** notice ** integer kinds do not match: dirac --> kind = 8 MPI library --> kind = 4 ** interface to 32-bit integer MPI enabled ** DIRAC master (lxir127) starts by allocating 26000000 r*8 words ( 0.194 GB) of memory DIRAC nodes 1 to 15 starts by allocating 26000000 r*8 words ( 0.194 GB) of memory DIRAC master (lxir127) to allocate at most 49000000 r*8 words ( 0.365 GB) of memory Note: maximum allocatable memory for master+nodes can be set by -aw (MW)/-ag (GB) flags in pam DIRAC nodes 1 to 15 to allocate at most 49000000 r*8 words ( 0.365 GB) of memory ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Lucas Visscher Vrije Universiteit Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast UiT The Arctic University of Norway * * Trond Saue Universite Toulouse III France * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer University of Copenhagen Denmark * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Erik D. Hedegård Lund University Sweden * * Trygve Helgaker University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak Bhabha Atomic Research Centre India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Jógvan Magnus H. Olsen University of Southern Denmark Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema Vrije Universiteit Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen Vrije Universiteit Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC17 (2017), * * written by L. Visscher, H. J. Aa. Jensen, R. Bast, and T. Saue, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, * * Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, * * C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, * * G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, * * R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, * * A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, * * T. Winther, and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* Version information ------------------- Branch | miro/count_cc_memory Commit hash | e4113f8 Commit author | Miroslav Ilias Commit date | Fri Sep 8 22:44:28 2017 +0200 Configuration and build information ----------------------------------- Who compiled | milias Compiled on server | lxir127 Operating system | Linux-3.16.0-4-amd64 CMake version | 3.5.0 CMake generator | Unix Makefiles CMake build type | release Configuration time | 2017-09-09 20:00:25.292552 Python version | 2.7.9 Fortran compiler | /cvmfs/it.gsi.de/openmpi/gcc/1.10.0/bin/mpif90 Fortran compiler version | 4.9.2 Fortran compiler flags | -g -fcray-pointer -fbacktrace -fno-range-check -DVAR_GFORTRAN -DVAR_MFDS -fdefault-integer-8 -g -fcray-pointer -fbacktrace -fno-range-check -DVAR_GFORTRAN -DVAR_MFDS -fdefault-integer-8 C compiler | /cvmfs/it.gsi.de/openmpi/gcc/1.10.0/bin/mpicc C compiler version | 4.9.2 C compiler flags | -g -g C++ compiler | /cvmfs/it.gsi.de/openmpi/gcc/1.10.0/bin/mpiCC C++ compiler version | 4.9.2 C++ compiler flags | -g -Wall -Wno-unknown-pragmas -Wno-sign-compare -Woverloaded-virtual -Wwrite-strings -Wno-unused -g -Wall -Wno-unknown-pragmas -Wno-sign-compare -Woverloaded-virtual -Wwrite-strings -Wno-unused Static linking | False 64-bit integers | True MPI parallelization | True MPI launcher | /cvmfs/it.gsi.de/openmpi/gcc/1.10.0/bin/mpiexec Math libraries | -Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_lapack95_ilp64.a;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_gf_ilp64.so;-fopenmp;-Wl,--end-group;-Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_gf_ilp64.so;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_gnu_thread.so;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/usr/lib/x86_64-linux-gnu/libm.so;-fopenmp;-Wl,--end-group Builtin BLAS library | OFF Builtin LAPACK library | OFF Explicit libraries | unknown Compile definitions | HAVE_MPI;VAR_MPI;VAR_MPI2;VAR_MPI_32BIT_INT;MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;BUILD_GEN1INT;HAS_PELIB;MOD_QCORR;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ESR;MOD_KRCC;MOD_SRDFT Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Sun Sep 10 14:57:40 2017 Host name : lxir127 +++++ entering dirac/DIRCTL ++++++ Contents of the input file -------------------------- **DIRAC .TITLE H2O .WAVE FUNCTION **MOLECULE *BASIS .DEFAULT dyall.ae4z **GENERAL .PCMOUT **HAMILTONIAN .X2C **INTEGRALS *READIN .UNCONTRACT **WAVE FUNCTION .SCF .RELCCSD **SCF .PRINT 1 .CLOSED SHELL 10 .EVCCNV 1.0D-8 1.0D-6 .MAXITR 1 **MOLTRA # freeze O:1s(2) .ACTIVE energy -10.00 50.00 0.02 **RELCCSD .ENERGY .NELEC 4 4 *CCENER .NTOL 6 *END OF Contents of the molecule file ----------------------------- 3 H2O molecule in the C2V symmetry O 0.0 0.00000000 0.0000000 H 0.0 0.75115500 -0.5816060 H 0.0 -0.75115500 -0.5816060 ************************************************************************* ********************************* H2O ********************************* ************************************************************************* Jobs in this run: * Wave function ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Parallel run with 15 slaves. * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * MO-coefficients written to formatted file DFPCMO * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 Nuclear model: Gaussian charge distribution. Two-electron integrals not calculated. Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated. Changes of defaults for *READIN ------------------------------- Uncontracted basis forced, irrespective of basis input file. *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 The molecule has been centered at center of mass Symmetry point group found: C(2v) Centered and Rotated in original atom order ------------------------------------------- 1 0.00000000 1.41947723 -0.97607311 1 1 0.00000000 -1.41947723 -0.97607311 1 8 0.00000000 0.00000000 0.12300295 1 Rotational Axes --------------- 2 : 0.00000000 0.00000000 -1.00000000 Isotope 0 No unique improper rotational axes were found. Mirror planes: 2=h, 1=v, 0=other -------------------------------- 1 : -1.00000000 0.00000000 0.00000000 Isotope 0 1 : 0.00000000 1.00000000 0.00000000 Isotope 0 The following elements were found: X Y Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Full group is: C(2v) Represented as: C2v * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane * Group multiplication table | E C2z Oxz Oyz -----+-------------------- E | E C2z Oxz Oyz C2z | C2z E Oyz Oxz Oxz | Oxz Oyz E C2z Oyz | Oyz Oxz C2z E * Character table | E C2z Oxz Oyz -----+-------------------- A1 | 1 1 1 1 B1 | 1 -1 1 -1 B2 | 1 -1 -1 1 A2 | 1 1 -1 -1 * Direct product table | A1 B1 B2 A2 -----+-------------------- A1 | A1 B1 B2 A2 B1 | B1 A1 A2 B2 B2 | B2 A2 A1 B1 A2 | A2 B2 B1 A1 ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A1 + A2 + B1 + B2 Spinor structure ---------------- * Fermion irrep no.: 1 La | A1 (1) A2 (2) | Sa | A2 (1) A1 (2) | Lb | B1 (3) B2 (4) | Sb | B2 (3) B1 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A1 1 B1 j B2 k A2 i QM-QM nuclear repulsion energy : 9.264703691983 Atoms and basis sets -------------------- Number of atom types : 2 Total number of atoms: 3 label atoms charge prim cont basis ---------------------------------------------------------------------- O 1 8 123 123 L - [18s10p5d3f1g|18s10p5d3f1g] H 2 1 42 42 L - [11s3p2d1f|11s3p2d1f] ---------------------------------------------------------------------- 207 207 L - large components ---------------------------------------------------------------------- total: 3 10 207 207 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 1s-3s: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128. 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638; K.G. Dyall, Theor. Chem. Acc. (2012) 131:1217. 2p-3p: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128. 4p-6p: K.G. Dyall, Theor. Chem. Acc. (2006) 115:441; K.G. Dyall, Theor. Chem. Acc. (2012) 131:1217. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172; K.G. Dyall, Theor. Chem. Acc. (2012) 131:1217. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483; Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 9 1 O x 0.0000000000 2 y 0.0000000000 3 z 0.1230029517 4 H 1 x 0.0000000000 5 y 1.4194772341 6 z -0.9760731062 7 H 2 x 0.0000000000 8 y -1.4194772341 9 z -0.9760731062 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 3 O 0.0000000000 0.0000000000 0.0650903586 H 0.0000000000 0.7511550000 -0.5165156414 H 0.0000000000 -0.7511550000 -0.5165156414 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 3 2 3 1 Symmetry A1 ( 1) 1 O z 3 2 H y [ 5 - 8 ]/2 3 H z [ 6 + 9 ]/2 Symmetry B1 ( 2) 4 O x 1 5 H x [ 4 + 7 ]/2 Symmetry B2 ( 3) 6 O y 2 7 H y [ 5 + 8 ]/2 8 H z [ 6 - 9 ]/2 Symmetry A2 ( 4) 9 H x [ 4 - 7 ]/2 Interatomic separations (in Angstroms): --------------------------------------- O H 1 H 2 O 0.000000 H 1 0.950000 0.000000 H 2 0.950000 1.502310 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: H 1 O 0.950000 bond distance: H 2 O 0.950000 Bond angles (degrees): ---------------------- atom 1 atom 2 atom 3 angle ------ ------ ------ ----- bond angle: H 2 O H 1 104.500 Nuclear repulsion energy : 9.264703691983 Hartree GETLAB: AO-labels ----------------- * Large components: 75 1 L O 1 s 2 L O 1 px 3 L O 1 py 4 L O 1 pz 5 L O 1 dxx 6 L O 1 dxy 7 L O 1 dxz 8 L O 1 dyy 9 L O 1 dyz 10 L O 1 dzz 11 L O 1 fxxx 12 L O 1 fxxy 13 L O 1 fxxz 14 L O 1 fxyy 15 L O 1 fxyz 16 L O 1 fxzz 17 L O 1 fyyy 18 L O 1 fyyz 19 L O 1 fyzz 20 L O 1 fzzz 21 L O 1 g400 22 L O 1 g310 23 L O 1 g301 24 L O 1 g220 25 L O 1 g211 26 L O 1 g202 27 L O 1 g130 28 L O 1 g121 29 L O 1 g112 30 L O 1 g103 31 L O 1 g040 32 L O 1 g031 33 L O 1 g022 34 L O 1 g013 35 L O 1 g004 36 L H 1 s 37 L H 2 s 38 L H 1 px 39 L H 1 py 40 L H 1 pz 41 L H 2 px 42 L H 2 py 43 L H 2 pz 44 L H 1 dxx 45 L H 1 dxy 46 L H 1 dxz 47 L H 1 dyy 48 L H 1 dyz 49 L H 1 dzz 50 L H 2 dxx 51 L H 2 dxy 52 L H 2 dxz 53 L H 2 dyy 54 L H 2 dyz 55 L H 2 dzz 56 L H 1 fxxx 57 L H 1 fxxy 58 L H 1 fxxz 59 L H 1 fxyy 60 L H 1 fxyz 61 L H 1 fxzz 62 L H 1 fyyy 63 L H 1 fyyz 64 L H 1 fyzz 65 L H 1 fzzz 66 L H 2 fxxx 67 L H 2 fxxy 68 L H 2 fxxz 69 L H 2 fxyy 70 L H 2 fxyz 71 L H 2 fxzz 72 L H 2 fyyy 73 L H 2 fyyz 74 L H 2 fyzz 75 L H 2 fzzz * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 75 1 L A1 O s 2 L A1 O pz 3 L A1 O dxx 4 L A1 O dyy 5 L A1 O dzz 6 L A1 O fxxz 7 L A1 O fyyz 8 L A1 O fzzz 9 L A1 O g400 10 L A1 O g220 11 L A1 O g202 12 L A1 O g040 13 L A1 O g022 14 L A1 O g004 15 L A1 H s 16 L A1 H py 17 L A1 H pz 18 L A1 H dxx 19 L A1 H dyy 20 L A1 H dyz 21 L A1 H dzz 22 L A1 H fxxy 23 L A1 H fxxz 24 L A1 H fyyy 25 L A1 H fyyz 26 L A1 H fyzz 27 L A1 H fzzz 28 L B1 O px 29 L B1 O dxz 30 L B1 O fxxx 31 L B1 O fxyy 32 L B1 O fxzz 33 L B1 O g301 34 L B1 O g121 35 L B1 O g103 36 L B1 H px 37 L B1 H dxy 38 L B1 H dxz 39 L B1 H fxxx 40 L B1 H fxyy 41 L B1 H fxyz 42 L B1 H fxzz 43 L B2 O py 44 L B2 O dyz 45 L B2 O fxxy 46 L B2 O fyyy 47 L B2 O fyzz 48 L B2 O g211 49 L B2 O g031 50 L B2 O g013 51 L B2 H s 52 L B2 H py 53 L B2 H pz 54 L B2 H dxx 55 L B2 H dyy 56 L B2 H dyz 57 L B2 H dzz 58 L B2 H fxxy 59 