu/libm.so;-openmp;-Wl,--end-group Builtin BLAS library | OFF Builtin LAPACK library | OFF Explicit libraries | unknown Compile definitions | MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;BUILD_GEN1INT;HAS_PELIB;MOD_QCORR;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ESR;MOD_KRCC;MOD_SRDFT Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Thu Dec 27 13:44:23 2018 Host name : lxir127 Contents of the input file -------------------------- **DIRAC .WAVE FUNCTION .ANALYZE **GENERAL .ACMOUT **HAMILTONIAN .X2C .NOAMFI **WAVE FUNCTIONS .SCF *SCF #.CLOSED SHELL #4 0 #.OPEN SHELL #1 #4/0,6 # Miro: I need this to get the U atom converged ! .OPENFACTOR 0.00 **ANALYZE .MULPOP *END OF Contents of the molecule file ----------------------------- INTGRL U(4+), D2h v2z basis C 1 4 3 X Y Z 92.0 1 U 0.00000000 0.00000000 0.00000000 LARGE BASIS dyall.v2z FINISH ************************************************************************* ********************* DIRAC: No title specified !!! ********************* ************************************************************************* Jobs in this run: * Wave function * Analysis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * MO-coefficients dumped in C1 format to unformatted file DFACMO * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- U(4+), D2h v2z basis Nuclear Gaussian exponent for atom of charge 92.000 : 1.2700881714D+08 *** WARNING (BASLIB) : Decontracting basis set - nuclear charge: 92 - basis file : dyall.v2z Reason: DIRAC cannot yet create proper small component basis for contracted large component basis when Z > 36 Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Point group: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Isotopic Masses --------------- U 238.050785 Total mass: 238.050785 amu Natural abundance: 99.275 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000 Atoms and basis sets -------------------- Number of atom types : 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- U 1 92 347 347 L - [26s23p17d12f2g|26s23p17d12f2g] ---------------------------------------------------------------------- 347 347 L - large components ---------------------------------------------------------------------- total: 1 92 347 347 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 3 1 U x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 1 U 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry B3u( 2) 1 U x 1 Symmetry B2u( 3) 2 U y 2 Symmetry B1u( 5) 3 U z 3 This is an atomic calculation. GETLAB: AO-labels ----------------- * Large components: 35 1 L U 1 s 2 L U 1 px 3 L U 1 py 4 L U 1 pz 5 L U 1 dxx 6 L U 1 dxy 7 L U 1 dxz 8 L U 1 dyy 9 L U 1 dyz 10 L U 1 dzz 11 L U 1 fxxx 12 L U 1 fxxy 13 L U 1 fxxz 14 L U 1 fxyy 15 L U 1 fxyz 16 L U 1 fxzz 17 L U 1 fyyy 18 L U 1 fyyz 19 L U 1 fyzz 20 L U 1 fzzz 21 L U 1 g400 22 L U 1 g310 23 L U 1 g301 24 L U 1 g220 25 L U 1 g211 26 L U 1 g202 27 L U 1 g130 28 L U 1 g121 29 L U 1 g112 30 L U 1 g103 31 L U 1 g040 32 L U 1 g031 33 L U 1 g022 34 L U 1 g013 35 L U 1 g004 * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 35 1 L Ag U s 2 L Ag U dxx 3 L Ag U dyy 4 L Ag U dzz 5 L Ag U g400 6 L Ag U g220 7 L Ag U g202 8 L Ag U g040 9 L Ag U g022 10 L Ag U g004 11 L B3uU px 12 L B3uU fxxx 13 L B3uU fxyy 14 L B3uU fxzz 15 L B2uU py 16 L B2uU fxxy 17 L B2uU fyyy 18 L B2uU fyzz 19 L B1gU dxy 20 L B1gU g310 21 L B1gU g130 22 L B1gU g112 23 L B1uU pz 24 L B1uU fxxz 25 L B1uU fyyz 26 L B1uU fzzz 27 L B2gU dxz 28 L B2gU g301 29 L B2gU g121 30 L B2gU g103 31 L B3gU dyz 32 L B3gU g211 33 L B3gU g031 34 L B3gU g013 35 L Au U fxyz * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 89 59 59 23 59 23 23 12 Number of large orbitals in each symmetry: 89 59 59 23 59 23 23 12 Number of small orbitals in each symmetry: 0 0 0 0 0 0 0 0 * Large component functions Symmetry Ag ( 1) 26 functions: U s 17 functions: U dxx 17 functions: U dyy 17 functions: U dzz 2 functions: U g400 2 functions: U g220 2 functions: U g202 2 functions: U g040 2 functions: U g022 2 functions: U g004 Symmetry B3u( 2) 23 functions: U px 12 functions: U fxxx 12 functions: U fxyy 12 functions: U fxzz Symmetry B2u( 3) 23 functions: U py 12 functions: U fxxy 12 functions: U fyyy 12 functions: U fyzz Symmetry B1g( 4) 17 functions: U dxy 2 functions: U g310 2 functions: U g130 2 functions: U g112 Symmetry B1u( 5) 23 