DIRAC pam run in /home/ilias/Dokumenty/Work/QCH/software/dirac_git/trunk/test/ecp DIRAC serial starts by allocating 64000000 words (488 MB) of memory out of the allowed maximum of 2147483648 words (16384 MB) Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast KTH/PDC Stockholm Sweden * * Trond Saue Universite Toulouse III France * * Lucas Visscher VU University Amsterdam Netherlands * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer UiT The Artic University of Norway * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Trygve Helgaker University of Oslo Norway * * Jon K. Laerdahl University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC14 (2014), * * written by T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. K. Laerdahl, Y. S. Lee, * * J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, * * O. Kullie, C. V. Larsen, H. S. Nataraj, P. Norman, G. Olejniczak, * * J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, * * K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, * * J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, * * and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* --- Git version information --- Git branch : master Last git commit hash : 6b35f98 Last git commit author : Radovan Bast Last git commit date : Sun Oct 25 13:55:57 2015 +0100 --- Configuration and build info --- Who compiled : ilias Compiled on server : miro_ilias_desktop Operating system : Linux-3.13.0-65-generic Python version : 2.7.6 CMake version : 2.8.12.2 CMake generator : Unix Makefiles CMake build type : debug MPI parallelization : False 64-bit integers : False Fortran compiler : /usr/bin/gfortran Fortran compiler version : 4.8.4 Fortran compiler flags : -g -fcray-pointer -fbacktrace -fno-range-check -DVAR_GFORTRAN -DVAR_MFDS C compiler : /usr/bin/gcc C compiler version : 4.8.4 C compiler flags : -g C++ compiler : /usr/bin/g++ C++ compiler version : 4.8.4 C++ compiler flags : -g -Wall -Wno-unknown-pragmas -Wno-sign-compare -Woverloaded-virtual -Wwrite-strings -Wno-unused Static linking : False Builtin BLAS library : OFF Builtin LAPACK library : OFF Mathematical libraries : -Wl,--start-group;/opt/intel/composer_xe_2011_sp1.9.293/mkl/lib/intel64/libmkl_lapack95_lp64.a;/opt/intel/composer_xe_2011_sp1.9.293/mkl/lib/intel64/libmkl_gf_lp64.so;-fopenmp;-Wl,--end-group;-Wl,--start-group;/opt/intel/composer_xe_2011_sp1.9.293/mkl/lib/intel64/libmkl_gf_lp64.so;/opt/intel/composer_xe_2011_sp1.9.293/mkl/lib/intel64/libmkl_gnu_thread.so;/opt/intel/composer_xe_2011_sp1.9.293/mkl/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/usr/lib/x86_64-linux-gnu/libm.so;-fopenmp;-Wl,--end-group Explicit libraries : unknown Modules definitions : SYS_LINUX;PRG_DIRAC;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;MOD_XML;MOD_OPENRSP;MOD_OOF;MOD_ESR;MOD_KRCC;MOD_LAO_REARRANGED;MOD_CAP;MOD_SRDFT;MOD_AOOSOC;MOD_MCSCF_spinfree;MOD_UNRELEASED;MOD_INTEREST;MOD_QCORR;MOD_ERI;MOD_DNF Configuration time : 2015-10-29 21:40:34.250568 ----------------------------------------------------------------- Execution time and host ----------------------- Date and time (Linux) : Thu Oct 29 22:44:02 2015 Host name : miro_ilias_desktop Contents of the input file -------------------------- ! ! This test calculates the total energy ! and the dipole moment of ! employing valence-only Hamitonian ! for relativistic effective-core-potentials. ! **DIRAC .TITLE HI molecule with RECP .WAVE F .ANALYZE .PROPERTIES **HAMILTONIAN .ECP **WAVE FUNCTIONS .SCF *SCF .CLOSED SHELL 8 **ANALYZE .MULPOP *MULPOP .VECPOP 1..oo **PROPERTIES .DIPOLE *END OF DIRAC Contents of the molecule file ----------------------------- INTGRL HI MOLECULE I:Christiansen RECP, H:Aug-cc-pVTZ C 2 2 Y Z A 53. 1 I 1.59900000 0.00000000 0.00000000 LARGE 4 1 1 1 1 F 7 4 0 8.9655217 -0.0054740 0.0000000 0.0000000 0.0000000 4.5610628 0.0250170 0.0000000 0.0000000 0.0000000 1.8188811 -0.8900750 0.0000000 0.0000000 0.0000000 1.4925532 1.3195220 0.0000000 0.0000000 0.0000000 0.2875149 0.0000000 1.0000000 0.0000000 0.0000000 0.0824299 0.0000000 0.0000000 1.0000000 0.0000000 0.0237922 0.0000000 0.0000000 0.0000000 1.0000000 F 7 4 0 4.8262036 0.0122770 0.0000000 0.0000000 0.0000000 2.2639587 -0.0457030 0.0000000 0.0000000 0.0000000 1.1561771 0.2251760 0.0000000 0.0000000 0.0000000 0.5506509 -0.2514460 0.0000000 0.0000000 0.0000000 0.2444091 0.0000000 1.0000000 0.0000000 0.0000000 0.0908574 0.0000000 0.0000000 1.0000000 0.0000000 0.0299745 0.0000000 0.0000000 0.0000000 1.0000000 F 3 3 0 0.4320000 1.0000000 0.0000000 0.0000000 0.2200000 0.0000000 1.0000000 0.0000000 0.1000000 0.0000000 0.0000000 1.0000000 F 2 2 0 0.4265000 1.0000000 0.0000000 0.1700000 0.0000000 1.0000000 ECP 46 4 0 4 2 .922500 -1.447005 2 2.569100 -14.188832 2 7.908600 -43.263306 1 25.061100 -27.740856 6 2 1.503600 -124.037542 2 1.874600 235.545458 2 2.682800 -261.475363 2 3.446600 144.184313 1 1.124200 31.003269 0 11.458300 6.512373 6 2 1.245400 -95.368794 2 1.582600 188.963297 2 2.242900 -221.153567 2 2.930100 104.680452 1 .950300 30.809252 0 12.782000 5.414640 6 2 .668500 -50.340552 2 .828000 102.276429 2 1.115700 -133.296812 2 1.419000 75.010821 1 .503000 19.150171 0 4.557600 8.099959 1. 