L B2 H fxxz 60 L B2 H fyyy 61 L B2 H fyyz 62 L B2 H fyzz 63 L B2 H fzzz 64 L A2 O dxy 65 L A2 O fxyz 66 L A2 O g310 67 L A2 O g130 68 L A2 O g112 69 L A2 H px 70 L A2 H dxy 71 L A2 H dxz 72 L A2 H fxxx 73 L A2 H fxyy 74 L A2 H fxyz 75 L A2 H fxzz * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 89 38 58 22 Number of large orbitals in each symmetry: 89 38 58 22 Number of small orbitals in each symmetry: 0 0 0 0 * Large component functions Symmetry A1 ( 1) 18 functions: O s 10 functions: O pz 5 functions: O dxx 5 functions: O dyy 5 functions: O dzz 3 functions: O fxxz 3 functions: O fyyz 3 functions: O fzzz 1 functions: O g400 1 functions: O g220 1 functions: O g202 1 functions: O g040 1 functions: O g022 1 functions: O g004 11 functions: H s 1+2 3 functions: H py 1-2 3 functions: H pz 1+2 2 functions: H dxx 1+2 2 functions: H dyy 1+2 2 functions: H dyz 1-2 2 functions: H dzz 1+2 1 functions: H fxxy1-2 1 functions: H fxxz1+2 1 functions: H fyyy1-2 1 functions: H fyyz1+2 1 functions: H fyzz1-2 1 functions: H fzzz1+2 Symmetry B1 ( 2) 10 functions: O px 5 functions: O dxz 3 functions: O fxxx 3 functions: O fxyy 3 functions: O fxzz 1 functions: O g301 1 functions: O g121 1 functions: O g103 3 functions: H px 1+2 2 functions: H dxy 1-2 2 functions: H dxz 1+2 1 functions: H fxxx1+2 1 functions: H fxyy1+2 1 functions: H fxyz1-2 1 functions: H fxzz1+2 Symmetry B2 ( 3) 10 functions: O py 5 functions: O dyz 3 functions: O fxxy 3 functions: O fyyy 3 functions: O fyzz 1 functions: O g211 1 functions: O g031 1 functions: O g013 11 functions: H s 1-2 3 functions: H py 1+2 3 functions: H pz 1-2 2 functions: H dxx 1-2 2 functions: H dyy 1-2 2 functions: H dyz 1+2 2 functions: H dzz 1-2 1 functions: H fxxy1+2 1 functions: H fxxz1-2 1 functions: H fyyy1+2 1 functions: H fyyz1-2 1 functions: H fyzz1+2 1 functions: H fzzz1-2 Symmetry A2 ( 4) 5 functions: O dxy 3 functions: O fxyz 1 functions: O g310 1 functions: O g130 1 functions: O g112 3 functions: H px 1-2 2 functions: H dxy 1+2 2 functions: H dxz 1-2 1 functions: H fxxx1-2 1 functions: H fxyy1-2 1 functions: H fxyz1+2 1 functions: H fxzz1-2 *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set =========================================================================== Set-up for AMFI/RELSCF calculations =========================================================================== ...no reading under "*AMFI ", thus default settings * AMFI code print level: 0 * RELSCF code print level: 0 * RELSCF maximum number of iterations: 50 * All AMFI mean-field summations are on neutral individual atoms. * order of AMFI contributions to the X2C Hamiltonian: 2 --> adding spin-same orbit MFSSO2 terms. ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF RELCCSD Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Run RELCCSD code * Initial Automatic occupation based on: Total charge of atoms = 10 Charge of molecule = 0 i.e. no. of electrons = 10 =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 1 * Closed shell SCF calculation with 10 electrons in 5 orbitals. * Sum of atomic potentials used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 to improve convergence (default value). The final open-shell orbital energies are recalculated with 1.0 scaling, such that all occupied orbital energies correspond to Koopmans' theorem ionization energies. ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. =========================================================================== **RELCC: Set-up for Coupled Cluster calculations =========================================================================== =========================================================================== TRPINP: Property integral transformation =========================================================================== * Print level: 0 *The following operators will be transformed: 1 XDIPLEN B1 T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : XDIPLEN +00+ 1.0000000000000 (real) ........................................................................... 2 YDIPLEN B2 T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : YDIPLEN +00+ 1.0000000000000 (real) ........................................................................... 3 ZDIPLEN A1 T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : ZDIPLEN +00+ 1.0000000000000 (real) ........................................................................... --------------------------------------------------------------------------- =========================================================================== TRAINP: Set-up for index transformation =========================================================================== * General print level : 0 * Electronic orbitals only. * Total active space. Fermion ircop:E1 No explicit orbitals specified * Set-up for 2-index transformation * LS Integrals not included in core Fock-matrix * SS Integrals not included in core Fock-matrix * Active spaces: Fermion ircop:E1 No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 * Set-up for 4-index transformation * Following scheme : 6 - write half-transformed integrals (ij|rs) to disk - sorting of intermediate 1HT integrals is disabled * Screening threshold :1.00E-14 * MO integral threshold :1.00E-14 * LS Integrals not transformed. * SS Integrals not transformed. * Gaunt Integrals not transformed. * 4-index transformed integrals written to file. * Active spaces: Fermion ircop:E1 No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 The molecule has been centered at center of mass Symmetry