functions: U pz 12 functions: U fxxz 12 functions: U fyyz 12 functions: U fzzz Symmetry B2g( 6) 17 functions: U dxz 2 functions: U g301 2 functions: U g121 2 functions: U g103 Symmetry B3g( 7) 17 functions: U dyz 2 functions: U g211 2 functions: U g031 2 functions: U g013 Symmetry Au ( 8) 12 functions: U fxyz *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Initial Automatic occupation based on: Total charge of atoms = 92 Charge of molecule = 4 i.e. no. of electrons = 88 =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Sum of atomic potentials used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.000000 ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * DHF occupation is allowed to change during SCF cycles. * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Mulliken population analysis =========================================================================== POPINP: Mulliken population analysis =========================================================================== * Gross populations * Label definitions based on SO-labels * Number of spinors analyzed: - All occupied orbitals in fermion ircop E1g - All occupied orbitals in fermion ircop E1u * Print level: 0 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- U(4+), D2h v2z basis Nuclear Gaussian exponent for atom of charge 92.000 : 1.2700881714D+08 *** WARNING (BASLIB) : Decontracting basis set - nuclear charge: 92 - basis file : dyall.v2z Reason: DIRAC cannot yet create proper small component basis for contracted large component basis when Z > 36 Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Point group: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Isotopic Masses --------------- U 238.050785 Total mass: 238.050785 amu Natural abundance: 99.275 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000 Atoms and basis sets -------------------- Number of atom types : 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- U 1 92 347 347 L - [26s23p17d12f2g|26s23p17d12f2g] ---------------------------------------------------------------------- 347 347 L - large components 774 774 S - small components ---------------------------------------------------------------------- total: 1 92 1121 1121 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 3 1 U x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 1 U 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry B3u( 2) 1 U x 1 Symmetry B2u( 3) 2 U y 2 Symmetry B1u( 5) 3 U z 3 This is an atomic calculation. Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Total time used in ONEGEN (CPU) 0.24800000s and (WALL) 0.30821300s Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 23(Proj: 23, Lindep: 0) Smin: 0.13E-03 L B1g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B2g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B3g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 S B3u * Deleted: 26(Proj: 25, Lindep: 1) Smin: 0.66E-08 S B2u * Deleted: 26(Proj: 25, Lindep: 1) Smin: 0.66E-08 S B1u * Deleted: 26(Proj: 25, Lindep: 1) Smin: 0.66E-08 S Au * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.39E-03 L B3u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L B2u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L B1u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.22E-01 S Ag * Deleted: 73(Proj: 71, Lindep: 2) Smin: 0.21E-08 S B1g * Deleted: 13(Proj: 12, Lindep: 1) Smin: 0.10E-08 S B2g * Deleted: 13(Proj: 12, Lindep: 1) Smin: 0.10E-08 S B3g * Deleted: 13(Proj: 12, Lindep: 1) Smin: 0.10E-08 *** WARNING *** : 8 functions deleted due to numerical linear dependence. ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! * Applied SL-regrouping on AO2MO tranf.matrix in SLSORT. ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* >>> CPU time used in mk_h2c is 0.39 seconds >>> WALL time used in mk_h2c is 0.47 seconds Nuclear Gaussian exponent for atom of charge 92.000 : 1.2700881714D+08 *** WARNING (BASLIB) : Decontracting basis set - nuclear charge: 92 - basis file : dyall.v2z Reason: DIRAC cannot yet create proper small component basis for contracted large component basis when Z > 36 Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Total time used in ONEGEN (CPU) 0.04800000s and (WALL) 0.05712700s Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 23(Proj: 23, Lindep: 0) Smin: 0.13E-03 L