1 H 0.00000000 0.00000000 0.00000000 LARGE BASIS aug-cc-pVTZ FINISH ************************************************************************* ************************* HI molecule with RECP ************************* ************************************************************************* Jobs in this run: * Wave function * Analysis * Properties ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- HI MOLECULE I:Christiansen RECP, H:Aug-cc-pVTZ Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 53.000 : 1.8444240538D+08 * This atomic center has RECP with 46 core electrons. The charge value is changed as 7.000 Nuclear Gaussian exponent for atom of charge 1.000 : 2.1248239171D+09 Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Point group: C2v * The point group was generated by: Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2x Oxy Oxz -----+-------------------- E | E C2x Oxy Oxz C2x | C2x E Oxz Oxy Oxy | Oxy Oxz E C2x Oxz | Oxz Oxy C2x E * Character table | E C2x Oxy Oxz -----+-------------------- A1 | 1 1 1 1 B1 | 1 -1 1 -1 B2 | 1 -1 -1 1 A2 | 1 1 -1 -1 * Direct product table | A1 B1 B2 A2 -----+-------------------- A1 | A1 B1 B2 A2 B1 | B1 A1 A2 B2 B2 | B2 A2 A1 B1 A2 | A2 B2 B1 A1 ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A1 + B1 + B2 + A2 Spinor structure ---------------- * Fermion irrep no.: 1 La | A1 (1) B1 (2) | Sa | A2 (1) B2 (2) | Lb | B2 (3) A2 (4) | Sb | B1 (3) A1 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A1 1 B1 i B2 j A2 k QM-QM nuclear repulsion energy : 2.316598160163 Atoms and basis sets -------------------- Number of atom types: 2 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- I 1 7 66 54 L - [7s7p3d2f|4s4p3d2f] 0 0 S - No small component basis functions attached H 1 1 27 25 L - [6s3p2d|4s3p2d] 0 0 S - No small component basis functions attached ---------------------------------------------------------------------- 93 79 L - large components ---------------------------------------------------------------------- total: 2 8 93 79 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 Basis set typed explicitly in input file Atom type 2 Elements References -------- ---------- H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published) Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993). Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). Sc - Zn: N.B. Balabanov and K.A. Peterson, J. Chem. Phys. 123, 064107 (2005) POLARIZATION AND/OR DIFFUSE FUNCTIONS Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 6 1 I x 3.0216720881 2 y 0.0000000000 3 z 0.0000000000 4 H x 0.0000000000 5 y 0.0000000000 6 z 0.0000000000 Cartesian coordinates in XYZ format (angstrom) ---------------------------------------------- 2 I 1.5990000000 0.0000000000 0.0000000000 H 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 2 2 2 0 Symmetry 1 1 I x 1 2 H x 4 Symmetry 2 3 I y 2 4 H y 5 Symmetry 3 5 I z 3 6 H z 6 Interatomic separations (in Angstroms): --------------------------------------- I H I 0.000000 H 1.599000 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- Nuclear repulsion energy : 2.316598160163 GETLAB: AO-labels ----------------- * Large components: 30 1 L I 1 s 2 L I 1 px 3 L I 1 py 4 L I 1 pz 5 L I 1 dxx 6 L I 1 dxy 7 L I 1 dxz 8 L I 1 dyy 9 L I 1 dyz 10 L I 1 dzz 11 L I 1 fxxx 12 L I 1 fxxy 13 L I 1 fxxz 14 L I 1 fxyy 15 L I 1 fxyz 16 L I 1 fxzz 17 L I 1 fyyy 18 L I 1 fyyz 19 L I 1 fyzz 20 L I 1 fzzz 21 L H 1 s 22 L H 1 px 23 L H 1 py 24 L H 1 pz 25 L H 1 dxx 26 L H 1 dxy 27 L H 1 dxz 28 L H 1 dyy 29 L H 1 dyz 30 L H 1 dzz * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 30 1 L A1 I s 2 L A1 I px 3 L A1 I dxx 4 L A1 I dyy 5 L A1 I dzz 6 L A1 I fxxx 7 L A1 I fxyy 8 L A1 I fxzz 9 L A1 H s 10 L A1 H px 11 L A1 H dxx 12 L A1 H dyy 13 L A1 H dzz 14 L B1 I py 15 L B1 I dxy 16 L B1 I fxxy 17 L B1 I fyyy 18 L B1 I fyzz 19 L B1 H py 20 L B1 H dxy 21 L B2 I pz 22 L B2 I dxz 23 L B2 I fxxz 24 L B2 I fyyz 25 L B2 I fzzz 26 L B2 H pz 27 L B2 H dxz 28 L A2 I dyz 29 L A2 I fxyz 30 L A2 H dyz * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 36 18 18 7 Number of large orbitals in each symmetry: 36 18 18 7 Number of small orbitals in each symmetry: 0 0 0 0 * Large component functions Symmetry A1 ( 1) 4 functions: I s 4 functions: I px 3 functions: I dxx 3 functions: I dyy 3 functions: I dzz 2 functions: I fxxx 2 functions: I fxyy 2 functions: I fxzz 4 functions: H s 3 functions: H px 2 functions: H dxx 2 functions: H dyy 2 functions: H dzz Symmetry B1 ( 2) 4 functions: I py 3 functions: I dxy 2 functions: I fxxy 2 functions: I fyyy 2 functions: I fyzz 3 functions: H py 2 functions: H dxy Symmetry B2 ( 3) 4 functions: I pz 3 functions: I dxz 2 functions: I fxxz 2 functions: I fyyz 2 functions: I fzzz 3 functions: H pz 2 functions: H dxz Symmetry A2 ( 4) 3 functions: I dyz 2 functions: I fxyz 2 functions: H dyz *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 employing effective-core-potentials (ECP) * SS integrals neglected: Interatomic Coulombic SS-contributions modelled by classical repulsion of small component atomic charges using tabulated charges. * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - contracted large component basis set ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF Wave function jobs in execution order (expanded): * Hartree-Fock calculation =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 1 * Closed shell SCF calculation with 8 electrons in 4 orbitals. * Bare nucleus screening correction used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Mulliken population analysis =========================================================================== POPINP: Mulliken population analysis =========================================================================== * Gross populations * Label