point group found: C(2v) Centered and Rotated in original atom order ------------------------------------------- 1 0.00000000 1.41947723 -0.97607311 1 1 0.00000000 -1.41947723 -0.97607311 1 8 0.00000000 0.00000000 0.12300295 1 Rotational Axes --------------- 2 : 0.00000000 0.00000000 -1.00000000 Isotope 0 No unique improper rotational axes were found. Mirror planes: 2=h, 1=v, 0=other -------------------------------- 1 : -1.00000000 0.00000000 0.00000000 Isotope 0 1 : 0.00000000 1.00000000 0.00000000 Isotope 0 The following elements were found: X Y Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Full group is: C(2v) Represented as: C2v * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane * Group multiplication table | E C2z Oxz Oyz -----+-------------------- E | E C2z Oxz Oyz C2z | C2z E Oyz Oxz Oxz | Oxz Oyz E C2z Oyz | Oyz Oxz C2z E * Character table | E C2z Oxz Oyz -----+-------------------- A1 | 1 1 1 1 B1 | 1 -1 1 -1 B2 | 1 -1 -1 1 A2 | 1 1 -1 -1 * Direct product table | A1 B1 B2 A2 -----+-------------------- A1 | A1 B1 B2 A2 B1 | B1 A1 A2 B2 B2 | B2 A2 A1 B1 A2 | A2 B2 B1 A1 ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A1 + A2 + B1 + B2 Spinor structure ---------------- * Fermion irrep no.: 1 La | A1 (1) A2 (2) | Sa | A2 (1) A1 (2) | Lb | B1 (3) B2 (4) | Sb | B2 (3) B1 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A1 1 B1 j B2 k A2 i QM-QM nuclear repulsion energy : 9.264703691983 Atoms and basis sets -------------------- Number of atom types : 2 Total number of atoms: 3 label atoms charge prim cont basis ---------------------------------------------------------------------- O 1 8 123 123 L - [18s10p5d3f1g|18s10p5d3f1g] H 2 1 42 42 L - [11s3p2d1f|11s3p2d1f] ---------------------------------------------------------------------- 207 207 L - large components 485 485 S - small components ---------------------------------------------------------------------- total: 3 10 692 692 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 1s-3s: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128. 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638; K.G. Dyall, Theor. Chem. Acc. (2012) 131:1217. 2p-3p: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128. 4p-6p: K.G. Dyall, Theor. Chem. Acc. (2006) 115:441; K.G. Dyall, Theor. Chem. Acc. (2012) 131:1217. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172; K.G. Dyall, Theor. Chem. Acc. (2012) 131:1217. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483; Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 9 1 O x 0.0000000000 2 y 0.0000000000 3 z 0.1230029517 4 H 1 x 0.0000000000 5 y 1.4194772341 6 z -0.9760731062 7 H 2 x 0.0000000000 8 y -1.4194772341 9 z -0.9760731062 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 3 O 0.0000000000 0.0000000000 0.0650903586 H 0.0000000000 0.7511550000 -0.5165156414 H 0.0000000000 -0.7511550000 -0.5165156414 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 3 2 3 1 Symmetry A1 ( 1) 1 O z 3 2 H y [ 5 - 8 ]/2 3 H z [ 6 + 9 ]/2 Symmetry B1 ( 2) 4 O x 1 5 H x [ 4 + 7 ]/2 Symmetry B2 ( 3) 6 O y 2 7 H y [ 5 + 8 ]/2 8 H z [ 6 - 9 ]/2 Symmetry A2 ( 4) 9 H x [ 4 - 7 ]/2 Interatomic separations (in Angstroms): --------------------------------------- O H 1 H 2 O 0.000000 H 1 0.950000 0.000000 H 2 0.950000 1.502310 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: H 1 O 0.950000 bond distance: H 2 O 0.950000 Bond angles (degrees): ---------------------- atom 1 atom 2 atom 3 angle ------ ------ ------ ----- bond angle: H 2 O H 1 104.500 Nuclear repulsion energy : 9.264703691983 Hartree Nuclear contribution to dipole moments -------------------------------------- au Debye z -0.96812260 -2.46074498 1 Debye = 2.54177000 a.u. Generating Lowdin canonical matrix: ----------------------------------- L A1 * Deleted: 15(Proj: 15, Lindep: 0) Smin: 0.26E-03 L B1 * Deleted: 5(Proj: 5, Lindep: 0) Smin: 0.60E-02 L B2 * Deleted: 8(Proj: 8, Lindep: 0) Smin: 0.63E-03 L A2 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.16E-01 S A1 * Deleted: 43(Proj: 43, Lindep: 0) Smin: 0.51E-06 S B1 * Deleted: 16(Proj: 16, Lindep: 0) Smin: 0.55E-06 S B2 * Deleted: 24(Proj: 24, Lindep: 0) Smin: 0.44E-06 S A2 * Deleted: 8(Proj: 8, Lindep: 0) Smin: 0.10E-04 ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! * Applied SL-regrouping on AO2MO tranf.matrix in SLSORT. Output from AMFIIN ------------------ *** number of unique nuclei (from file MNF.INP): 2 *** calculate AMFI for atom type 1 with atomic charge 8 *** number of nuclei with identical atom type: 1 unique nuclei index: 1 *** file with AMFI integrals for this center: AOPROPER_MNF.8.1 ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators charge on the calculated atom: 0 Mean-field summation for electrons #: 8 ...electronic occupation of O: [He]2s^2 2p^4 **** Written to the file TOSCF for "relscf" **** charge: 8.000 nprimit: 18 10 5 3 closed sh.: 2 0 0 0 open sh.: 0 4 0 0 *** PROGRAM AT34 - ALLIANT - @V *** ----------------------------------- SYMMETRY SPECIES S P D F NUMBER OF BASIS FUNCTIONS: 18 10 5 3 NUMBER OF CLOSED SHELLS : 2 0 0 0 OPEN SHELL OCCUPATION : 0 4 0 0 ### SCF ITERATIONS ### ### NON-RELATIVISTIC APPROX. ### 1. iteration, total energy: 0.000000000000 2. iteration, total energy: -50.204030166986 3. iteration, total energy: -72.081647853215 4. iteration, total energy: -74.079991157610 5. iteration, total energy: -74.707354257920 6. iteration, total energy: -74.800592435987 7. iteration, total energy: -74.808694459124 8. iteration, total energy: -74.809334985365 