DIRAC pam run in /home/saue/Dirac/build_norecalc/test/fscc_highspin DIRAC serial starts by allocating 64000000 words (488 MB) of memory out of the allowed maximum of 2147483648 words (16384 MB) Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Lucas Visscher VU University Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast UiT The Arctic University of Norway * * Trond Saue Universite Toulouse III France * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer UiT The Arctic University of Norway * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Trygve Helgaker University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak Bhabha Atomic Research Centre India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC17 (2017), * * written by L. Visscher, H. J. Aa. Jensen, R. Bast, and T. Saue, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, * * Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, * * C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, * * G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, * * R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, * * A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, * * T. Winther, and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* Version information ------------------- Branch | norecalc Commit hash | 120e19c Commit author | Trond Saue Commit date | Fri Mar 10 19:54:13 2017 +0100 Configuration and build information ----------------------------------- Who compiled | saue Compiled on server | dirac Operating system | Linux-4.4.0-34-generic CMake version | 3.5.1 CMake generator | Unix Makefiles CMake build type | release Configuration time | 2017-03-16 20:41:26.640514 Python version | 2.7.1 Fortran compiler | /usr/bin/gfortran Fortran compiler version | 5.4.0 Fortran compiler flags | -g -fcray-pointer -fbacktrace -fno-range-check -DVAR_GFORTRAN -DVAR_MFDS C compiler | /usr/bin/gcc C compiler version | 5.4.0 C compiler flags | -g C++ compiler | /usr/bin/g++ C++ compiler version | 5.4.0 C++ compiler flags | -g -Wall -Wno-unknown-pragmas -Wno-sign-compare -Woverloaded-virtual -Wwrite-strings -Wno-unused Static linking | False 64-bit integers | False MPI parallelization | False MPI launcher | unknown Math libraries | /usr/lib/atlas-base/libatlas.so;/usr/lib/atlas-base/atlas/liblapack.so;/usr/lib/atlas-base/libf77blas.so;/usr/lib/atlas-base/libcblas.so;/usr/lib/atlas-base/libatlas.so Builtin BLAS library | OFF Builtin LAPACK library | OFF Explicit libraries | unknown Compile definitions | HAVE_ATLAS_BLAS;HAVE_ATLAS_LAPACK;MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;MOD_QCORR;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ESR;MOD_KRCC;MOD_SRDFT Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Fri Mar 17 07:58:16 2017 Host name : dirac Contents of the input file -------------------------- ! ! Calculation of singlet-triplet splitting of molecular oxygen using COSCI ! **DIRAC .TITLE Molecular oxygen. Ground state. .WAVE F .ANALYZE **HAMILTONIAN .LVCORR **WAVE FUNCTIONS .SCF .RESOLVE *SCF .CLOSED SHELL 6 8 .OPEN SHELL 1 2/4,0 **ANALYZE .MULPOP *MULPOP .VECPOP all all *END OF Contents of the molecule file ----------------------------- INTGRL Molecular oxygen at eq. distance taken from NIST. Automatic symmetry detection: will identify the Dinfh group. C 1 A 8. 2 O .0000000000 0.0000000000 0.60376 O .0000000000 0.0000000000 -0.60376 LARGE BASIS cc-pVDZ FINISH ************************************************************************* ******************** Molecular oxygen. Ground state. ******************** ************************************************************************* Jobs in this run: * Wave function * Analysis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in four-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals - SL-integrals - SS-integrals - GT-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- Molecular oxygen at eq. distance taken from NIST. Automatic symmetry detection: will identify the Dinfh group. Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 8.000 : 5.8631436655D+08 SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 The molecule has been centered at center of mass Symmetry point group found: D(oo,h) Centered and Rotated in original atom order ------------------------------------------- 8 0.00000000 0.00000000 -1.14094105 1 8 0.00000000 0.00000000 1.14094105 1 The following elements were found: X Y Z Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Full group is: D(oo,h) Represented as: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 28.047023097920 Isotopic Masses --------------- O 1 15.994915 O 2 15.994915 Total mass: 31.989830 amu Natural abundance: 99.521 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000 Atoms and basis sets -------------------- Number of atom types : 1 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- O 2 8 27 15 L - [9s4p1d|3s2p1d] 68 68 S - [4s10p4d1f|4s10p4d1f] ---------------------------------------------------------------------- 54 30 L - large components 136 136 S - small components ---------------------------------------------------------------------- total: 2 16 190 166 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 Elements References -------- ---------- H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published) Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993). Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). Ga - Kr: A.K. Wilson, D.E. Woon, K.A. Peterson, T.H. Dunning, Jr., J. Chem. Phys., 110, 7667 (1999) Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 6 1 O 1 x 0.0000000000 2 y 0.0000000000 3 z 1.1409410506 4 O 2 x 0.0000000000 5 y 0.0000000000 6 z -1.1409410506 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 2 O 0.0000000000 0.0000000000 0.6037600000 O 0.0000000000 0.0000000000 -0.6037600000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 1 1 1 0 1 1 1 0 Symmetry Ag ( 1) 1 O z [ 3 - 6 ]/2 Symmetry B3u( 2) 2 O x [ 1 + 4 ]/2 Symmetry B2u( 3) 3 O y [ 2 + 5 ]/2 Symmetry B1u( 5) 4 O z [ 3 + 6 ]/2 Symmetry B2g( 6) 5 O x [ 1 - 4 ]/2 Symmetry B3g( 7) 6 O y [ 2 - 5 ]/2 Interatomic separations (in Angstroms): --------------------------------------- O 1 O 2 O 1 0.000000 O 2 1.207520 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: O 2 O 1 1.207520 Nuclear repulsion energy : 28.047023097920 Hartree GETLAB: AO-labels ----------------- * Large components: 20 1 L O 1 s 2 L O 2 s 3 L O 1 px 4 L O 1 py 5 L O 1 pz 6 L O 2 px 7 L O 2 py 8 L O 2 pz 9 L O 1 dxx 10 L O 1 dxy 11 L O 1 dxz 12 L O 1 dyy 13 L O 1 dyz 14 L O 1 dzz 15 L O 2 dxx 16 L O 2 dxy 17 L O 2 dxz 18 L O 2 dyy 19 L O 2 dyz 20 L O 2 dzz * Small components: 40 21 S O 1 s 22 S O 2 s 23 S O 1 px 24 S O 1 py 25 S O 1 pz 26 S O 2 px 27 S O 2 py 28 S O 2 pz 29 S O 1 dxx 30 S O 1 dxy 31 S O 1 dxz 32 S O 1 dyy 33 S O 1 dyz 34 S O 1 dzz 35 S O 2 dxx 36 S O 2 dxy 37 S O 2 dxz 38 S O 2 dyy 39 S O 2 dyz 40 S O 2 dzz 41 S O 1 fxxx 42 S O 1 fxxy 43 S O 1 fxxz 44 S O 1 fxyy 45 S O 1 fxyz 46 S O 1 fxzz 47 S O 1 fyyy 48 S O 1 fyyz 49 S O 1 fyzz 50 S O 1 fzzz 51 S O 2 fxxx 52 S O 2 fxxy 53 S O 2 fxxz 54 S O 2 fxyy 55 S O 2 fxyz 56 S O 2 fxzz 57 S O 2 fyyy 58 S O 2 fyyz 59 S O 2 fyzz 60 S O 2 fzzz GETLAB: SO-labels ----------------- * Large components: 20 1 L Ag O s 2 L Ag O pz 3 L Ag O dxx 4 L Ag O dyy 5 L Ag O dzz 6 L B3uO px 7 L B3uO dxz 8 L B2uO py 9 L B2uO dyz 10 L B1gO dxy 11 L B1uO s 12 L B1uO pz 13 L B1uO dxx 14 L B1uO dyy 15 L B1uO dzz 16 L B2gO px 17 L B2gO dxz 18 L B3gO py 19 L B3gO dyz 20 L Au O dxy * Small components: 40 21 S Ag O s 22 S Ag O pz 23 S Ag O dxx 24 S Ag O dyy 25 S Ag O dzz 26 S Ag O fxxz 27 S Ag O fyyz 28 S Ag O fzzz 29 S B3uO px 30 S B3uO dxz 31 S B3uO fxxx 32 S B3uO fxyy 33 S B3uO fxzz 34 S B2uO py 35 S B2uO dyz 36 S B2uO fxxy 37 S B2uO fyyy 38 S B2uO fyzz 39 S B1gO dxy 40 S B1gO fxyz 41 S B1uO s 42 S B1uO pz 43 S B1uO dxx 44 S B1uO dyy 45 S B1uO dzz 46 S B1uO fxxz 47 S B1uO fyyz 48 S B1uO fzzz 49 S B2gO px 50 S B2gO dxz 51 S B2gO fxxx 52 S B2gO fxyy 53 S B2gO fxzz 54 S B3gO py 55 S B3gO dyz 56 S B3gO fxxy 57 S B3gO fyyy 58 S B3gO fyzz 59 S Au O dxy 60 S Au O fxyz Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 37 20 20 6 37 20 20 6 Number of large orbitals in each symmetry: 8 3 3 1 8 3 3 1 Number of small orbitals in each symmetry: 29 17 17 5 29 17 17 5 * Large component functions Symmetry Ag ( 1) 3 functions: O s 1+2 2 functions: O pz 1-2 1 functions: O dxx 1+2 1 functions: O dyy 1+2 1 functions: O dzz 1+2 Symmetry B3u( 2) 2 functions: O px 1+2 1 functions: O dxz 1-2 Symmetry B2u( 3) 2 functions: O py 1+2 1 functions: O dyz 1-2 Symmetry B1g( 4) 1 functions: O dxy 1+2 Symmetry B1u( 5) 3 functions: O s 1-2 2 functions: O pz 1+2 1 functions: O dxx 1-2 1 functions: O dyy 1-2 1 functions: O dzz 1-2 Symmetry B2g( 6) 2 functions: O px 1-2 1 functions: O dxz 1+2 Symmetry B3g( 7) 2 functions: O py 1-2 1 functions: O dyz 1+2 Symmetry Au ( 8) 1 functions: O dxy 1-2 * Small component functions Symmetry Ag ( 1) 4 functions: O s 1+2 10 functions: O pz 1-2 4 functions: O dxx 1+2 4 functions: O dyy 1+2 4 functions: O dzz 1+2 1 functions: O fxxz1-2 1 functions: O fyyz1-2 1 functions: O fzzz1-2 Symmetry B3u( 2) 10 functions: O px 1+2 4 functions: O dxz 1-2 1 functions: O fxxx1+2 1 functions: O fxyy1+2 1 functions: O fxzz1+2 Symmetry B2u( 3) 10 functions: O py 1+2 4 functions: O dyz 1-2 1 functions: O fxxy1+2 1 functions: O fyyy1+2 1 functions: O fyzz1+2 Symmetry B1g( 4) 4 functions: O dxy 1+2 1 functions: O fxyz1-2 Symmetry B1u( 5) 4 functions: O s 1-2 10 functions: O pz 1+2 4 functions: O dxx 1-2 4 functions: O dyy 1-2 4 functions: O dzz 1-2 1 functions: O fxxz1+2 1 functions: O fyyz1+2 1 functions: O fzzz1+2 Symmetry B2g( 6) 10 functions: O px 1-2 4 functions: O dxz 1+2 1 functions: O fxxx1-2 1 functions: O fxyy1-2 1 functions: O fxzz1-2 Symmetry B3g( 7) 10 functions: O py 1-2 4 functions: O dyz 1+2 1 functions: O fxxy1-2 1 functions: O fyyy1-2 1 functions: O fyzz1-2 Symmetry Au ( 8) 4 functions: O dxy 1-2 1 functions: O fxyz1+2 *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Dirac-Coulomb Hamiltonian * SS integrals neglected: Interatomic Coulombic SS-contributions modelled by classical repulsion of small component atomic charges using tabulated charges. * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 1 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - contracted large component basis set - uncontracted small component basis set Information about the restricted kinetic balance scheme: * Default RKB projection: 1: Pre-projection in scalar basis 2: Removal of unphysical solutions (via diagonalization of free particle Hamiltonian) ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF RESOLVE Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Followed by resolution of open-shell states =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Open shell SCF calculation using Average-of-Configuration * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 14 3 4 1.0000 1.0000 0.0000 Open shell no. 1 2.00 2 0 0.5000 0.6667 0.6667 ---------------------------------------------------------------------------- Total 16.00 5 4 f is the fraction occupation; a and alpha open shell coupling coefficients. * Sum of atomic potentials used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 to improve convergence (default value). The final open-shell orbital energies are recalculated with 1.0 scaling, such that all occupied orbital energies correspond to Koopmans' theorem ionization energies. ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. SL-integrals from iteration 1 ---> this is default setting from Hamiltonian input ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. =========================================================================== RESINP: Set-up for resolution of open-shell states: =========================================================================== * General print level : 0 * 4-index transformation follows scheme : 4 - write (rs)-batches of half-transformed integrals (ij|rs) to disk; parallel scheme * Screening threshold : 1.00E-14 * SS integrals not included. * Gaunt integrals not included. *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Mulliken population analysis =========================================================================== POPINP: Mulliken population analysis =========================================================================== * Gross populations * Label definitions based on SO-labels * Number of spinors analyzed: - Orbitals in fermion ircop E1g :all - Orbitals in fermion ircop E1u :all * Print level: 1 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.91E-01 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.21E+01 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.30E+00 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.30E+00 S B3u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.42E-01 S B2u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.42E-01 S B1u * Deleted: 5(Proj: 5, Lindep: 0) Smin: 0.81E-02 S Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.50E+00 L B3u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 L B2u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 L B1u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.23E-01 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.19E+01 S Ag * Deleted: 5(Proj: 5, Lindep: 0) Smin: 0.27E-01 S B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.65E+00 S B2g * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.26E-01 S B3g * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.26E-01 Output from MODHAM ------------------ * Applied strict kinetic balance ! * Applied SL-regrouping on AO2MO tranf.matrix in SLSORT. Output from LINSYM ------------------ Parity MJ Functions(total) Functions(LC) Functions(SC) 1 1/2 18 9 9 1 -3/2 8 4 4 1 5/2 2 1 1 -1 1/2 18 9 9 -1 -3/2 8 4 4 -1 5/2 2 1 1 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 14 14 28 No. of positronic orbitals (NPSH): 14 14 28 Total no. of orbitals (NORB): 28 28 56 **************************************************************************** ************************* Hartree-Fock calculation ************************* **************************************************************************** *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by a sum of atomic screening potentials. ########## START ITERATION NO. 1 ########## Fri Mar 17 07:58:17 2017 E_HOMO...E_LUMO, symmetry 1: 17 -0.67822 18 -0.41895 19 -0.41792 20 0.67740 E_HOMO...E_LUMO, symmetry 2: 46 -0.69016 47 -0.06764 => Calculating sum of orbital energies It. 1 -57.75208444492 0.00D+00 0.00D+00 0.00D+00 0.10000000s Scr. nuclei Fri Mar 17 ########## START ITERATION NO. 2 ########## Fri Mar 17 07:58:17 2017 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01999998s SOfock:SL 1.00D-12 0.00% 0.81% 0.00% 0.00% 0.09600002s E_HOMO...E_LUMO, symmetry 1: 17 -0.62269 18 -0.25450 19 -0.25360 20 1.20701 E_HOMO...E_LUMO, symmetry 2: 46 -0.60326 47 0.54574 >>> Total wall time: 0.15800000s, and total CPU time : 0.15600000s ########## END ITERATION NO. 2 ########## Fri Mar 17 07:58:17 2017 It. 2 -149.6128134116 9.19D+01 3.31D+00 6.47D-01 0.15600000s LL SL Fri Mar 17 ########## START ITERATION NO. 3 ########## Fri Mar 17 07:58:17 2017 3 *** Differential density matrix. DCOVLP = 0.8728 3 *** Differential density matrix. DVOVLP( 1) = 0.8394 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01600000s SOfock:SL 1.00D-12 0.00% 1.28% 0.00% 0.00% 0.09600002s E_HOMO...E_LUMO, symmetry 1: 17 -0.73632 18 -0.36174 19 -0.36075 20 1.14776 E_HOMO...E_LUMO, symmetry 2: 46 -0.70971 47 0.45212 >>> Total wall time: 0.12200000s, and total CPU time : 0.12000000s ########## END ITERATION NO. 3 ########## Fri Mar 17 07:58:17 2017 It. 3 -149.6792862929 6.65D-02 -3.19D-01 1.99D-01 DIIS 2 0.12000000s LL SL Fri Mar 17 ########## START ITERATION NO. 4 ########## Fri Mar 17 07:58:17 2017 4 *** Differential density matrix. DCOVLP = 1.0349 4 *** Differential density matrix. DVOVLP( 1) = 1.0450 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01599997s SOfock:SL 1.00D-12 0.00% 1.80% 0.00% 0.00% 0.10000002s E_HOMO...E_LUMO, symmetry 1: 17 -0.73001 18 -0.35354 19 -0.35255 20 1.15308 E_HOMO...E_LUMO, symmetry 2: 46 -0.70222 47 0.46168 >>> Total wall time: 0.12300000s, and total CPU time : 0.12400000s ########## END ITERATION NO. 4 ########## Fri Mar 17 07:58:17 2017 It. 4 -149.6865649591 7.28D-03 9.04D-02 1.85D-02 DIIS 3 0.12400000s LL SL Fri Mar 17 ########## START ITERATION NO. 5 ########## Fri Mar 17 07:58:17 2017 5 *** Differential density matrix. DCOVLP = 0.9975 5 *** Differential density matrix. DVOVLP( 1) = 0.9976 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01599997s SOfock:SL 1.00D-12 0.00% 3.50% 0.00% 0.00% 0.10400003s E_HOMO...E_LUMO, symmetry 1: 17 -0.73113 18 -0.35381 19 -0.35283 20 1.15269 E_HOMO...E_LUMO, symmetry 2: 46 -0.70256 47 0.46169 >>> Total wall time: 0.12500000s, and total CPU time : 0.12000000s ########## END ITERATION NO. 5 ########## Fri Mar 17 07:58:17 2017 It. 5 -149.6866577183 9.28D-05 -6.91D-03 3.30D-03 DIIS 4 0.12000000s LL SL Fri Mar 17 ########## START ITERATION NO. 6 ########## Fri Mar 17 07:58:17 2017 6 *** Differential density matrix. DCOVLP = 1.0001 6 *** Differential density matrix. DVOVLP( 1) = 1.0004 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01599997s SOfock:SL 1.00D-12 0.00% 4.35% 0.00% 0.00% 0.10000002s E_HOMO...E_LUMO, symmetry 1: 17 -0.73115 18 -0.35374 19 -0.35276 20 1.15272 E_HOMO...E_LUMO, symmetry 2: 46 -0.70254 47 0.46177 >>> Total wall time: 0.12500000s, and total CPU time : 0.12400000s ########## END ITERATION NO. 6 ########## Fri Mar 17 07:58:17 2017 It. 6 -149.6866613949 3.68D-06 4.76D-04 4.30D-04 DIIS 5 0.12400000s LL SL Fri Mar 17 ########## START ITERATION NO. 7 ########## Fri Mar 17 07:58:17 2017 7 *** Differential density matrix. DCOVLP = 1.0000 7 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.03200001s SOfock:SL 1.00D-12 0.00% 6.30% 0.00% 0.42% 0.13199997s E_HOMO...E_LUMO, symmetry 1: 17 -0.73117 18 -0.35375 19 -0.35277 20 1.15271 E_HOMO...E_LUMO, symmetry 2: 46 -0.70255 47 0.46177 >>> Total wall time: 0.17100000s, and total CPU time : 0.17200000s ########## END ITERATION NO. 7 ########## Fri Mar 17 07:58:18 2017 It. 7 -149.6866614512 