definitions based on SO-labels * Number of spinors analyzed: - Orbitals in fermion ircop E1 :1..oo * Print level: 1 *************************************************************************** ***************************** Property module ***************************** *************************************************************************** * Print level: 0 * Input label: **PROPE * Properties calculated for the following wave functions: 1: DHF These initial settings of center and origins might be changed later: * Operator center (a.u.): 0.0000000000 0.0000000000 0.0000000000 * Gauge origin (a.u.): 0.0000000000 0.0000000000 0.0000000000 * Dipole origin (a.u.): 0.0000000000 0.0000000000 0.0000000000 =========================================================================== Magnetic properties: =========================================================================== =========================================================================== Dipole moment =========================================================================== ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** NB: Properties & TWOCOMP require non-relativistic form of operators ! ************************************************************************* ************************ End of input processing ************************ ************************************************************************* ************************************************************************* ************************** RECP integral start ************************** ************************************************************************* ----------------------------------------------------------- Relativistic Effective Core Potential Integral routine This routine is based on ARGOS integral with the permission of R. M. Pitzer (Ohio State University) and maintained by Y. S. Lee and Y. C. Park (KAIST) Electronic mail: YoonSupLee@kaist.ac.kr youngc@kaist.ac.kr Reference: Bull.Korean.Chem.Soc. v.33, p.803 (2012) ----------------------------------------------------------- * Nuc. Center No. : 1 (I ) Sym. distinct atoms : 1 Core electrons : 46 AREP blocks : 4 SO blocks : 0 * Nuc. Center No. : 2 (H ) Sym. distinct atoms : 1 This nuclear center does not have core potential * VCORE was generated : RECP_INT_C *********************************************************************** ************************** RECP integral end ************************** *********************************************************************** Nuclear contribution to dipole moments -------------------------------------- au Debye x 21.15170462 53.76276824 1 Debye = 2.54177000 a.u. Generating Lowdin canonical matrix: ----------------------------------- L A1 * Deleted: 7(Proj: 7, Lindep: 0) Smin: 0.17E-03 L B1 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.21E-01 L B2 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.21E-01 L A2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.65E-01 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** No. of positive energy orbitals (NESH): 68 No. of negative energy orbitals (NPSH): 0 Total no. of orbitals (NORB): 68 >>> Time used in PAMSET is 0.12 seconds **************************************************************************** ************************* Hartree-Fock calculation ************************* **************************************************************************** *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by an estimate of the electronic screening (Slater's rules). ########## START ITERATION NO. 1 ########## Thu Oct 29 22:44:02 2015 E_HOMO...E_LUMO, symmetry 1: 4 0.06754 5 0.07740 => Calculating sum of orbital energies It. 1 2.683881648560 0.00D+00 0.00D+00 0.00D+00 0.03816400s Scr. nuclei Thu Oct 29 ########## START ITERATION NO. 2 ########## Thu Oct 29 22:44:02 2015 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.69403705s E_HOMO...E_LUMO, symmetry 1: 4 -1.51891 5 -1.07475 >>> Total wall time: 0.76708984s, and total CPU time : 0.76146600s ########## END ITERATION NO. 2 ########## Thu Oct 29 22:44:03 2015 It. 2 -5.425747063828 8.11D+00 -3.16D+00 1.83D+00 0.76146600s LL Thu Oct 29 ########## START ITERATION NO. 3 ########## Thu Oct 29 22:44:03 2015 3 *** Differential density matrix. DCOVLP = 0.0174 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.69574094s E_HOMO...E_LUMO, symmetry 1: 4 -0.54417 5 -0.14214 >>> Total wall time: 0.71093750s, and total CPU time : 0.70477400s ########## END ITERATION NO. 3 ########## Thu Oct 29 22:44:04 2015 It. 3 -11.15517866723 5.73D+00 1.80D+00 1.10D+00 DIIS 2 0.70477400s LL Thu Oct 29 ########## START ITERATION NO. 4 ########## Thu Oct 29 22:44:04 2015 4 *** Differential density matrix. DCOVLP = 0.2355 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.69432306s E_HOMO...E_LUMO, symmetry 1: 4 -0.40421 5 0.02866 >>> Total wall time: 0.70996094s, and total CPU time : 0.70329300s ########## END ITERATION NO. 4 ########## Thu Oct 29 22:44:04 2015 It. 4 -11.72495849762 5.70D-01 -2.04D-01 3.79D-01 DIIS 3 0.70329300s LL Thu Oct 29 ########## START ITERATION NO. 5 ########## Thu Oct 29 22:44:04 2015 5 *** Differential density matrix. DCOVLP = 0.9045 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.69311714s E_HOMO...E_LUMO, symmetry 1: 4 -0.38361 5 0.03408 >>> Total wall time: 0.70703125s, and total CPU time : 0.70223200s ########## END ITERATION NO. 5 ########## Thu Oct 29 22:44:05 2015 It. 5 -11.79744753322 7.25D-02 -1.02D-01 5.54D-02 DIIS 