9. iteration, total energy: -74.809379069889 10. iteration, total energy: -74.809387146791 11. iteration, total energy: -74.809387866418 12. iteration, total energy: -74.809387861701 13. iteration, total energy: -74.809387870987 14. iteration, total energy: -74.809387866549 15. iteration, total energy: -74.809387864311 15. iteration, total energy: -74.809387864208 ### NON-RELATIVISTIC APPROX. ### 15 -0.7480938786D+02 -0.1496179375D+03 0.7480854964D+02 -0.2000011205D+01 ### SCF ITERATIONS ### ### EV APPROX. ### 1. iteration, total energy: -74.857311040945 2. iteration, total energy: -74.861730465060 3. iteration, total energy: -74.861731785097 4. iteration, total energy: -74.861731880780 5. iteration, total energy: -74.861731891907 6. iteration, total energy: -74.861731889064 7. iteration, total energy: -74.861731889189 8. iteration, total energy: -74.861731889199 8. iteration, total energy: -74.861731889200 ### EV OPERATOR RESULT ### 8 -0.7486173189D+02 -0.1498353988D+03 0.7497366691D+02 -0.1998507009D+01 *** AMFIIN: ADDING nucleus 1 with charge 8 to the BSSn Hamiltonian. *** calculate AMFI for atom type 2 with atomic charge 1 *** number of nuclei with identical atom type: 2 no 2e-SO corrections for hydrogen or hydrogen-like 1e-systems. AMFI is skipped. unique nuclei index: 2 *** This (AMFI) unique nuclei is not to be calculated ! Only pass (to read input basis) through the AMFI routine. ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators skip explicit AMFI - reading AMFI integrals from file AOPROPER_MNF.xxx! ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* >>> Time used in mk_h2c is 0.60 seconds SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 The molecule has been centered at center of mass Symmetry point group found: C(2v) The following elements were found: X Y Nuclear contribution to dipole moments -------------------------------------- au Debye z -0.96812260 -2.46074498 1 Debye = 2.54177000 a.u. Generating Lowdin canonical matrix: ----------------------------------- L A1 * Deleted: 15(Proj: 15, Lindep: 0) Smin: 0.26E-03 L B1 * Deleted: 5(Proj: 5, Lindep: 0) Smin: 0.60E-02 L B2 * Deleted: 8(Proj: 8, Lindep: 0) Smin: 0.63E-03 L A2 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.16E-01 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** No. of positive energy orbitals (NESH): 177 No. of negative energy orbitals (NPSH): 0 Total no. of orbitals (NORB): 177 >>> Time used in PAMSET is 0.77 seconds Reading formatted DFPCMO file...Done. =========================================================================== * PCMOIN: Coefficients read from formatted DFPCMO and written to unformatted DFCOEF =========================================================================== ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* ########## START ITERATION NO. 1 ########## Sun Sep 10 14:57:41 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -76.1195925850807811 * Heading : H2O Sun Sep 10 14:57:41 2017 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange WALL-time SOfock:LL 1.00D-12 0.00% 8.65% 0.00% 0.00% 0.25202803s It. 1 -76.11959258507 7.61D+01 0.00D+00 7.87D-08 0.36400000s LL Sun Sep 10 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -76.11959258507 7.61D+01 0.00D+00 7.87D-08 0.36400000s LL Sun Sep 10 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 1 iterations. * Average elapsed time per iteration: LL : 0.36849579s TOTAL ENERGY ------------ Electronic energy : -85.384296277052613 Other contributions to the total energy Nuclear repulsion energy : 9.264703691982840 Sum of all contributions to the energy Total energy : -76.119592585069768 Eigenvalues ----------- * Fermion symmetry E1 * Closed shell, f = 1.0000 -20.5776425393 ( 2) -1.3578504174 ( 2) -0.7213120533 ( 2) -0.5861571641 ( 2) -0.5108095305 ( 2) * Virtual eigenvalues, f = 0.0000 0.0676670770 ( 2) 0.1050088108 ( 2) 0.2485847696 ( 2) 0.2668132832 ( 2) 0.2869768446 ( 2) 0.3041521661 ( 2) 0.3884728358 ( 2) 0.4742069589 ( 2) 0.5172485522 ( 2) 0.5331463375 ( 2) 0.5518341318 ( 2) 0.6655463664 ( 2) 0.6898773346 ( 2) 0.7231092569 ( 2) 0.8041192012 ( 2) 0.8128953614 ( 2) 1.0241957162 ( 2) 1.0497645837 ( 2) 1.1219914764 ( 2) 1.3513892830 ( 2) 1.4500006552 ( 2) 1.4571536526 ( 2) 1.5933645714 ( 2) 1.6001545593 ( 2) 1.6011305699 ( 2) 1.6671020741 ( 2) 1.6688736893 ( 2) 1.7252758349 ( 2) 1.7462625609 ( 2) 1.7630942185 ( 2) 1.7915259551 ( 2) 1.8559566040 ( 2) 1.8976783355 ( 2) 1.9336618138 ( 2) 1.9731521477 ( 2) 2.2313136979 ( 2) 2.2327965980 ( 2) 2.4696655391 ( 2) 2.5032544168 ( 2) 2.5979798715 ( 2) 2.7575713672 ( 2) 3.0480802450 ( 2) 3.1825953037 ( 2) 3.2376061304 ( 2) 3.3082133413 ( 2) 3.3475863527 ( 2) 3.7323327748 ( 2) 4.0447047631 ( 2) 4.1643301066 ( 2) 4.2340942021 ( 2) 4.2820562114 ( 2) 4.2840323236 ( 2) 4.3582153453 ( 2) 4.3836651739 ( 2) 4.4082160721 ( 2) 4.4955347200 ( 2) 4.5456963134 ( 2) 4.6063725021 ( 2) 4.7796830189 ( 2) 4.8155624370 ( 2) 4.8841768970 ( 2) 4.9276311793 ( 2) 5.1087683703 ( 2) 5.2092991217 ( 2) 5.2534762450 ( 2) 5.5100427605 ( 2) 5.5261541695 ( 2) 5.6015138885 ( 2) 5.6326408294 ( 2) 5.6507842147 ( 2) 5.7783736016 ( 2) 5.8078723367 ( 2) 5.8564759987 ( 2) 6.3440908200 ( 2) 6.4939313983 ( 2) 6.6191602810 ( 2) 6.6282810637 ( 2) 6.8921065020 ( 2) 6.8997770387 ( 2) 7.0904088724 ( 2) 7.2177488675 ( 2) 7.3707417923 ( 2) 7.4160052771 ( 2) 7.7346305768 ( 2) 7.9240521944 ( 2) 8.1020531609 ( 2) 8.5311513212 ( 2) 8.5503028815 ( 2) 8.6182806874 ( 2) 8.6431731228 ( 2) 8.9853176245 ( 2) 8.9904596509 ( 2) 9.7229395335 ( 2) 