5.64D-08 -5.08D-05 4.56D-05 DIIS 6 0.17200000s LL SL Fri Mar 17 ########## START ITERATION NO. 8 ########## Fri Mar 17 07:58:18 2017 8 *** Differential density matrix. DCOVLP = 1.0000 8 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01999998s SOfock:SL 1.00D-12 0.00% 10.83% 0.00% 0.56% 0.10399997s E_HOMO...E_LUMO, symmetry 1: 17 -0.73117 18 -0.35375 19 -0.35277 20 1.15271 E_HOMO...E_LUMO, symmetry 2: 46 -0.70255 47 0.46177 >>> Total wall time: 0.13000000s, and total CPU time : 0.12800000s ########## END ITERATION NO. 8 ########## Fri Mar 17 07:58:18 2017 It. 8 -149.6866614518 5.89D-10 4.07D-06 4.79D-06 DIIS 7 0.12800000s LL SL Fri Mar 17 ########## START ITERATION NO. 9 ########## Fri Mar 17 07:58:18 2017 9 *** Differential density matrix. DCOVLP = 1.0000 9 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01599991s SOfock:SL 1.00D-12 0.00% 14.72% 0.00% 0.92% 0.10800004s E_HOMO...E_LUMO, symmetry 1: 17 -0.73117 18 -0.35375 19 -0.35277 20 1.15271 E_HOMO...E_LUMO, symmetry 2: 46 -0.70255 47 0.46177 >>> Total wall time: 0.12900000s, and total CPU time : 0.12800000s ########## END ITERATION NO. 9 ########## Fri Mar 17 07:58:18 2017 It. 9 -149.6866614518 1.46D-11 -8.93D-07 1.61D-06 DIIS 8 0.12800000s LL SL Fri Mar 17 ########## START ITERATION NO. 10 ########## Fri Mar 17 07:58:18 2017 10 *** Differential density matrix. DCOVLP = 1.0000 10 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.02799988s SOfock:SL 1.00D-12 0.00% 17.97% 0.00% 1.38% 0.12400007s E_HOMO...E_LUMO, symmetry 1: 17 -0.73117 18 -0.35375 19 -0.35277 20 1.15271 E_HOMO...E_LUMO, symmetry 2: 46 -0.70255 47 0.46177 >>> Total wall time: 0.15800000s, and total CPU time : 0.15600000s ########## END ITERATION NO. 10 ########## Fri Mar 17 07:58:18 2017 It. 10 -149.6866614518 3.07D-12 -5.27D-07 3.93D-07 DIIS 9 0.15600000s LL SL Fri Mar 17 ########## START ITERATION NO. 11 ########## Fri Mar 17 07:58:18 2017 11 *** Differential density matrix. DCOVLP = 1.0000 11 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.01% 0.00% 0.00% 0.01999998s SOfock:SL 1.00D-12 0.00% 21.94% 0.00% 3.15% 0.10400009s >>> Total wall time: 0.12700000s, and total CPU time : 0.12400000s ########## END ITERATION NO. 11 ########## Fri Mar 17 07:58:18 2017 It. 11 -149.6866614518 -1.59D-12 -1.57D-07 1.96D-08 DIIS 9 0.12400000s LL SL Fri Mar 17 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -57.75208444492 0.00D+00 0.00D+00 0.00D+00 0.10000000s Scr. nuclei Fri Mar 17 It. 2 -149.6128134116 9.19D+01 3.31D+00 6.47D-01 0.15600000s LL SL Fri Mar 17 It. 3 -149.6792862929 6.65D-02 -3.19D-01 1.99D-01 DIIS 2 0.12000000s LL SL Fri Mar 17 It. 4 -149.6865649591 7.28D-03 9.04D-02 1.85D-02 DIIS 3 0.12400000s LL SL Fri Mar 17 It. 5 -149.6866577183 9.28D-05 -6.91D-03 3.30D-03 DIIS 4 0.12000000s LL SL Fri Mar 17 It. 6 -149.6866613949 3.68D-06 4.76D-04 4.30D-04 DIIS 5 0.12400000s LL SL Fri Mar 17 It. 7 -149.6866614512 5.64D-08 -5.08D-05 4.56D-05 DIIS 6 0.17200000s LL SL Fri Mar 17 It. 8 -149.6866614518 5.89D-10 4.07D-06 4.79D-06 DIIS 7 0.12800000s LL SL Fri Mar 17 It. 9 -149.6866614518 1.46D-11 -8.93D-07 1.61D-06 DIIS 8 0.12800000s LL SL Fri Mar 17 It. 10 -149.6866614518 3.07D-12 -5.27D-07 3.93D-07 DIIS 9 0.15600000s LL SL Fri Mar 17 It. 11 -149.6866614518 -1.59D-12 -1.57D-07 1.96D-08 DIIS 9 0.12400000s LL SL Fri Mar 17 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 11 iterations. * Average elapsed time per iteration: No 2-ints : 0.10100000s LL SL : 0.13680000s TOTAL ENERGY ------------ Electronic energy : -177.73368630270363 Other contributions to the total energy Nuclear repulsion energy : 28.04702309791971 SS Coulombic correction : 0.00000175293894 Sum of all contributions to the energy Total energy : -149.68666145184500 Eigenvalues ----------- * Block 1 in E1g: Omega = 1/2 * Closed shell, f = 1.0000 -20.75334306093877 ( 2) -1.65708743093394 ( 2) -0.73117151154164 ( 2) * Open shell #1, f = 0.5000 -0.35374792558563 ( 2) * Virtual eigenvalues, f = 0.0000 1.15270501326829 ( 2) 1.21603130057242 ( 2) 1.32688986719655 ( 2) 3.17794506084184 ( 2) 3.67775140951349 ( 2) * Block 2 in E1g: Omega = 3/2 * Open shell #1, f = 0.5000 -0.35276854505456 ( 2) * Virtual eigenvalues, f = 0.0000 1.21707527196553 ( 2) 2.68233023721084 ( 2) 3.67790464852781 ( 2) * Block 3 in E1g: Omega = 5/2 * Virtual eigenvalues, f = 0.0000 2.68256468378968 ( 2) * Block 1 in E1u: Omega = 1/2 * Closed shell, f = 1.0000 -20.75240519642793 ( 2) -1.10159800776749 ( 2) -0.70335197572729 ( 2) * Virtual eigenvalues, f = 0.0000 0.46177030962893 ( 2) 1.07745828751569 ( 2) 1.10830122374524 ( 2) 1.97196340467907 ( 2) 2.40137945253865 ( 2) 4.19040530200559 ( 2) * Block 2 in E1u: Omega = 3/2 * Closed shell, f = 1.0000 -0.70254740656381 ( 2) * Virtual eigenvalues, f = 0.0000 1.10942084991572 ( 2) 2.40151604185123 ( 2) 3.00775858463970 ( 2) * Block 3 in E1u: Omega = 5/2 * Virtual eigenvalues, f = 0.0000 3.00801066782151 ( 2) * Occupation in fermion symmetry E1g * Inactive orbitals 1/2 1/2 1/2 * Active orbitals 1/2 3/2 * Virtual orbitals 1/2 1/2 3/2 1/2 3/2 5/2 1/2 1/2 3/2 * Occupation in fermion symmetry E1u * Inactive orbitals 1/2 1/2 1/2 3/2 * Virtual orbitals 1/2 1/2 1/2 3/2 1/2 1/2 3/2 3/2 5/2 1/2 * Occupation of subblocks E1g: 1/2 3/2 5/2 closed shells (f=1.0000): 3 0 0 open shell #1 (f=0.5000): 1 1 0 virtual shells (f=0.0000): 5 3 1 tot.num. of pos.erg shells: 9 4 1 E1u: 1/2 3/2 5/2 closed shells (f=1.0000): 3 1 0 open shell #1 (f=0.5000): 0 0 0 virtual shells (f=0.0000): 6 3 1 tot.num. of pos.erg shells: 9 4 1 * HOMO - LUMO gap: E(LUMO) : 0.46177031 au (symmetry E1u) - E(HOMO) : -0.35276855 au (symmetry E1g) ------------------------------------------ gap : 0.81453885 au ************************************************************************** ********************** Mulliken population analysis ********************** ************************************************************************** Fermion ircop E1g ----------------- Fermion ircop E1g ----------------- * Positronic eigenvalue no. 1: -37637.874512942 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s B3uO _small B2uO _small B1uO _small ----------------------------------------------------------------------------------- alpha 0.3321 | 0.0009 0.0000 0.0000 0.3313 beta 0.6679 | 0.0000 0.3339 0.3339 0.0000 * Positronic eigenvalue no. 2: -37585.859843918 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.9971 | 0.0000 0.0000 0.9970 beta 0.0029 | 0.0014 0.0014 0.0000 * Positronic eigenvalue no. 3: -37567.519040275 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.4279 | 0.0000 0.0000 0.4278 beta 0.5721 | 0.2860 0.2860 0.0000 * Positronic eigenvalue no. 4: -37567.129691168 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small Au O _small ----------------------------------------------------------------------------------- alpha 0.7826 | 0.0000 0.0000 0.3913 0.3913 beta 0.2174 | 0.1086 0.1086 0.0000 0.0000 * Positronic eigenvalue no. 5: -37566.158315157 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.5065 | 0.0000 0.0000 0.5064 beta 0.4935 | 0.2467 0.2467 0.0000 * Positronic eigenvalue no. 6: -37565.710239962 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.4102 | 0.0000 0.0000 0.4101 beta 0.5898 | 0.2949 0.2949 0.0000 * Positronic eigenvalue no. 7: -37565.328519455 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small Au O _small ----------------------------------------------------------------------------------- alpha 0.0324 | 0.0000 0.0000 0.0162 0.0162 beta 0.9676 | 0.4838 0.4838 0.0000 0.0000 * Positronic eigenvalue no. 8: -37563.253675301 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small Au O _small ----------------------------------------------------------------------------------- alpha 0.5619 | 0.0000 0.0000 0.2809 0.2809 beta 0.4381 | 0.2190 0.2190 0.0000 0.0000 * Positronic eigenvalue no. 9: -37563.054444830 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.2957 | 0.0000 0.0000 0.2957 beta 0.7043 | 0.3521 0.3521 0.0000 * Positronic eigenvalue no. 10: -37562.342685624 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small Au O _small ----------------------------------------------------------------------------------- alpha 0.1086 | 0.0000 0.0000 0.0542 0.0542 beta 0.8914 | 0.4457 0.4457 0.0000 0.0000 * Positronic eigenvalue no. 11: -37559.904075357 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.9843 | 0.0000 0.0000 0.9842 beta 0.0157 | 0.0079 0.0079 0.0000 * Positronic eigenvalue no. 12: -37558.733306795 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.2945 | 0.0000 0.0000 0.2945 beta 0.7055 | 0.3527 0.3527 0.0000 * Positronic eigenvalue no. 13: -37558.717447792 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small Au O _small ----------------------------------------------------------------------------------- alpha 0.6279 | 0.0000 0.0000 0.3140 0.3140 beta 0.3721 | 0.1860 0.1860 0.0000 0.0000 * Positronic eigenvalue no. 14: -37558.445501317 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.2161 | 0.0000 0.0000 0.2161 beta 0.7839 | 0.3920 0.3920 0.0000 * Electronic eigenvalue no. 1: -20.753343061660 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s B3uO _small B2uO _small B1uO _small ----------------------------------------------------------------------------------- alpha 0.9995 | 0.9993 0.0000 0.0000 0.0003 beta 0.0005 | 0.0000 0.0003 0.0003 0.0000 * Electronic eigenvalue no. 2: -1.6570874320359 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz -------------------------------------------------------------------------------------------------- alpha 0.9999 | 0.8508 0.1406 -0.0123 -0.0123 0.0332 beta 0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 3: -0.7311715129246 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz -------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.1629 0.8300 0.0056 0.0056 -0.0041 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 4: -0.3537479256262 (Occupation : f = 0.5000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2gO px L B2gO dxz L B3gO py L B3gO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.4993 0.0006 0.4993 0.0006 * Electronic eigenvalue no. 5: -0.3527685451213 (Occupation : f = 0.5000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2gO px L B2gO dxz L B3gO py L B3gO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.4993 0.0006 0.4993 0.0006 * Electronic eigenvalue no. 6: 1.1527050098253 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz -------------------------------------------------------------------------------------------------- alpha 0.9998 | 0.0115 0.9340 0.0112 0.0112 0.0319 beta 0.0002 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 7: 1.2160312988855 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O pz L B2gO px L B2gO dxz L B3gO py L B3gO dyz -------------------------------------------------------------------------------------------------- alpha 0.0002 | 0.0001 0.0000 0.0000 0.0000 0.0000 beta 0.9998 | 0.0000 0.4989 0.0010 0.4989 0.0010 * Electronic eigenvalue no. 8: 1.2170752702498 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2gO px L B2gO dxz L B3gO py L B3gO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.4990 0.0010 0.4990 0.0010 * Electronic eigenvalue no. 9: 1.3268898651505 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz -------------------------------------------------------------------------------------------------- alpha 0.9999 | 0.9213 0.0172 0.0108 0.0108 0.0399 beta 0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 10: 2.6823302354527 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O dxx L Ag O dyy L B1gO dxy -------------------------------------------------------------------- alpha 0.9999 | 0.2500 0.2500 0.4999 beta 0.0001 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 11: 2.6825646820143 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O dxx L Ag O dyy L B1gO dxy -------------------------------------------------------------------- alpha 0.9999 | 0.2500 0.2500 0.4999 beta 0.0001 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 12: 3.1779450597327 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz -------------------------------------------------------------------------------------------------- alpha 