B1g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B2g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B3g * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.18E-02 L B3u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L B2u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L B1u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.86E-03 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.22E-01 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 129 153 282 No. of positronic orbitals (NPSH): 0 0 0 Total no. of orbitals (NORB): 129 153 282 >>> CPU time used in PAMSET is 0.75 seconds >>> WALL time used in PAMSET is 0.96 seconds ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by a sum of atomic screening potentials. ########## START ITERATION NO. 1 ########## Thu Dec 27 13:44:24 2018 INFO from FNDOCC: following the Aufbau principle led to a symmetry_broken solution - the program corrected it for you. INFO from FNDOCC: the new occupation will follow below: * AUTOCC( 0) : Initial occupation: * Open shell SCF calculation using Fractional Occupation * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 86 21 22 1.0000 1.0000 0.0000 Open shell no. 1 2.00 3 0 0.3333 0.6000 0.6000 ---------------------------------------------------------------------------- Total 88.00 24 22 f is the fraction occupation; a and alpha open shell coupling coefficients. E_HOMO...E_LUMO, symmetry 1: 21 -1.77317 22 -0.17307 23 -0.11960 24 -0.11960 25 -0.09771 E_HOMO...E_LUMO, symmetry 2: 151 -0.79448 152 -0.17073 => Calculating sum of orbital energies It. 1 -17717.12263634 0.00D+00 0.00D+00 0.00D+00 0.64800000s Atom. scrpot Thu Dec 27 ########## START ITERATION NO. 2 ########## Thu Dec 27 13:44:25 2018 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.02% 32.97% 0.01% 16.34% 10.01600027s >>> CPU time used in SO Fock is 11.32 seconds >>> WALL time used in SO Fock is 11.32 seconds INFO from FNDOCC: following the Aufbau principle led to a symmetry_broken solution - the program corrected it for you. INFO from FNDOCC: the new occupation will follow below: * AUTOCC( 1) : New occupation: * Open shell SCF calculation using Fractional Occupation * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 86 21 22 1.0000 1.0000 0.0000 Open shell no. 1 2.00 0 3 0.3333 0.6000 0.6000 ---------------------------------------------------------------------------- Total 88.00 21 25 f is the fraction occupation; a and alpha open shell coupling coefficients. E_HOMO...E_LUMO, symmetry 1: 21 -4.14173 22 -1.46131 E_HOMO...E_LUMO, symmetry 2: 151 -2.76654 152 -1.84462 153 -1.84462 154 -1.84462 155 -1.78145 >>> Total wall time: 11.44273114s, and total CPU time : 11.38400000s ########## END ITERATION NO. 2 ########## Thu Dec 27 13:44:36 2018 It. 2 -28037.51071703 1.03D+04 6.74D+01 1.91D+01 11.44273114s LL Thu Dec 27 ########## START ITERATION NO. 3 ########## Thu Dec 27 13:44:36 2018 3 *** Differential density matrix. DCOVLP = 1.0470 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.02% 35.20% 0.01% 15.87% 10.31599903s >>> CPU time used in SO Fock is 10.78 seconds >>> WALL time used in SO Fock is 10.79 seconds E_HOMO...E_LUMO, symmetry 1: 21 -3.30345 22 -0.95201 E_HOMO...E_LUMO, symmetry 2: 151 -2.11948 152 -1.06413 153 -1.06413 154 -1.06413 155 -0.82268 >>> Total wall time: 10.90134978s, and total CPU time : 10.84400000s ########## END ITERATION NO. 3 ########## Thu Dec 27 13:44:47 2018 It. 3 -28038.30869134 7.98D-01 2.50D+00 2.59D+00 DIIS 2 10.90134978s LL Thu Dec 27 ########## START ITERATION NO. 4 ########## Thu Dec 27 13:44:47 2018 4 *** Differential density matrix. DCOVLP = 0.9193 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.02% 35.80% 0.01% 15.72% 10.37999916s >>> CPU time used in SO Fock is 10.77 seconds >>> WALL time used in SO Fock is 10.77 seconds E_HOMO...E_LUMO, symmetry 1: 21 -3.44540 22 -1.00520 E_HOMO...E_LUMO, symmetry 2: 151 -2.22169 152 -1.24707 153 -1.24707 154 -1.24707 155 -0.97996 >>> Total wall time: 10.88213301s, and total CPU time : 10.83600000s ########## END ITERATION NO. 4 ########## Thu Dec 27 13:44:58 2018 It. 4 -28038.55228900 2.44D-01 -1.89D+00 2.21D+00 DIIS 3 10.88213301s LL Thu Dec 27 ########## START ITERATION NO. 5 ########## Thu Dec 27 13:44:58 2018 5 *** Differential density matrix. DCOVLP = 1.0139 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.02% 37.91% 0.05% 15.33% 10.31200027s >>> CPU