4 0.70223200s LL Thu Oct 29 ########## START ITERATION NO. 6 ########## Thu Oct 29 22:44:05 2015 6 *** Differential density matrix. DCOVLP = 0.9757 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.69404793s E_HOMO...E_LUMO, symmetry 1: 4 -0.38544 5 0.03446 >>> Total wall time: 0.71582031s, and total CPU time : 0.70967100s ########## END ITERATION NO. 6 ########## Thu Oct 29 22:44:06 2015 It. 6 -11.79897881280 1.53D-03 -1.40D-02 1.40D-02 DIIS 5 0.70967100s LL Thu Oct 29 ########## START ITERATION NO. 7 ########## Thu Oct 29 22:44:06 2015 7 *** Differential density matrix. DCOVLP = 0.9859 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.69503975s E_HOMO...E_LUMO, symmetry 1: 4 -0.38665 5 0.03419 >>> Total wall time: 0.71582031s, and total CPU time : 0.71048900s ########## END ITERATION NO. 7 ########## Thu Oct 29 22:44:07 2015 It. 7 -11.79906866577 8.99D-05 -3.42D-03 2.14D-03 DIIS 6 0.71048900s LL Thu Oct 29 ########## START ITERATION NO. 8 ########## Thu Oct 29 22:44:07 2015 8 *** Differential density matrix. DCOVLP = 0.9973 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.68197393s E_HOMO...E_LUMO, symmetry 1: 4 -0.38663 5 0.03416 >>> Total wall time: 0.69824219s, and total CPU time : 0.69227600s ########## END ITERATION NO. 8 ########## Thu Oct 29 22:44:07 2015 It. 8 -11.79907226673 3.60D-06 -1.49D-04 3.41D-04 DIIS 7 0.69227600s LL Thu Oct 29 ########## START ITERATION NO. 9 ########## Thu Oct 29 22:44:07 2015 9 *** Differential density matrix. DCOVLP = 1.0001 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.68070602s E_HOMO...E_LUMO, symmetry 1: 4 -0.38664 5 0.03416 >>> Total wall time: 0.69482422s, and total CPU time : 0.68975900s ########## END ITERATION NO. 9 ########## Thu Oct 29 22:44:08 2015 It. 9 -11.79907237251 1.06D-07 3.38D-05 4.90D-05 DIIS 8 0.68975900s LL Thu Oct 29 ########## START ITERATION NO. 10 ########## Thu Oct 29 22:44:08 2015 10 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.68078613s E_HOMO...E_LUMO, symmetry 1: 4 -0.38664 5 0.03416 >>> Total wall time: 0.69628906s, and total CPU time : 0.68987400s ########## END ITERATION NO. 10 ########## Thu Oct 29 22:44:09 2015 It. 10 -11.79907237490 2.39D-09 7.44D-06 9.08D-06 DIIS 9 0.68987400s LL Thu Oct 29 ########## START ITERATION NO. 11 ########## Thu Oct 29 22:44:09 2015 11 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.67801523s E_HOMO...E_LUMO, symmetry 1: 4 -0.38664 5 0.03416 >>> Total wall time: 0.69482422s, and total CPU time : 0.68997000s ########## END ITERATION NO. 11 ########## Thu Oct 29 22:44:09 2015 It. 11 -11.79907237500 1.02D-10 1.66D-06 1.32D-06 DIIS 9 0.68997000s LL Thu Oct 29 ########## START ITERATION NO. 12 ########## Thu Oct 29 22:44:09 2015 12 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.20% 0.00% 0.00% 0.68026161s E_HOMO...E_LUMO, symmetry 1: 4 -0.38664 5 0.03416 >>> Total wall time: 0.69482422s, and total CPU time : 0.68991200s ########## END ITERATION NO. 12 ########## Thu Oct 29 22:44:10 2015 It. 12 -11.79907237500 1.87D-12 2.28D-07 1.00D-07 DIIS 9 0.68991200s LL Thu Oct 29 ########## START ITERATION NO. 13 ########## Thu Oct 29 22:44:10 2015 13 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 2.85% 0.00% 0.02% 0.67913437s >>> Total wall time: 0.68847656s, and total CPU time : 0.68696600s ########## END ITERATION NO. 13 ########## Thu Oct 29 22:44:11 2015 It. 13 -11.79907237500 -1.07D-14 -1.54D-08 7.79D-09 DIIS 9 0.68696600s LL Thu Oct 29 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 2.683881648560 0.00D+00 0.00D+00 0.00D+00 0.03816400s Scr. nuclei Thu Oct 29 It. 2 -5.425747063828 8.11D+00 -3.16D+00 1.83D+00 0.76146600s LL Thu Oct 29 It. 3 -11.15517866723 5.73D+00 1.80D+00 1.10D+00 DIIS 2 0.70477400s LL Thu Oct 29 It. 4 -11.72495849762 5.70D-01 -2.04D-01 3.79D-01 DIIS 3 0.70329300s LL Thu Oct 29 It. 5 -11.79744753322 7.25D-02 -1.02D-01 5.54D-02 DIIS 4 0.70223200s LL Thu Oct 29 It. 6 -11.79897881280 1.53D-03 -1.40D-02 1.40D-02 DIIS 5 0.70967100s LL Thu Oct 29 It. 7 -11.79906866577 8.99D-05 -3.42D-03 2.14D-03 DIIS 6 0.71048900s LL Thu Oct 29 It. 8 -11.79907226673 3.60D-06 -1.49D-04 3.41D-04 DIIS 7 0.69227600s LL Thu Oct 29 It. 9 -11.79907237251 1.06D-07 3.38D-05 4.90D-05 DIIS 8 0.68975900s LL Thu Oct 29 It. 10 -11.79907237490 2.39D-09 7.44D-06 9.08D-06 DIIS 9 0.68987400s LL Thu Oct 29 It. 11 -11.79907237500 1.02D-10 1.66D-06 1.32D-06 DIIS 9 0.68997000s LL Thu Oct 29 It. 12 -11.79907237500 1.87D-12 2.28D-07 1.00D-07 DIIS 9 0.68991200s LL Thu Oct 29 It. 13 -11.79907237500 -1.07D-14 -1.54D-08 7.79D-09 DIIS 9 0.68696600s LL Thu Oct 29 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 13 iterations. * Average elapsed time per iteration: No 2-ints : 0.03906250s LL : 0.70784505s TOTAL ENERGY ------------ Electronic energy : -14.115670535166061 Other contributions to the total energy Nuclear repulsion energy : 2.316598160162602 Sum of all contributions to the energy Total energy : -11.799072375003458 Eigenvalues ----------- * Fermion symmetry E1 * Closed shell, f = 1.0000 -0.91858300824681 ( 2) -0.53332424268268 ( 2) -0.38664035116952 ( 4) * Virtual eigenvalues, f = 0.0000 0.03415914577022 ( 2) 0.05878598546608 ( 2) 0.08511594353698 ( 2) 0.08655831348231 ( 4) 0.13616239513220 ( 2) 0.20167198110091 ( 4) 0.23444552473940 ( 4) 0.26659777104909 ( 2) 0.33379422464303 ( 2) 0.34298998756012 ( 4) 0.46036400609877 ( 2) 0.49614437257508 ( 4) 0.51225812922220 ( 2) 0.61491923075074 ( 4) 0.61871900639347 ( 4) 0.63458122983289 ( 4) 0.63671447569507 ( 2) 