0.9999 | 0.0533 0.0780 0.1301 0.1301 0.6084 beta 0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 13: 3.6777514076749 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2gO px L B2gO dxz L B3gO py L B3gO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.0016 0.4983 0.0016 0.4983 * Electronic eigenvalue no. 14: 3.6779046466918 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2gO px L B2gO dxz L B3gO py L B3gO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.0016 0.4983 0.0016 0.4983 ** Total gross population of fermion ircop E1g ** Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz L B2gO px L B2gO dxz -------------------------------------------------------------------------------------------------------------------------------- total 8.00000 | 4.02597 1.94121 -0.01352 -0.01352 0.05801 0.99871 0.00122 Gross | L B3gO py L B3gO dyz B3uO _small B2uO _small B1uO _small ----------------------------------------------------------------------------------- total | 0.99871 0.00122 0.00062 0.00062 0.00074 Fermion ircop E1u ----------------- Fermion ircop E1u ----------------- * Positronic eigenvalue no. 1: -37638.817867089 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s Ag O _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.3441 | 0.0009 0.3432 0.0000 0.0000 beta 0.6559 | 0.0000 0.0000 0.3280 0.3280 * Positronic eigenvalue no. 2: -37586.051440139 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.9962 | 0.9962 0.0000 0.0000 beta 0.0038 | 0.0000 0.0018 0.0018 * Positronic eigenvalue no. 3: -37568.412778631 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.5426 | 0.5425 0.0000 0.0000 beta 0.4574 | 0.0000 0.2287 0.2287 * Positronic eigenvalue no. 4: -37567.941551635 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.3798 | 0.3797 0.0000 0.0000 beta 0.6202 | 0.0000 0.3101 0.3101 * Positronic eigenvalue no. 5: -37566.982827905 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B1gO _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.8103 | 0.4051 0.4051 0.0000 0.0000 beta 0.1897 | 0.0000 0.0000 0.0948 0.0948 * Positronic eigenvalue no. 6: -37565.238522778 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B1gO _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.0105 | 0.0052 0.0052 0.0000 0.0000 beta 0.9895 | 0.0000 0.0000 0.4947 0.4947 * Positronic eigenvalue no. 7: -37565.216652130 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.4956 | 0.4955 0.0000 0.0000 beta 0.5044 | 0.0000 0.2522 0.2522 * Positronic eigenvalue no. 8: -37562.954608206 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.5698 | 0.5698 0.0000 0.0000 beta 0.4302 | 0.0000 0.2151 0.2151 * Positronic eigenvalue no. 9: -37562.690722491 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B1gO _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.1777 | 0.0888 0.0888 0.0000 0.0000 beta 0.8223 | 0.0000 0.0000 0.4112 0.4112 * Positronic eigenvalue no. 10: -37562.238493459 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B1gO _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.8097 | 0.4048 0.4048 0.0000 0.0000 beta 0.1903 | 0.0000 0.0000 0.0951 0.0951 * Positronic eigenvalue no. 11: -37559.678793881 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.9546 | 0.9546 0.0000 0.0000 beta 0.0454 | 0.0000 0.0227 0.0227 * Positronic eigenvalue no. 12: -37559.552923616 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.7730 | 0.7729 0.0000 0.0000 beta 0.2270 | 0.0000 0.1135 0.1135 * Positronic eigenvalue no. 13: -37558.447784324 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B1gO _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.8815 | 0.4407 0.4407 0.0000 0.0000 beta 0.1185 | 0.0000 0.0000 0.0592 0.0592 * Positronic eigenvalue no. 14: -37558.325085320 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.3354 | 0.3354 0.0000 0.0000 beta 0.6646 | 0.0000 0.3323 0.3323 * Electronic eigenvalue no. 1: -20.752405197158 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s L B1uO pz Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------------------------------------- alpha 0.9995 | 0.9990 0.0002 0.0003 0.0000 0.0000 beta 0.0005 | 0.0000 0.0000 0.0000 0.0003 0.0003 * Electronic eigenvalue no. 2: -1.1015980077448 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz -------------------------------------------------------------------------------------------------- alpha 0.9999 | 0.8733 0.1247 0.0048 0.0048 -0.0077 beta 0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 3: -0.7033519739269 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.4956 0.0044 0.4956 0.0044 * Electronic eigenvalue no. 4: -0.7025474047883 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.4956 0.0044 0.4956 0.0044 * Electronic eigenvalue no. 5: 0.4617703071168 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz -------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.0229 0.9677 0.0029 0.0029 0.0035 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 6: 1.0774582849637 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B2uO py L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.9988 | 0.0000 0.0000 -0.2153 1.2004 0.0028 0.0028 0.0080 beta 0.0012 | 0.0006 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 7: 1.1083012219037 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz L B1uO s L B1uO pz ----------------------------------------------------------------------------------------------------------------- alpha 0.0012 | 0.0000 0.0000 0.0000 0.0000 -0.0002 0.0013 beta 0.9988 | 0.4983 0.0011 0.4983 0.0011 0.0000 0.0000 * Electronic eigenvalue no. 8: 1.1094208481302 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.4988 0.0011 0.4988 0.0011 * Electronic eigenvalue no. 9: 1.9719634030480 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz -------------------------------------------------------------------------------------------------- alpha 0.9999 | 1.2587 -0.2622 0.0009 0.0009 0.0016 beta 0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 10: 2.4013794519070 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.0055 0.4945 0.0055 