time used in SO Fock is 10.74 seconds >>> WALL time used in SO Fock is 10.74 seconds E_HOMO...E_LUMO, symmetry 1: 21 -3.47871 22 -1.02002 E_HOMO...E_LUMO, symmetry 2: 151 -2.24731 152 -1.29394 153 -1.29394 154 -1.29394 155 -1.02169 >>> Total wall time: 10.85253096s, and total CPU time : 10.80400000s ########## END ITERATION NO. 5 ########## Thu Dec 27 13:45:09 2018 It. 5 -28038.67563310 1.23D-01 7.30D-01 1.58D-01 DIIS 4 10.85253096s LL Thu Dec 27 ########## START ITERATION NO. 6 ########## Thu Dec 27 13:45:09 2018 6 *** Differential density matrix. DCOVLP = 1.0021 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.02% 41.27% 0.04% 14.54% 10.20000076s >>> CPU time used in SO Fock is 10.68 seconds >>> WALL time used in SO Fock is 10.67 seconds E_HOMO...E_LUMO, symmetry 1: 21 -3.47948 22 -1.02083 E_HOMO...E_LUMO, symmetry 2: 151 -2.24855 152 -1.29678 153 -1.29678 154 -1.29678 155 -1.02338 >>> Total wall time: 10.78608704s, and total CPU time : 10.74000000s ########## END ITERATION NO. 6 ########## Thu Dec 27 13:45:19 2018 It. 6 -28038.67749285 1.86D-03 6.59D-02 1.22D-02 DIIS 5 10.78608704s LL Thu Dec 27 ########## START ITERATION NO. 7 ########## Thu Dec 27 13:45:19 2018 7 *** Differential density matrix. DCOVLP = 0.9995 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.02% 44.85% 0.01% 13.73% 10.13599777s >>> CPU time used in SO Fock is 10.61 seconds >>> WALL time used in SO Fock is 10.60 seconds E_HOMO...E_LUMO, symmetry 1: 21 -3.47908 22 -1.02073 E_HOMO...E_LUMO, symmetry 2: 151 -2.24833 152 -1.29658 153 -1.29658 154 -1.29658 155 -1.02308 >>> Total wall time: 10.71703506s, and total CPU time : 10.67200000s ########## END ITERATION NO. 7 ########## Thu Dec 27 13:45:30 2018 It. 7 -28038.67750807 1.52D-05 -2.76D-03 2.22D-03 DIIS 6 10.71703506s LL Thu Dec 27 ########## START ITERATION NO. 8 ########## Thu Dec 27 13:45:30 2018 8 *** Differential density matrix. DCOVLP = 0.9999 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.02% 49.33% 0.03% 12.75% 10.05599594s >>> CPU time used in SO Fock is 10.52 seconds >>> WALL time used in SO Fock is 10.51 seconds E_HOMO...E_LUMO, symmetry 1: 21 -3.47906 22 -1.02073 E_HOMO...E_LUMO, symmetry 2: 151 -2.24833 152 -1.29659 153 -1.29659 154 -1.29659 155 -1.02308 >>> Total wall time: 10.63913894s, and total CPU time : 10.58800000s ########## END ITERATION NO. 8 ########## Thu Dec 27 13:45:41 2018 It. 8 -28038.67750854 4.72D-07 -7.36D-04 2.30D-04 DIIS 7 10.63913894s LL Thu Dec 27 ########## START ITERATION NO. 9 ########## Thu Dec 27 13:45:41 2018 9 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.02% 55.75% 0.01% 11.26% 9.90399933s >>> CPU time used in SO Fock is 10.44 seconds >>> WALL time used in SO Fock is 10.44 seconds E_HOMO...E_LUMO, symmetry 1: 21 -3.47906 22 -1.02073 E_HOMO...E_LUMO, symmetry 2: 151 -2.24833 152 -1.29659 153 -1.29659 154 -1.29659 155 -1.02308 >>> Total wall time: 10.56346393s, and total CPU time : 10.50800000s ########## END ITERATION NO. 9 ########## Thu Dec 27 13:45:51 2018 It. 9 -28038.67750854 3.41D-09 -5.94D-05 1.41D-05 DIIS 8 10.56346393s LL Thu Dec 27 ########## START ITERATION NO. 10 ########## Thu Dec 27 13:45:51 2018 10 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.02% 64.62% 0.02% 9.22% 9.79199982s >>> CPU time used in SO Fock is 10.31 seconds >>> WALL time used in SO Fock is 10.31 seconds E_HOMO...E_LUMO, symmetry 1: 21 -3.47906 22 -1.02073 E_HOMO...E_LUMO, symmetry 2: 151 -2.24833 152 -1.29659 153 -1.29659 154 -1.29659 155 -1.02308 >>> Total wall time: 10.32728982s, and total CPU time : 10.33600000s ########## END ITERATION NO. 10 ########## Thu Dec 27 13:46:02 2018 It. 10 -28038.67750854 -1.02D-10 -5.10D-06 7.03D-07 DIIS 9 10.32728982s LL Thu Dec 27 ########## START ITERATION NO. 11 ########## Thu Dec 27 13:46:02 2018 11 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.02% 74.11% 0.00% 6.86% 9.64399719s >>> CPU time used in SO Fock is 9.64 seconds >>> WALL time used in SO Fock is 9.63 seconds >>> Total wall time: 9.64127302s, and total CPU time : 9.64400000s ########## END ITERATION NO. 11 ########## Thu Dec 27 13:46:11 2018 It. 11 -28038.67750854 7.28D-11 4.35D-08 4.45D-08 DIIS 9 9.64127302s LL Thu Dec 27 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -17717.12263634 0.00D+00 0.00D+00 0.00D+00 0.64800000s Atom. scrpot Thu Dec 27 It. 2 -28037.51071703 1.03D+04 6.74D+01 1.91D+01 