10.0052909929 ( 2) 10.1407151657 ( 2) 10.2992903188 ( 2) 10.5575587726 ( 2) 10.6231250471 ( 2) 11.0541792524 ( 2) 11.1936020538 ( 2) 11.3873187655 ( 2) 11.5193772966 ( 2) 11.5317114421 ( 2) 11.7323220314 ( 2) 11.7973814033 ( 2) 11.8319674156 ( 2) 11.9500025142 ( 2) 12.3090348471 ( 2) 12.3411101746 ( 2) 12.9327373538 ( 2) 13.1671022231 ( 2) 13.6084032570 ( 2) 13.9788590358 ( 2) 14.3021959918 ( 2) 14.3984357233 ( 2) 15.3135524624 ( 2) 15.9429719317 ( 2) 16.3897523862 ( 2) 18.6043533696 ( 2) 19.2220990748 ( 2) 19.6726766972 ( 2) 34.3313138218 ( 2) 34.4624806353 ( 2) 36.0090189295 ( 2) 47.2848915138 ( 2) 47.5762262850 ( 2) 47.7996812466 ( 2) 68.8003132880 ( 2) 68.9050504753 ( 2) 68.9654890384 ( 2) 69.3538128581 ( 2) 69.7395589237 ( 2) 85.3951083624 ( 2) 102.6607461780 ( 2) 102.7632260510 ( 2) 129.3595036660 ( 2) 129.6345271850 ( 2) 129.8482949940 ( 2) 198.5650688860 ( 2) 202.1123272030 ( 2) 202.1219544140 ( 2) 202.1264708670 ( 2) 202.2244379170 ( 2) 202.2291690240 ( 2) 202.2391341490 ( 2) 202.2458363930 ( 2) 293.9093185370 ( 2) 294.0445071960 ( 2) 294.2310091030 ( 2) 294.4003116030 ( 2) 294.6147828020 ( 2) 346.2951539360 ( 2) 346.3907187720 ( 2) 397.1273171560 ( 2) 397.8997041040 ( 2) 398.1094826350 ( 2) 459.5938238890 ( 2) 1070.7586116500 ( 2) 1388.0465851800 ( 2) 1388.1280681800 ( 2) 1539.4396830900 ( 2) 1547.9978050300 ( 2) 1548.1455074800 ( 2) 2518.6728673600 ( 2) 5928.9037978400 ( 2) 7189.4731692600 ( 2) 7189.5257955100 ( 2) 13701.2417457000 ( 2) 30702.3217303000 ( 2) 67842.7455442000 ( 2) 155980.4455290000 ( 2) 420059.7872010000 ( 2) * HOMO - LUMO gap: E(LUMO) : 0.06766708 au (symmetry E1 ) - E(HOMO) : -0.51080953 au (symmetry E1 ) ------------------------------------------ gap : 0.57847661 au =========================================================================== * PCMOUT: Coefficients read from unformatted DFCOEF and written to formatted DFPCMO =========================================================================== ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Sun Sep 10 14:57:42 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -76.1195925850807811 * Heading : H2O Sun Sep 10 14:57:41 2017 Energy selection of active orbitals : -10.00 < Eps. < 50.00 with a mininum gap of 0.0200 au. Energy selection of active orbitals : -10.00 < Eps. < 50.00 with a mininum gap of 0.0200 au. Energy selection of active orbitals : -10.00 < Eps. < 50.00 with a mininum gap of 0.0200 au. Energy selection of active orbitals : -10.00 < Eps. < 50.00 with a mininum gap of 0.0200 au. * Orbital ranges for 4-index transformation: * Fermion ircop E1 Index 1 131 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 Index 2 131 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 Index 3 131 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 Index 4 131 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 * Core orbital ranges for 2-index transformation: * Fermion ircop E1 Index 1 1 orbitals 1 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ********************************************************************** **************** Transformation of property integrals **************** ********************************************************************** Transformation started at : Sun Sep 10 14:57:42 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -76.1195925850807811 * Heading : H2O Sun Sep 10 14:57:41 2017 Energy selection of active orbitals : -10.00 < Eps. < 50.00 with a mininum gap of 0.0200 au. Energy selection of active orbitals : -10.00 < Eps. < 50.00 with a mininum gap of 0.0200 au. * Fermion ircop E1 Index 1 131 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 Index 2 131 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Sun Sep 10 14:57:42 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -76.1195925850807811 * Heading : H2O Sun Sep 10 14:57:41 2017 SCR scr.thr. Step1 Step2 Coulomb Exchange WALL-time SOfock:LL 1.00D-12 0.00% 26.87% 0.00% 0.00% 0.18946906s * REAFCK: Fock matrix read from file DFFCK1 * Heading : H2O Sun Sep 10 14:57:41 2017 Core energy (includes nuclear repulsion) : -52.1158622954 - Electronic part : -61.3805659874 - One-electron terms : -66.1283113558 - Two-electron terms : 4.7477453684 MOLFDIR file MRCONEE is written * Max no. of B shells in a task determined to be 3 - Integral class 2 : (SS|??) - Integral class 1 : (LL|??) - Starting shell A no. 12 after 0.00 seconds. - Starting shell A no. 11 after 0.00 seconds. - Starting shell A no. 10 after 0.00 seconds. - Starting shell A no. 9 after 0.00 seconds. - Starting shell A no. 8 after 0.00 seconds. - Starting shell A no. 7 after 0.83 seconds. - Starting shell A no. 6 after 1.14 seconds. - Starting shell A no. 5 after 1.18 seconds. - Starting shell A no. 4 after 1.33 seconds. - Starting shell A no. 3 after 1.50 seconds. - Starting shell A no. 2 after 1.52 seconds. - Starting shell A no. 1 after 1.58 seconds. Node 4 finished first half transformation 22220499 HT integrals written ( 95.07%, 0.50 GB) Node 9 finished first half transformation 20887686 HT integrals written ( 99.44%, 0.47 GB) Node 5 finished first half transformation 19462969 HT integrals written ( 91.24%, 0.44 GB) Node 15 finished first half transformation 19649281 HT integrals written ( 97.36%, 0.44 GB) Node 7 finished first half transformation 18844671 HT integrals written ( 83.95%, 0.42 GB) Node 8 finished first half transformation 21368651 HT integrals written ( 94.55%, 0.48 GB) Node 13 finished first half transformation 22112536 HT integrals written ( 99.42%, 0.49 GB) Node 12 finished