0.68126113771328 ( 4) 0.75708271803338 ( 4) 0.82156075038856 ( 2) 0.92185115719928 ( 2) 0.98434317265376 ( 4) 1.01698231528670 ( 4) 1.19528790781551 ( 2) 1.32084962248570 ( 4) 1.47297468184907 ( 4) 1.48649707222379 ( 4) 1.52558290792586 ( 2) 1.66381720273958 ( 4) 1.68291895784104 ( 2) 1.99293721790309 ( 4) 2.00580508368620 ( 4) 2.23700102326546 ( 2) 2.96678284036991 ( 2) 3.86917720334641 ( 4) 4.03098540285084 ( 4) 4.26054689068545 ( 4) 4.35208714811267 ( 2) 4.68579647675010 ( 2) 7.21075466326779 ( 4) 7.50571888479027 ( 2) 21.10478952853254 ( 2) * HOMO - LUMO gap: E(LUMO) : 0.03415915 au (symmetry E1 ) - E(HOMO) : -0.38664035 au (symmetry E1 ) ------------------------------------------ gap : 0.42079950 au ************************************************************************** ********************** Mulliken population analysis ********************** ************************************************************************** Fermion ircop E1 ---------------- Fermion ircop E1 ---------------- * Electronic eigenvalue no. 1: -0.9185830070991 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.9397 0.0174 0.0178 -0.0074 -0.0074 0.0019 -0.0005 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | -0.0005 0.0413 -0.0042 0.0047 -0.0014 -0.0014 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 2: -0.5333242417661 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.1263 0.3847 -0.0056 0.0024 0.0024 0.0103 -0.0046 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | -0.0046 0.5034 -0.0147 0.0030 -0.0015 -0.0015 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 3: -0.3866403506866 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy ----------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.9866 0.0074 -0.0054 -0.0018 0.0112 0.0019 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 4: -0.3866403506866 (Occupation : f = 1.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz ----------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.9866 0.0074 -0.0018 -0.0054 0.0112 0.0019 * Electronic eigenvalue no. 5: 0.341591464E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 H s -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -1.2526 -0.1521 -0.0144 0.0037 0.0037 0.0004 2.5274 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------- alpha | -0.1122 0.0055 -0.0047 -0.0047 beta | 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 6: 0.587859857E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 1.9024 -0.6915 0.1349 -0.0745 -0.0745 -0.0096 0.0055 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx -------------------------------------------------------------------- alpha | 0.0055 -0.0304 -0.1694 0.0016 beta | 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 7: 0.851159440E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.6378 0.6217 0.1743 0.0728 0.0728 -0.0092 0.0094 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.0094 -0.8598 0.2760 -0.0016 -0.0018 -0.0018 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 8: 0.865583137E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy ----------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 1.0132 0.0015 -0.0011 -0.0004 -0.0112 -0.0021 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 9: 0.865583137E-01 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz ----------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 1.0132 0.0015 -0.0004 -0.0011 -0.0112 -0.0021 * Electronic eigenvalue no. 10: 0.1361623959609 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.0586 0.9861 0.1162 0.0048 0.0048 -0.0020 -0.0012 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | -0.0012 -0.4239 0.2512 -0.0045 0.0056 0.0056 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 11: 0.2016719822513 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy ----------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.2071 -0.0243 -0.0034 -0.0011 0.8341 -0.0125 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 12: 0.2016719822514 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz ----------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.2071 -0.0243 -0.0011 -0.0034 0.8341 -0.0125 * Electronic eigenvalue no. 13: 0.2344455256059 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I dyy L A1 I dzz L A1 H dyy L A1 H dzz ----------------------------------------------------------------------------------- alpha 1.0000 | 0.5002 0.5002 -0.0003 -0.0003 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 14: 0.2344455256060 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A2 I dyz L A2 I fxyz L A2 H dyz -------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 beta 1.0000 | 1.0005 0.0002 -0.0006 * Electronic eigenvalue no. 15: 0.2665977718195 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 1.0015 1.8066 -0.1624 -0.1611 -0.1611 0.0466 -0.0227 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | -0.0227 -3.0790 1.8181 -0.1314 0.0337 0.0337 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 16: 0.3337942256861 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -3.1054 1.2886 -0.3591 0.8677 0.8677 -0.0193 -0.0720 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | -0.0720 0.6962 0.9072 -0.0004 0.0005 0.0005 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 17: 0.3429899883033 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.1181 0.7066 -0.1236 -0.0038 -0.0013 0.6570 -0.1169 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 18: 0.3429899883033 