11.44273114s LL Thu Dec 27 It. 3 -28038.30869134 7.98D-01 2.50D+00 2.59D+00 DIIS 2 10.90134978s LL Thu Dec 27 It. 4 -28038.55228900 2.44D-01 -1.89D+00 2.21D+00 DIIS 3 10.88213301s LL Thu Dec 27 It. 5 -28038.67563310 1.23D-01 7.30D-01 1.58D-01 DIIS 4 10.85253096s LL Thu Dec 27 It. 6 -28038.67749285 1.86D-03 6.59D-02 1.22D-02 DIIS 5 10.78608704s LL Thu Dec 27 It. 7 -28038.67750807 1.52D-05 -2.76D-03 2.22D-03 DIIS 6 10.71703506s LL Thu Dec 27 It. 8 -28038.67750854 4.72D-07 -7.36D-04 2.30D-04 DIIS 7 10.63913894s LL Thu Dec 27 It. 9 -28038.67750854 3.41D-09 -5.94D-05 1.41D-05 DIIS 8 10.56346393s LL Thu Dec 27 It. 10 -28038.67750854 -1.02D-10 -5.10D-06 7.03D-07 DIIS 9 10.32728982s LL Thu Dec 27 It. 11 -28038.67750854 7.28D-11 4.35D-08 4.45D-08 DIIS 9 9.64127302s LL Thu Dec 27 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 11 iterations. * Average elapsed time per iteration: No 2-ints : 0.65070486s LL : 10.67530327s TOTAL ENERGY ------------ Electronic energy : -28038.677508543340 Other contributions to the total energy Nuclear repulsion energy : 0.000000000000 Sum of all contributions to the energy Total energy : -28038.677508543340 Eigenvalues ----------- * Fermion symmetry E1g * Closed shell, f = 1.0000 -4273.549375869 ( 2) -806.425294703 ( 2) -207.805233186 ( 2) -141.006721788 ( 4) -133.481502016 ( 6) -55.715323383 ( 2) -31.331314343 ( 4) -29.490839611 ( 6) -14.027252383 ( 2) -5.839578452 ( 4) -5.406904703 ( 6) -3.479060329 ( 2) * Virtual eigenvalues, f = 0.0000 -1.020734139 ( 4) -0.976152517 ( 6) -0.943410947 ( 2) -0.507533377 ( 4) -0.497936035 ( 2) -0.495961492 ( 6) 0.018205836 ( 4) 0.044738904 ( 8) 0.051985102 (10) 0.071133134 ( 6) 0.191492639 ( 2) 2.710075536 ( 8) 2.774519677 (10) 2.903363080 ( 4) 3.115955371 ( 6) 6.818758324 ( 2) 12.529605654 ( 4) 13.128537880 ( 6) 36.966365635 ( 2) 39.142942795 ( 4) 40.682821281 ( 6) 106.618255853 ( 4) 110.331770588 ( 6) 142.883454193 ( 2) 266.510262115 ( 4) 275.154774331 ( 6) 455.320269083 ( 2) 629.240196131 ( 4) 649.607080822 ( 6) 1253.336590550 ( 2) 1436.476950804 ( 4) 1486.591628290 ( 6) 3067.591190012 ( 2) 3225.277212719 ( 4) 3354.960088322 ( 6) 6746.245617828 ( 2) 7203.214130197 ( 4) 7554.067806952 ( 6) 13434.913095313 ( 2) 16261.748919404 ( 4) 17260.643136164 ( 6) 24689.375686695 ( 2) 39178.292405080 ( 4) 42486.098640572 ( 6) 42831.296659020 ( 2) 71599.390808610 ( 2) 117265.896554018 ( 2) 190730.295867923 ( 2) 311729.551966030 ( 2) 519175.762955976 ( 2) 898885.989937363 ( 2) 1700393.782368973 ( 2) * Fermion symmetry E1u * Closed shell, f = 1.0000 -780.013036796 ( 2) -635.436421104 ( 4) -195.107641162 ( 2) -161.409804136 ( 4) -49.810309347 ( 2) -40.902015157 ( 4) -16.782464619 ( 6) -16.164768648 ( 8) -11.625370365 ( 2) -9.496670793 ( 4) -2.677450058 ( 2) -2.248329645 ( 4) * Open shell #1, f = 0.3333 -1.296587158 ( 6) * Virtual eigenvalues, f = 0.0000 -1.023077352 ( 8) -0.772919798 ( 2) -0.715233798 ( 4) -0.470642345 ( 6) -0.462107027 ( 8) -0.423280586 ( 2) -0.405199031 ( 4) -0.245153169 ( 6) -0.236268622 ( 8) 0.026952407 ( 2) 0.231685593 ( 6) 0.257013464 ( 8) 0.273844136 ( 4) 2.266586544 ( 6) 2.353001054 ( 8) 4.777135911 ( 2) 6.218094708 ( 4) 10.049177487 ( 6) 10.283644119 ( 8) 24.791269340 ( 2) 30.078830462 ( 4) 33.256508206 ( 6) 33.806023833 ( 8) 90.200829637 ( 2) 93.704271209 ( 6) 95.096596724 ( 8) 106.270635058 ( 4) 248.666878153 ( 6) 252.565854440 ( 8) 276.489032895 ( 2) 320.202920653 ( 4) 667.794399379 ( 6) 680.226661677 ( 8) 761.871486154 ( 2) 872.579406630 ( 4) 1926.727791617 ( 2) 1995.147367076 ( 6) 2052.129041472 ( 8) 2192.045293168 ( 4) 4496.990557436 ( 2) 5109.256279159 ( 4) 9751.980403544 ( 2) 11108.541323669 ( 4) 19856.267796895 ( 2) 22715.179706033 ( 4) 38584.541895595 ( 2) 44345.548791169 ( 4) 73019.128362673 ( 2) 84300.426080458 ( 4) 137447.457887477 ( 2) 159248.888627527 ( 4) 263074.131660341 ( 2) 304914.040671698 ( 4) 527056.795320838 ( 2) 604971.763161720 ( 4) 1158832.317485804 ( 2) 1290419.658690962 ( 4) * HOMO - LUMO gap: E(LUMO) : -1.02307735 au (symmetry E1u) - E(HOMO) : -1.29658716 au (symmetry E1u) ------------------------------------------ gap : 0.27350981 au ************************************************************************** ********************** Mulliken population analysis ********************** ************************************************************************** Fermion ircop E1g ----------------- Fermion ircop E1g ----------------- * Electronic eigenvalue no. 1: -4273.5493758691 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 2: -806.42529470342 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 3: -207.80523318580 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 4: -141.00672178836 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.4345 | 0.0133 0.1431 0.2436 0.0345 0.0000 0.0000 beta 0.5655 | 0.0000 0.0000 0.0000 0.0000 0.1854 0.3800 * Electronic eigenvalue no. 5: -141.00672178836 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.7655 | 0.2534 0.1236 0.0230 0.3655 0.0000 0.0000 beta 0.2345 | 0.0000 0.0000 0.0000 0.0000 0.2146 0.0200 * Electronic eigenvalue no. 6: -133.48150201593 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.3523 | 0.0037 0.1022 0.1449 0.1014 0.0000 0.0000 beta 0.6477 | 0.0000 0.0000 0.0000 0.0000 0.0539 0.5938 * Electronic eigenvalue no. 7: -133.48150201592 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.9098 | 0.0805 0.2829 0.0616 0.4848 0.0000 0.0000 beta 0.0902 | 0.0000 0.0000 0.0000 0.0000 0.0871 0.0031 * Electronic eigenvalue no. 8: -133.48150201592 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.5379 | 0.3158 0.0149 0.1935 0.0137 0.0000 0.0000 beta 0.4621 | 0.0000 0.0000 0.0000 0.0000 0.4590 0.0031 * Electronic eigenvalue no. 9: -55.715323382560 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 10: -31.331314342975 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.7726 | 0.1326 0.2492 0.0183 0.3726 0.0000 0.0000 beta 0.2274 | 0.0000 0.0000 0.0000 0.0000 0.0262 0.2012 * Electronic eigenvalue no. 11: -31.331314342974 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.4274 | 0.1341 0.0175 0.2484 0.0274 0.0000 0.0000 beta 0.5726 | 0.0000 0.0000 0.0000 0.0000 0.3738 0.1988 * Electronic eigenvalue no. 12: -29.490839610833 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.5636 | 0.0005 0.2885 0.2640 0.0105 0.0000 0.0000 beta 0.4364 | 0.0000 0.0000 0.0000 0.0000 0.0049 0.4316 * Electronic eigenvalue no. 13: -29.490839610831 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.8755 | 0.3886 0.1010 0.0934 0.2925 0.0000 0.0000 beta 0.1245 | 0.0000 0.0000 0.0000 0.0000 0.1161 0.0083 * Electronic eigenvalue no. 14: -29.490839610828 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.3609 | 0.0108 0.0105 0.0426 0.2969 0.0000 0.0000 beta 0.6391 | 0.0000 0.0000 0.0000 0.0000 0.4790 0.1601 * Electronic eigenvalue no. 15: -14.027252382515 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 16: -5.8395784520665 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz -------------------------------------------------------------------------------------------------- alpha 0.5009 | 0.2006 0.1994 0.1009 0.0000 0.0000 beta 0.4991 | 0.0000 0.0000 0.0000 0.0991 0.4000 * Electronic eigenvalue no. 17: -5.8395784520559 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz -------------------------------------------------------------------------------------------------- alpha 0.6991 | 0.2667 0.0661 0.0672 0.2991 0.0000 beta 0.3009 | 0.0000 0.0000 0.0000 0.0000 0.3009 * Electronic eigenvalue no. 18: -5.4069047027540 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.3305 | 0.0020 0.1599 0.1259 0.0427 0.0000 0.0000 beta 0.6695 | 0.0000 0.0000 0.0000 0.0000 0.0731 0.5963 * Electronic eigenvalue no. 19: -5.4069047027354 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.6339 | 0.0008 0.1462 0.1693 0.3175 0.0000 0.0000 beta 0.3661 | 0.0000 0.0000 0.0000 0.0000 0.3656 0.0005 * Electronic eigenvalue no. 20: -5.4069047027324 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz ----------------------------------------------------------------------------------------------------------------- alpha 0.8356 | 0.3971 0.0939 0.1048 0.2397 0.0000 0.0000 beta 0.1644 | 0.0000 0.0000 0.0000 0.0000 0.1613 0.0032 * Electronic eigenvalue no. 21: -3.4790603286334 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag U s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 ** Total gross population of fermion ircop E1g ** Gross Total | L Ag U s L Ag U dxx L Ag U dyy L Ag U dzz L B1gU dxy L B2gU dxz L B3gU dyz -------------------------------------------------------------------------------------------------------------------------------- total 42.00000 | 12.00000 4.00000 4.00000 4.00000 6.00000 6.00000 6.00000 Fermion ircop E1u ----------------- Fermion ircop E1u ----------------- * Electronic eigenvalue no. 1: -780.01303679550 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 2: -635.43642110365 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.2629 | 0.0000 0.0000 0.2629 beta 0.7371 | 0.6507 0.0864 0.0000 * Electronic eigenvalue no. 3: -635.43642110364 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.4037 | 0.0000 0.0000 0.4037 beta 0.5963 | 0.0160 0.5803 0.0000 * Electronic eigenvalue no. 4: -195.10764116207 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 5: -161.40980413572 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.5690 | 0.0000 0.0000 0.5690 beta 0.4310 | 0.4196 0.0114 0.0000 * Electronic eigenvalue no. 6: -161.40980413570 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.0976 | 0.0000 0.0000 0.0976 beta 0.9024 | 0.2470 0.6553 0.0000 * Electronic eigenvalue no. 7: -49.810309347203 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 8: -40.902015157223 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.6437 | 0.0000 0.0000 0.6437 beta 0.3563 | 0.0728 0.2836 0.0000 * Electronic eigenvalue no. 9: -40.902015157179 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.0230 | 0.0000 0.0000 0.0230 beta 0.9770 | 0.5939 0.3831 0.0000 * Electronic eigenvalue no. 10: -16.782464618780 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyzz L B1uU fxxz L B1uU fyyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.6259 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.1142 0.0844 beta 0.3741 | 0.0004 0.0942 0.1170 0.0847 0.0777 0.0000 0.0000 Gross | L B1uU fzzz L Au U fxyz -------------------------------------- alpha | 0.0008 0.4265 beta | 0.0000 0.0000 * Electronic eigenvalue no. 11: -16.782464618773 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2739 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2173 beta 0.7261 | 0.1708 0.1311 0.1252 0.2384 0.0379 0.0228 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.0077 0.0478 0.0011 beta | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 12: -16.782464618772 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.3859 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0113 beta 0.6141 | 0.0002 0.1176 0.1007 0.0198 0.1335 0.2423 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.2508 0.1229 0.0009 beta | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 13: -16.164768648117 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz L B1uU fyyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7206 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0751 0.0745 beta 0.2794 | 0.0631 0.0677 0.0801 0.0002 0.0683 0.0000 0.0000 Gross | L Au U fxyz ----------------------- alpha | 0.5709 beta | 0.0000 * Electronic eigenvalue no. 14: -16.164768648112 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4347 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3443 beta 0.5653 | 0.1535 0.0078 0.3485 0.0084 0.0044 0.0427 0.0000 Gross | L B1uU fyyz L B1uU fzzz -------------------------------------- alpha | 0.0412 0.0491 beta | 0.0000 0.0000 * Electronic eigenvalue no. 15: -16.164768648110 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0520 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0246 beta 0.9480 | 0.0672 0.3843 0.0291 0.3671 0.0950 0.0052 0.0000 Gross | L B1uU fyyz L B1uU fzzz L Au U fxyz ----------------------------------------------------- alpha | 0.0074 0.0197 0.0004 beta | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 16: -16.164768648109 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5070 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0131 beta 0.4930 | 0.0078 0.0020 0.0118 0.0015 0.1290 0.3410 0.0000 Gross | L B1uU fyyz L B1uU fzzz -------------------------------------- alpha | 0.3340 0.1598 beta | 0.0000 0.0000 * Electronic eigenvalue no. 17: -11.625370365421 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 18: -9.4966707932011 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.6489 | 0.0000 0.0000 0.6489 beta 0.3511 | 0.2685 0.0826 0.0000 * Electronic eigenvalue no. 19: -9.4966707931390 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.0178 | 0.0000 0.0000 0.0178 beta 0.9822 | 0.3982 0.5841 0.0000 * Electronic eigenvalue no. 20: -2.6774500583294 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 21: -2.2483296454600 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.6253 | 0.0000 0.0000 0.6253 beta 0.3747 | 0.0480 0.3267 0.0000 * Electronic eigenvalue no. 22: -2.2483296454017 (Occupation : f = 1.0000) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU px L B2uU py L B1uU pz -------------------------------------------------------------------- alpha 0.0414 | 0.0000 0.0000 0.0414 beta 0.9586 | 0.6187 0.3399 0.0000 * Electronic eigenvalue no. 23: -1.2965871583451 (Occupation : f = 0.3333) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2343 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1402 beta 0.7657 | 0.1423 0.2238 0.0325 0.2466 0.1132 0.0074 0.0000 Gross | L B1uU fyyz L B1uU fzzz -------------------------------------- alpha | 0.0923 0.0017 beta | 0.0000 0.0000 * Electronic eigenvalue no. 24: -1.2965871583441 (Occupation : f = 0.3333) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4271 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1024 beta 0.5729 | 0.0291 0.0268 0.2110 0.0055 0.0582 0.2422 0.0000 Gross | L B1uU fyyz L B1uU fzzz -------------------------------------- alpha | 0.1549 0.1698 beta | 0.0000 0.0000 * Electronic eigenvalue no. 25: -1.2965871583380 (Occupation : f = 0.3333) ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uU fxyy L B3uU fxzz L B2uU fxxy L B2uU fyzz L B1uU fxxz L B1uU fyyz L Au U fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.6243 | 0.0000 0.0000 0.0000 0.0000 0.1002 0.0956 0.4285 beta 0.3757 | 0.0922 0.0994 0.0908 0.0933 0.0000 0.0000 0.0000 ** Total gross population of fermion ircop E1u ** Gross Total | L B3uU px L B3uU fxxx L B3uU fxyy L B3uU fxzz L B2uU py L B2uU fxxy L B2uU fyyy -------------------------------------------------------------------------------------------------------------------------------- total 46.00000 | 10.00000 0.91429 1.82857 1.82857 10.00000 1.82857 0.91429 Gross | L B2uU fyzz L B1uU pz L B1uU fxxz L B1uU fyyz L B1uU fzzz L Au U fxyz -------------------------------------------------------------------------------------------------- total | 1.82857 10.00000 1.82857 1.82857 0.91429 2.28571 *** Total gross population *** Gross Total | L Ag U s L Ag U dxx L Ag U dyy L Ag U dzz L B3uU px L B3uU fxxx L B3uU fxyy -------------------------------------------------------------------------------------------------------------------------------- total 88.00000 | 12.00000 4.00000 4.00000 4.00000 10.00000 0.91429 1.82857 Gross | L B3uU fxzz L B2uU py L B2uU fxxy L B2uU fyyy L B2uU fyzz L B1gU dxy L B1uU pz L B1uU fxxz -------------------------------------------------------------------------------------------------------------------------------- total | 1.82857 10.00000 1.82857 0.91429 1.82857 6.00000 10.00000 1.82857 Gross | L B1uU fyyz L B1uU fzzz L B2gU dxz L B3gU dyz L Au U fxyz ----------------------------------------------------------------------------------- total | 1.82857 0.91429 6.00000 6.00000 2.28571 =========================================================================== * ACMOU1: Coefficients read from unformatted DFCOEF and written to unformatted DFACMO (no symmetry) =========================================================================== ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Thu Dec 27 13:46:12 2018 Host name : lxir127 Dynamical Memory Usage Summary for Master Mean allocation size (Mb) : 432.69 Largest 10 allocations 3578.19 Mb at subroutine pamana_+0x97 for WORK in PAMANA 3578.19 Mb at subroutine psiscf_+0xa9 for WORK in PSISCF 3578.19 Mb at subroutine pamset_+0x189f for WORK in PAMSET - 2 3578.19 Mb at subroutine gmotra_+0x3c74 for WORK in GMOTRA - part 2 3578.19 Mb at subroutine gmotra_+0x5b52 for WORK in GMOTRA 3578.19 Mb at subroutine pamset_+0x97 for WORK in PAMSET - 1 3578.19 Mb at subroutine MAIN__+0x2b1 for test allocation of work array in DIRAC mai 9.59 Mb at subroutine butobs_no_work_+0x8f for buf in butobs 9.59 Mb at subroutine butobs_no_work_+0x8f for buf in butobs 9.59 Mb at subroutine butobs_no_work_+0x8f for buf in butobs Peak memory usage: 3579.10 MB Peak memory usage: 3.495 GB reached at subroutine : butobs_no_work_+0x8f for variable : buf in butobs MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 102, stime: 5, minflt: 4947576, majflt: 98, nvcsw: 288, nivcsw: 1032, maxrss: 2222024 >>>> Total WALL time used in DIRAC: 1min49s DIRAC pam run in /tmp/milias-dirac-software/trunk-devel/test/tutorial_UF6