first half transformation 20500194 HT integrals written ( 96.18%, 0.46 GB) Node 1 finished first half transformation 22773802 HT integrals written ( 99.03%, 0.51 GB) Node 2 finished first half transformation 20853495 HT integrals written ( 99.52%, 0.47 GB) Node 3 finished first half transformation 21474470 HT integrals written ( 99.31%, 0.48 GB) Node 6 finished first half transformation 31698448 HT integrals written ( 99.47%, 0.71 GB) Node 10 finished first half transformation 28752868 HT integrals written ( 99.20%, 0.64 GB) Node 11 finished first half transformation 29550063 HT integrals written ( 97.28%, 0.66 GB) Node 14 finished first half transformation 33611403 HT integrals written ( 88.11%, 0.75 GB) >>> Time used in 2HT_all is 55.23 seconds >>> Time used in 2HT_all is 55.35 seconds >>> Time used in 2HT_all is 55.39 seconds >>> Time used in 2HT_all is 55.42 seconds >>> Time used in 2HT_all is 55.49 seconds >>> Time used in 2HT_all is 55.49 seconds >>> Time used in 2HT_all is 55.58 seconds >>> Time used in 2HT_all is 55.59 seconds >>> Time used in 2HT_all is 55.59 seconds >>> Time used in 2HT_all is 55.63 seconds >>> Time used in 2HT_all is 55.70 seconds >>> Time used in 2HT_all is 55.74 seconds >>> Time used in 2HT_all is 56.88 seconds >>> Time used in 2HT_all is 1 minute 2 seconds >>> Time used in 2HT_all is 1 minute 2 seconds - Binary file MDCINT was written. >>> Time used in 2HT_all is 1 minute 2 seconds * Screening statistics: (LL|LL)ints : 0.00% Total : 0.00% ------ Timing report (in CPU seconds) of module integral transformation Master --------- Slaves ------------ Timer Master Minimum Maximum Average First halftransformation 8.6 8.6 8.7 8.6 Slave requesting task from ma 1.7 0.0 0.4 0.1 Second halftransformation 62.1 55.2 62.1 56.5 ------ End of timing report ------ Total wall time used in PAMTRA : 00:01:11 Total CPU time used in PAMTRA (master only) : 00:01:11 Transformation ended at : Sun Sep 10 14:58:53 2017 ---< Process 1 of 16----< Relativistic Coupled Cluster program RELCCSD Written by : Lucas Visscher NASA Ames Research Center (1994) Rijks Universiteit Groningen (1995) Odense Universitet (1996-1997) VU University Amsterdam (1998-present) This module is documented in - Initial implementation : L. Visscher, T.J. Lee and K.G. Dyall, J. Chem. Phys. 105 (1996) 8769. - Fock Space (FSCC): L. Visscher, E. Eliav and U. Kaldor, J. Chem. Phys. 115 (2002) 9720. - Intermediate Hamiltonian E. Eliav, M. J. Vilkas, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 122 (2005) 224113. - Parallelization : M. Pernpointner and L. Visscher, J. Comp. Chem. 24 (2003) 754. Today is : 10 Sep 17 The time is : 14:58:53 Initializing word-addressable I/O : the FORTRAN-interface is used with 16 KB records 1E 2E a b =========================================================================== **RELCC: Set-up for Coupled Cluster calculations =========================================================================== * General print level : 0 Total memory available : 373.84 MB 0.365 GB INFO: No old restart file(s) found! Configuration in highest pointgroup E E Spinor class : occupied 4 4 Spinor class : virtual 127 127 Configuration in abelian subgroup 1E 2E Spinor class : occupied 4 4 Spinor class : virtual 127 127 Number of electrons : 8 Total charge of the system : 0 Number of virtual spinors : 254 Complex arithmetic mode : F Do integral sorting : T Do energy calculation : T Do gradient calculation : F Do response calculation : F Debug information : F Timing information : F Print level : 0 Memory limit (MWord) : 46 Interface used : DIRAC6 Leave after calculating the total memory demand : F Memory for reading and sorting integrals : 45022940 8-byte words Core used for calculating amplitudes : 44819518 8-byte words Core used for in core evaluation of triples : 18077593 8-byte words Memory used for active modules : 45022940 8-byte words Predicted RelCC memory demand: 343.50 MB Predicted RelCC memory demand: 0.335 GB Expanding and sorting integrals to unique types : Type OOOO : 400 integrals Type VOOO : 28448 integrals Type VVOO : 450088 integrals Type VOVO : 2064512 integrals Type VOVV : 32645096 integrals Type VVVV : 516208645 integrals Start sorting of integral classes at 10 Sep 17 14:58:53 Sorting of first 4 classes done at 10 Sep 17 15:02:27 Need 1 passes to sort VOVV integrals Pass 1 ended at 10 Sep 17 15:06:07 VOVV sorting done at 10 Sep 17 15:06:07 Need 2 passes to sort VVVV integrals Pass 1 ended at 10 Sep 17 15:13:45 Pass 2 ended at 10 Sep 17 15:21:13 VVVV sorting done at 10 Sep 17 15:21:13 Reading Coulomb integrals : File date : 10 Sep 17 File time : 15:21:13 # of integrals 1169041354 Finished sorting of integrals Checking the orbital energies, the program computes the diagonal elements of the reconstructed Fock matrix. Differences with the reference orbital energies are given if above a treshold or if iprnt > 1 Spinor Abelian Rep. Energy Recalc. Energy The diagonal elements of the recomputed Fock matrix (right column) are used in perturbation expressions. Use the perturbative values (MP2, CCSD[T]/(T)/-T) with care, especially in open shell calculations because the orbitals need not always be semi-canonical as was assumed in the derivation of the expressions. The missing terms may be important ! Nuclear repulsion + core energy : -52.115862295414097 Zero order electronic energy : -6.352258466703418 First order electronic energy : -17.651471822951631 Electronic energy : -24.003730289655049 SCF energy : -76.119592585069142 Energy