0.4945 * Electronic eigenvalue no. 11: 2.4015160412077 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.0055 0.4945 0.0055 0.4945 * Electronic eigenvalue no. 12: 3.0077585825036 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO dxx L B1uO dyy L Au O dxy -------------------------------------------------------------------- alpha 0.9999 | 0.2500 0.2500 0.4999 beta 0.0001 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 13: 3.0080106656897 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO dxx L B1uO dyy L Au O dxy -------------------------------------------------------------------- alpha 0.9999 | 0.2500 0.2500 0.4999 beta 0.0001 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 14: 4.1904053005466 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz Ag O _small ----------------------------------------------------------------------------------------------------------------- alpha 0.9999 | 0.0607 -0.0324 0.1676 0.1676 0.6363 0.0001 beta 0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ** Total gross population of fermion ircop E1u ** Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz L B1uO s L B1uO pz L B1uO dxx -------------------------------------------------------------------------------------------------------------------------------- total 8.00000 | 1.98245 0.01743 1.98245 0.01743 3.74457 0.24997 0.00951 Gross | L B1uO dyy L B1uO dzz Ag O _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- total | 0.00951 -0.01529 0.00073 0.00059 0.00059 *** Total gross population *** Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz L B3uO px L B3uO dxz -------------------------------------------------------------------------------------------------------------------------------- total 16.00000 | 4.02597 1.94121 -0.01352 -0.01352 0.05801 1.98245 0.01743 Gross | L B2uO py L B2uO dyz L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz L B2gO px -------------------------------------------------------------------------------------------------------------------------------- total | 1.98245 0.01743 3.74457 0.24997 0.00951 0.00951 -0.01529 0.99871 Gross | L B2gO dxz L B3gO py L B3gO dyz Ag O _small B3uO _small B2uO _small B1uO _small B2gO _small -------------------------------------------------------------------------------------------------------------------------------- total | 0.00122 0.99871 0.00122 0.00073 0.00062 0.00062 0.00074 0.00059 Gross | B3gO _small ----------------------- total | 0.00059 ************************************************************************* ******************** Resolution of open-shell states ******************** ************************************************************************* - Number of active electrons: 2 - Active orbitals: * Fermion ircop E1g Index 1 2 orbitals 4 5 * Fermion ircop E1u No orbitals for index 1 - Core orbitals: * Fermion ircop E1g Index 1 3 orbitals 1 2 3 * Fermion ircop E1u Index 1 4 orbitals 1 2 3 4 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Fri Mar 17 07:58:18 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -149.686661451846589 * Heading :Molecular oxygen. Ground state. Fri Mar 17 07:58:18 2017 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01600003s SOfock:SL 1.00D-12 0.00% 0.93% 0.00% 0.00% 0.10000002s * REAFCK: Fock matrix read from file DFFCK1 * Heading :Molecular oxygen. Ground state. Fri Mar 17 07:58:17 2017 Core energy (includes nuclear repulsion) : -148.1156042992 - Electronic part : -176.1626291501 - One-electron terms : -242.5111475764 - Two-electron terms : 66.3485184264 MOLFDIR file MRCONEE is written ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Fri Mar 17 07:58:18 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -149.686661451846589 * Heading :Molecular oxygen. Ground state. Fri Mar 17 07:58:18 2017 - Integral class 1 : (LL|??) - Beginning task 1 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 2 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 3 of 3 after 0. seconds and 0. CPU-seconds - Integral class 2 : (SS|??) - Beginning task 4 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 5 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 6 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 7 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 8 of 8 after 0. seconds and 0. CPU-seconds * Screening statistics: (LL|LL)ints : 0.00% (SS|LL)ints : 23.49% Total : 22.93% - Starting symmetrization after 0.19 seconds - Finished symmetrization after 0.19 seconds - Binary file MDCINT was written. ------ Timing report (in CPU seconds) of module integral transformation Time in Computing+transform. integral 0.188 seconds Total wall time used in RESOLV : 0.19100000s Total CPU time used in RESOLV : 0.18800000s Transformation ended at : Fri Mar 17 07:58:18 2017 GASRES: Set up the following information: 1g -1g 3g -3g 5g -5g 7g -7g 9g -9g 11g -11g 13g -13g 15g -15g 1u -1u 3u -3u 5u -5u 7u -7u 9u -9u 11u -11u 13u -13u 15u -15u 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GOSCIP (Version 1.8) Today is : 17 Mar 17 The time is : 07:58:18 &POPAN THRESH= 1.0000000000000000E-003, DEGEN= 1.0000000000000000E-010, SELPOP= 100.00000000000000 , MAXPOP= 100, / All information read from MRCONEE (and input) Number of electrons: 2 Decimal representation of frozen orbitals: 0 IACEL (number of active electrons) has been calculated from MAXE: 0 Breit interaction included : F Core energy : -148.1156043 Number of active orbitals : 4 Orbital Representation Orbital energy 1 Eg 1Eg -0.3537479256 2 Eg 1Eg -0.3527685451 3 Eg 2Eg -0.3537479256 4 Eg 2Eg -0.3527685451 Number of determinants: Symmetry 0g : 2 Symmetry 2g : 1 Symmetry -2g : 1 Symmetry 4g : 1 Symmetry -4g : 1 Symmetry 6g : 0 Symmetry -6g : 0 Symmetry 8g : 0 Symmetry -8g : 0 Symmetry 10g : 0 Symmetry -10g : 0 Symmetry 12g : 0 Symmetry -12g : 0 Symmetry 14g : 0 Symmetry -14g : 0 Symmetry 16g : 0 Symmetry 0u : 0 Symmetry 2u : 0 Symmetry -2u : 0 Symmetry 4u : 0 Symmetry -4u : 0 Symmetry 6u : 0 Symmetry -6u : 0 Symmetry 8u : 0 Symmetry -8u : 0 Symmetry 10u : 0 Symmetry -10u : 0 Symmetry 12u : 0 Symmetry -12u : 0 