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | -0.1181 0.7066 -0.1236 -0.0013 -0.0038 0.6570 -0.1169 * Electronic eigenvalue no. 19: 0.4603640073124 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 1.1466 0.0493 0.5740 -0.0972 -0.0972 0.0959 0.0357 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.0357 -0.5948 -0.2140 0.0041 0.0309 0.0309 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 20: 0.4961443744604 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 1.1544 0.0271 0.0388 -0.0137 -0.0412 -0.1755 0.0103 * Electronic eigenvalue no. 21: 0.4961443744604 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 1.1544 0.0271 0.0388 -0.0412 -0.0137 -0.1755 0.0103 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 22: 0.5122581306696 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.1991 -0.1617 -0.0211 0.0029 0.0029 0.0256 -0.0239 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | -0.0239 1.1836 0.4070 -0.0540 -0.0691 -0.0691 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 23: 0.6149192321370 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | -0.0217 0.6487 0.3820 0.0302 0.0905 -0.0104 -0.1192 * Electronic eigenvalue no. 24: 0.6149192321370 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.0217 0.6487 0.3820 0.0905 0.0302 -0.0104 -0.1192 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 25: 0.6187190076180 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A2 I dyz L A2 I fxyz L A2 H dyz -------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 beta 1.0000 | 0.0052 0.9122 0.0826 * Electronic eigenvalue no. 26: 0.6187190076181 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I dyy L A1 I dzz L A1 I fxyy L A1 I fxzz L A1 H dyy L A1 H dzz ----------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.0026 0.0026 0.4561 0.4561 0.0413 0.0413 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 27: 0.6345812309631 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I fyyy L B1 I fyzz ----------------------------------------------------- alpha 1.0000 | 0.2500 0.7500 beta 0.0000 | 0.0000 0.0000 * Electronic eigenvalue no. 28: 0.6345812309631 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I fyyz L B2 I fzzz ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.7500 0.2500 * Electronic eigenvalue no. 29: 0.6367144769880 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.3297 -0.5517 0.1349 -0.0840 -0.0840 -0.0417 -0.0122 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | -0.0122 2.8793 -1.6220 0.1463 -0.0412 -0.0412 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 30: 0.6812611388110 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I dyy L A1 I dzz L A1 I fxyy L A1 I fxzz L A1 H dyy L A1 H dzz ----------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.4896 0.4896 0.0053 0.0053 0.0051 0.0051 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 31: 0.6812611388111 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A2 I dyz L A2 I fxyz L A2 H dyz -------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 beta 1.0000 | 0.9793 0.0106 0.0101 * Electronic eigenvalue no. 32: 0.7570827190616 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.0102 0.3801 0.6078 0.0974 0.0325 -0.1595 0.0315 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 33: 0.7570827190616 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.0102 0.3801 0.6078 0.0325 0.0974 -0.1595 0.0315 * Electronic eigenvalue no. 34: 0.8215607516183 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.3517 -0.5131 -0.1113 0.0294 0.0294 0.0616 0.0756 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.0756 1.0985 -0.1167 -0.0267 0.0230 0.0230 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 35: 0.9218511586016 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.2866 -0.0641 0.1391 -0.0372 -0.0372 0.2647 0.2295 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.2295 -0.0115 -0.3839 0.2574 0.0637 0.0637 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 36: 0.9843431739948 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I dyy L A1 I dzz L A1 I fxyy L A1 I fxzz L A1 H dyy L A1 H dzz ----------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.0069 0.0069 0.0385 0.0385 0.4545 0.4545 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 37: 0.9843431739993 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A2 I dyz L A2 I fxyz L A2 H dyz -------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 beta 1.0000 | 0.0139 0.0771 0.9091 * Electronic eigenvalue no. 38: 1.0169823167879 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.0165 -0.0330 -0.0082 -0.0021 -0.0007 0.1182 0.9422 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 39: 1.0169823167879 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | -0.0165 -0.0330 -0.0082 -0.0007 -0.0021 0.1182 0.9422 * Electronic eigenvalue no. 40: 1.1952879093807 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.2872 -0.2580 0.2671 -0.0428 -0.0428 -0.1137 0.1353 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.1353 -0.0681 0.0176 0.5580 0.0624 0.0624 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 41: 1.3208496243061 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.0050 0.0740 0.1272 0.0737 0.0246 0.4453 0.2602 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 42: 1.3208496243061 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | -0.0050 0.0740 0.1272 0.0246 0.0737 0.4453 0.2602 * Electronic eigenvalue no. 43: 1.4729746837517 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A2 I