calculations MP2 module active : T CCSD module active : T CCSD(T) module active : T MP2 results SCF energy : -76.119592585069142 MP2 correlation energy : -0.285045781901967 Total MP2 energy : -76.404638366971113 T1 diagnostic : 0.000000020767192 CCSD options : Maximum number of iterations : 30 Maximum size of DIIS space : 8 Convergence criterium : 0.1E-05 CCSD results SCF energy : -76.119592585069142 CCSD correlation energy : -0.287601897762583 Total CCSD energy : -76.407194482831727 T1 diagnostic : 0.012448318764025 Convergence : 0.000000785472170 Number or iterations used : 10 Perturbative treatment of triple excitations SCF energy : -76.119592585069142 CCSD correlation energy : -0.287601897762583 4th order triples correction : -0.009541366688432 5th order triples (T) correction : 0.000287363412142 5th order triples -T correction : 0.000426856777982 Total CCSD+T energy : -76.416735849520165 Total CCSD(T) energy : -76.416448486108024 Total CCSD-T energy : -76.416308992742188 -------------------------------------------------------------------------------- Today is : 10 Sep 17 The time is : 15:21:29 Status of the calculations Integral sort # 1 : Completed, restartable Integral sort # 2 : Completed, restartable Fock matrix build : Completed, restartable MP2 energy calculation : Completed, restartable CCSD energy calculation : Completed, restartable CCSD(T) energy calculation : Completed, restartable CCSD(T) energy calculation : Completed, restartable Overview of calculated energies @ SCF energy : -76.119592585069142 @ MP2 correlation energy : -0.285045781901967 @ CCSD correlation energy : -0.287601897762583 @ 4th order triples correction : -0.009541366688432 @ 5th order triples (T) correction : 0.000287363412142 @ 5th order triples -T correction : 0.000426856777982 @ Total MP2 energy : -76.404638366971113 @ Total CCSD energy : -76.407194482831727 @ Total CCSD+T energy : -76.416735849520165 @ Total CCSD(T) energy : -76.416448486108024 @ Total CCSD-T energy : -76.416308992742188 -------------------------------------------------------------------------------- ------ Timing report (in CPU seconds) of module RELCCSD Master --------- Slaves ------------ Timer Master Minimum Maximum Average Sorting of integrals 1341.2 1340.9 1341.2 1341.2 CCSD equations 7.6 7.6 7.6 7.6 - T1 equations 1.4 1.1 1.1 1.1 --- T1EQNS HOV*T2(A,C,I,K 0.0 0.0 0.1 0.1 --- T1EQNS VOOO*TAU 0.2 0.0 0.0 0.0 --- T1EQNS VOVV contribution 0.3 0.2 0.2 0.2 --- T1EQNS VOVO * T(C,K) 0.1 0.1 0.1 0.1 - T2 equations 5.6 5.8 5.8 5.8 -- GOINTM 0.0 0.0 0.0 0.0 -- GVINTM 0.1 0.1 0.1 0.1 -- AINTM 0.1 0.0 0.1 0.0 -- HINTM 1.5 0.7 0.8 0.8 --- HINTM: VOVV*T 0.4 0.3 0.3 0.3 --- HINTM: VVOO contribution 0.1 0.1 0.1 0.1 -- combining HINTM via MPI_ALL 0.8 1.9 1.9 1.9 -- T2 EQNS 1.3 0.9 0.9 0.9 --- T2EQNS: TAU*AINTM contract 0.0 0.0 0.0 0.0 --- T2EQNS: VOVV*T1 0.2 0.2 0.2 0.2 --- T2EQNS: HINTM*T2 0.4 0.3 0.4 0.4 -- BINTM 1.9 2.1 2.1 2.1 - adding partial T1/T2 amplitu 0.1 0.2 0.3 0.3 - DIIS extrapolation 0.2 0.0 0.0 0.0 - synchronizing T1 & T2 amplit 0.0 0.2 0.2 0.2 CCSD(T) evaluation 7.8 7.7 7.7 7.7 -- T3CORR: Integral resorting 0.1 0.1 0.1 0.1 -- T3CORR: VOVV contraction 1.8 0.9 0.9 0.9 -- T3CORR: addition of partial 3.2 6.7 6.8 6.8 -- T3CORR: energy calculation 2.7 0.0 0.0 0.0 ------ End of timing report ------ Timing of main modules : Wallclock (s) CPU on master (s) Before CC driver : 8744141.43 72.52 Initialization : 0.14 0.14 Integral sorting : 1340.19 1341.21 Energy calculation : 15.52 15.53 First order properties : 0.00 0.00 Second order properties : 0.00 0.00 Fock space energies : 0.00 0.00 Untimed parts : 0.00 0.00 Total time in CC driver : 1356. 1356.88 Statistics for the word-addressable I/O Number of write calls 517. Number of read calls 525. Megabytes written 194.020 Megabytes read 2200.684 Seconds spent in reads 1.604 Seconds spent in writes 1.612 average I/O speed for write (Mb/s) 120.965 average I/O speed for read (Mb/s) 1365.077 CPU time (seconds) used in RELCCSD: 1356.8800 CPU time (seconds) used before RELCCSD: 72.5240 CPU time (seconds) used in total sofar: 1429.4040 --- Normal end of RELCCSD Run --- ################################################################################ +++++ returning from dirac/DIRCTL ++++++ ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Sun Sep 10 15:21:31 2017 Host name : lxir127 >>>> Node 0, utime: 1414, stime: 16, minflt: 462645, majflt: 187, nvcsw: 1989, nivcsw: 4360, maxrss: 412424 >>>> Total WALL time used in DIRAC: 23min51s Dynamical Memory Usage Summary for Master Mean allocation size (Mb) : 20.14 Largest 10 allocations 287.05 Mb at subroutine __allocator_track_if_MOD_allocator_registe for buf3 287.05 Mb at subroutine __allocator_track_if_MOD_allocator_registe for buf3 198.36 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMTRA 198.36 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PSISCF 198.36 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMSET - 2 198.36 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in GMOTRA - part 2 198.36 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in GMOTRA 198.36 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMSET - 1 198.36 Mb at subroutine __allocator_track_if_MOD_allocator_registe for test allocation of work array in DIRAC mai 136.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for vta Peak memory usage: 343.50 MB Peak memory usage: 0.335 GB reached at subroutine : __allocator_track_if_MOD_allocator_registe for variable : vta MEMGET high-water mark: 0.00 MB