Symmetry 14u : 0 Symmetry -14u : 0 Symmetry 16u : 0 Coulomb integral file was generated at 17Mar17 07:58:18 Read 12 unique integrals Representation 0g; 2 vectors written to file MDTRIV_ 0g Eigenvalues -149.718154248609 -149.623685161662 CPU time for this representation Generation of determinants : 0.0000 Building the CI matrix : 0.0000 Diagonalization : 0.0120 Writing CI vectors : 0.0000 Population analysis for representation 0g The first 2 vectors are analyzed energy det# determinant norm Re Im ------ ---- ----------- ---- -- -- -149.71815425 1 1010 0.5100 0.7142 0.0000 2 0101 0.4900 -0.7000 0.0000 Orb. Orbital energy Occupation 1 -0.3537479256 0.5100 2 -0.3527685451 0.4900 3 -0.3537479256 0.5100 4 -0.3527685451 0.4900 Sum of occupations : 2.0000 -149.62368516 1 1010 0.4900 0.7000 0.0000 2 0101 0.5100 0.7142 0.0000 Orb. Orbital energy Occupation 1 -0.3537479256 0.4900 2 -0.3527685451 0.5100 3 -0.3537479256 0.4900 4 -0.3527685451 0.5100 Sum of occupations : 2.0000 Representation 2g; 1 vectors written to file MDTRIV_ 2g Eigenvalues -149.718144633813 CPU time for this representation Generation of determinants : 0.0000 Building the CI matrix : 0.0000 Diagonalization : 0.0080 Writing CI vectors : 0.0000 Population analysis for representation 2g The first 1 vectors are analyzed energy det# determinant norm Re Im ------ ---- ----------- ---- -- -- -149.71814463 1 0011 1.0000 1.0000 0.0000 Orb. Orbital energy Occupation 1 -0.3537479256 0.0000 2 -0.3527685451 0.0000 3 -0.3537479256 1.0000 4 -0.3527685451 1.0000 Sum of occupations : 2.0000 Representation -2g; 1 vectors written to file MDTRIV_ -2g Eigenvalues -149.718144633813 CPU time for this representation Generation of determinants : 0.0000 Building the CI matrix : 0.0000 Diagonalization : 0.0080 Writing CI vectors : 0.0000 Population analysis for representation -2g The first 1 vectors are analyzed energy det# determinant norm Re Im ------ ---- ----------- ---- -- -- -149.71814463 1 1100 1.0000 1.0000 0.0000 Orb. Orbital energy Occupation 1 -0.3537479256 1.0000 2 -0.3527685451 1.0000 3 -0.3537479256 0.0000 4 -0.3527685451 0.0000 Sum of occupations : 2.0000 Representation 4g; 1 vectors written to file MDTRIV_ 4g Eigenvalues -149.670920016587 CPU time for this representation Generation of determinants : 0.0000 Building the CI matrix : 0.0000 Diagonalization : 0.0120 Writing CI vectors : 0.0000 Population analysis for representation 4g The first 1 vectors are analyzed energy det# determinant norm Re Im ------ ---- ----------- ---- -- -- -149.67092002 1 1001 1.0000 1.0000 0.0000 Orb. Orbital energy Occupation 1 -0.3537479256 1.0000 2 -0.3527685451 0.0000 3 -0.3537479256 0.0000 4 -0.3527685451 1.0000 Sum of occupations : 2.0000 Representation -4g; 1 vectors written to file MDTRIV_ -4g Eigenvalues -149.670920016587 CPU time for this representation Generation of determinants : 0.0000 Building the CI matrix : 0.0000 Diagonalization : 0.0080 Writing CI vectors : 0.0000 Population analysis for representation -4g The first 1 vectors are analyzed energy det# determinant norm Re Im ------ ---- ----------- ---- -- -- -149.67092002 1 0110 1.0000 1.0000 0.0000 Orb. Orbital energy Occupation 1 -0.3537479256 0.0000 2 -0.3527685451 1.0000 3 -0.3537479256 1.0000 4 -0.3527685451 0.0000 Sum of occupations : 2.0000 ( 1 au = 27.2113834378 eV / 219474.631280634 cm-1) Energy eigenvalues in atomic units Level Rel eigenvalue Abs eigenvalue Total Energy Degeneracy 1 0.0000000000 -1.602549949404 -149.718154248609 ( 1 * ) 2 0.0000096148 -1.602540334608 -149.718144633813 ( 2 * ) 3 0.0472342320 -1.555315717382 -149.670920016587 ( 2 * ) 4 0.0944690869 -1.508080862457 -149.623685161662 ( 1 * ) Total average: -149.6866614518 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 0g| 2g| -2g| 4g| -4g| 6g| -6g| 8g| 1 0.000000000 0.000000 1| 0| 0| 0| 0| 0| 0| 0| 2 0.000261632 2.110204 0| 1| 1| 0| 0| 0| 0| 0| 3 1.285308799 10366.715657 0| 0| 0| 1| 1| 0| 0| 0| 4 2.570634548 20733.568025 1| 0| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) -8g| 10g|-10g| 12g|-12g| 14g|-14g| 16g| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 0.000261632 2.110204 0| 0| 0| 0| 0| 0| 0| 0| 3 1.285308799 10366.715657 0| 0| 0| 0| 0| 0| 0| 0| 4 2.570634548 20733.568025 0| 0| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 0u| 2u| -2u| 4u| -4u| 6u| -6u| 8u| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 0.000261632 2.110204 0| 0| 0| 0| 0| 0| 0| 0| 3 1.285308799 10366.715657 0| 0| 0| 0| 0| 0| 0| 0| 4 2.570634548 20733.568025 0| 0| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) -8u| 10u|-10u| 12u|-12u| 14u|-14u| 16u| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 0.000261632 2.110204 0| 0| 0| 0| 0| 0| 0| 0| 3 1.285308799 10366.715657 0| 0| 0| 0| 0| 0| 0| 0| 4 2.570634548 20733.568025 0| 0| 0| 0| 0| 0| 0| 0| ===================== Total CPU time : 0.0480 (NORMAL END OF PROGRAM) ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Fri Mar 17 07:58:18 2017 Host name : dirac >>>> Node 0, utime: 1, stime: 0, minflt: 4867, majflt: 0, nvcsw: 10, nivcsw: 21, maxrss: 68420 >>>> Total WALL time used in DIRAC: 2s Dynamical Memory Usage Summary for Master Mean allocation size (Mb) : 98.74 Largest 10 allocations 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in RESOLV 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMANA 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PSISCF 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMSET - 2 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in GMOTRA 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMSET - 1 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for test allocation of work array in DIRAC mai 244.14 Mb at subroutine __allocator_track_if_MOD_allocator_registe for ee 244.14 Mb at subroutine __allocator_track_if_MOD_allocator_registe for ee 244.14 Mb at subroutine __allocator_track_if_MOD_allocator_registe for ee Peak memory usage (Mb) : 733.00 reached at subroutine : __allocator_track_if_MOD_allocator_registe for variable : e2 MEMGET high-water mark: 0.00 MB *****************************************************