dyz L A2 I fxyz L A2 H dyz -------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 beta 1.0000 | 0.0002 0.9973 0.0025 * Electronic eigenvalue no. 44: 1.4729746837519 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I dyy L A1 I dzz L A1 I fxyy L A1 I fxzz L A1 H dyy L A1 H dzz ----------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.0001 0.0001 0.4986 0.4986 0.0013 0.0013 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 45: 1.4864970741657 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I fyyy L B1 I fyzz ----------------------------------------------------- alpha 1.0000 | 0.2500 0.7500 beta 0.0000 | 0.0000 0.0000 * Electronic eigenvalue no. 46: 1.4864970741657 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I fyyz L B2 I fzzz ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.7500 0.2500 * Electronic eigenvalue no. 47: 1.5255829101584 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.2512 0.1951 0.1820 0.0408 0.0408 0.2094 0.1533 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.1533 -0.6934 0.3841 0.0084 0.0375 0.0375 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 48: 1.6638172048241 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.0044 0.0228 0.5644 0.1102 0.0367 0.2654 0.0049 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 49: 1.6638172048241 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | -0.0044 0.0228 0.5644 0.0367 0.1102 0.2654 0.0049 * Electronic eigenvalue no. 50: 1.6829189596502 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.0984 0.0628 -0.1223 0.1151 0.1151 0.1839 0.1696 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.1696 -0.1175 0.3709 -0.0578 0.0060 0.0060 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 51: 1.9929372199033 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I dyy L A1 I dzz L A1 H dyy L A1 H dzz ----------------------------------------------------------------------------------- alpha 1.0000 | 0.5006 0.5006 -0.0006 -0.0006 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 52: 1.9929372199035 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A2 I dyz L A2 H dyz ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 1.0012 -0.0013 * Electronic eigenvalue no. 53: 2.0058050855433 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.0010 0.9674 0.0124 0.0004 0.0012 0.0111 0.0065 * Electronic eigenvalue no. 54: 2.0058050855433 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.0010 0.9674 0.0124 0.0012 0.0004 0.0111 0.0065 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 55: 2.2370010255179 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.1876 0.1139 0.6155 0.1166 0.1166 -0.0048 0.0081 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.0081 -0.1927 0.1010 -0.0777 0.0039 0.0039 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 56: 2.9667828429807 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.0180 -0.0728 -0.0868 0.0100 0.0100 -0.0536 0.0042 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.0042 1.1004 0.0529 0.0165 0.0165 0.0165 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 57: 3.8691772059475 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A2 I dyz L A2 I fxyz L A2 H dyz -------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 beta 1.0000 | -0.0002 0.0027 0.9975 * Electronic eigenvalue no. 58: 3.8691772059478 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I dyy L A1 I dzz L A1 I fxyy L A1 I fxzz L A1 H dyy L A1 H dzz ----------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.0001 -0.0001 0.0013 0.0013 0.4988 0.4988 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 59: 4.0309854056067 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.0010 0.0042 -0.0030 0.0029 0.0010 0.0070 0.9889 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 60: 4.0309854056068 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | -0.0010 0.0042 -0.0030 0.0010 0.0029 0.0070 0.9889 * Electronic eigenvalue no. 61: 4.2605468934158 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I dxy L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.0036 -0.0052 -0.0136 0.0043 0.0014 1.0083 0.0083 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 62: 4.2605468934159 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I dxz L B2 I fxxz L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | -0.0036 -0.0052 -0.0136 0.0014 0.0043 1.0083 0.0083 * Electronic eigenvalue no. 63: 4.3520871512131 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.0819 -0.0193 0.0117 0.0066 0.0066 -0.0178 0.0044 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.0044 0.0492 0.5274 0.3423 0.0832 0.0832 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 64: 4.6857964794993 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.0999 -0.0262 -0.0329 0.0045 0.0045 -0.0177 0.0017 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz -------------------------------------------------------------------------------------------------- alpha | 0.0017 0.0736 0.4784 0.3342 0.0392 0.0392 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 65: 7.2107546651897 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1 I py L B1 I fxxy L B1 I fyyy L B1 H py L B1 H dxy -------------------------------------------------------------------------------------------------- alpha 1.0000 | 1.0050 0.0003 -0.0003 -0.0009 -0.0040 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 66: 7.2107546651897 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2 I pz L B2 I fxxz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 1.0050 0.0003 -0.0003 -0.0009 -0.0040 * Electronic eigenvalue no. 67: 7.5057188868297 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy L A1 I fxzz -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | -0.0030 0.9840 0.0010 0.0010 0.0119 -0.0066 -0.0066 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz ----------------------------------------------------------------------------------- alpha | -0.0086 0.0062 0.0143 0.0032 0.0032 beta | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 68: 21.104789530482 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.9547 0.0003 0.0175 -0.0086 -0.0086 -0.0036 0.0019 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx -------------------------------------------------------------------- alpha | 0.0019 -0.0731 0.0390 0.0788 beta | 0.0000 0.0000 0.0000 0.0000 *** Total gross population *** Gross Total | L A1 I s L A1 I px L A1 I dxx L A1 I dyy L A1 I dzz L A1 I fxxx L A1 I fxyy -------------------------------------------------------------------------------------------------------------------------------- total 8.00000 | 2.13199 0.80420 0.02451 -0.01005 -0.01005 0.02440 -0.01026 Gross | L A1 I fxzz L A1 H s L A1 H px L A1 H dxx L A1 H dyy L A1 H dzz L B1 I py L B1 I dxy -------------------------------------------------------------------------------------------------------------------------------- total | -0.01026 1.08954 -0.03782 0.01543 -0.00582 -0.00582 1.97311 0.00012 Gross | L B1 I fxxy L B1 I fyyy L B1 I fyzz L B1 H py L B1 H dxy L B2 I pz L B2 I dxz L B2 I fxxz -------------------------------------------------------------------------------------------------------------------------------- total | 0.01484 -0.01082 -0.00361 0.02248 0.00388 1.97311 0.00012 0.01484 Gross | L B2 I fyyz L B2 I fzzz L B2 H pz L B2 H dxz -------------------------------------------------------------------- total | -0.00361 -0.01082 0.02248 0.00388 ******************************************************************* ************************* Property module ************************* ******************************************************************* This is output from the Dirac property module: HF & DFT first order properties Trond Saue First-order ESR properties Hans Joergen Aa. Jensen et al. MP2 first order properties: J. N. P. van Stralen, L. Visscher, C. V. Larsen and H. J. Aa Jensen, Chem. Phys. 311 (2005) 81. KR-RPA second-order properties Hans Joergen Aa. Jensen and Trond Saue KR-QR third order properties Patrick Norman and Hans Joergen Aa. Jensen Molecular gradient Joern Thyssen Additional contributions from: Thomas Enevoldsen, Miroslav Ilias (London orbitals) ******************************************************* ********** Properties for DHF wave function ********** ******************************************************* ************************************************************************** *************************** Expectation values *************************** ************************************************************************** s0 t0 ---------------------------------------------------------------------------- Dipole length: X : -21.37187217506 a.u. F F Dipole length: Y : 0.00000000E+00 a.u. T F Dipole length: Z : 0.00000000E+00 a.u. T F ---------------------------------------------------------------------------- s0 = T : Expectation value zero by point group symmetry. t0 = T : Expectation value zero by time reversal symmetry. ---------------------------------------------------------------------------- * Dipole moment: Electronic Nuclear Total contribution contribution contribution ---------------------------------------------------------------------------- x -54.32238354 Debye 53.76276824 Debye -0.55961529 Debye y 0.00000000 Debye 0.00000000 Debye 0.00000000 Debye z 0.00000000 Debye 0.00000000 Debye 0.00000000 Debye ---------------------------------------------------------------------------- x -21.37187218 a.u. 21.15170462 a.u. -0.22016756 a.u. y 0.00000000 a.u. 0.00000000 a.u. 0.00000000 a.u. z 0.00000000 a.u. 0.00000000 a.u. 0.00000000 a.u. ---------------------------------------------------------------------------- 1 a.u = 2.54177000 Debye ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Thu Oct 29 22:44:11 2015 Host name : miro_ilias_desktop >>>> Node 0, utime: 8, stime: 0, minflt: 8186, majflt: 31, nvcsw: 46, nivcsw: 1258, maxrss: 65028 >>>> Total WALL time used in DIRAC: 9s Dynamical Memory Usage Summary Mean allocation size (Mb) : 142.46 Largest 10 allocations 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMPRP_1 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMANA 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PSISCF 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMSET - 2 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in GMOTRA 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMSET - 1 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for test allocation of work array in DIRAC mai 0.76 Mb at subroutine __allocator_track_if_MOD_allocator_registe for PAMINP WORK array 0.05 Mb at subroutine __allocator_track_if_MOD_allocator_registe for buf in butobs 0.05 Mb at subroutine __allocator_track_if_MOD_allocator_registe for buf in butobs Peak memory usage (Mb) : 488.00 reached at subroutine : __allocator_track_if_MOD_allocator_registe for variable : buf in butobs MEMGET high-water mark: 0.00 MB *****************************************************