List of published papers and other sources (books, theses) documenting the development of various features of DIRAC, some interesting applications and various related references.

Reference entries are sorted alphabetically according to the first author’s family name with the year of the publishing. If the first author has several publications in the same year, characters in alphabetical order - “a”, “b”, “c”, etc. - are added after the year.

Please always provide each citation entry with its permanent URL-link. The best web-link is the DOI web identity, used almost for all peer-reviewed papers. For books we recommend to resort to semi-permanent links, like the publisher’s web-site, or popular Google-Books web-space.

[Amovilli1998]C. Amovilli, V. Barone, R. Cammi, E. Cancès, M. Cossi, B. Mennucci, C. S. Pomelli and J .Tomasi; Recent Advances in the Description of Solvent Effects with the Polarizable Continuum Model, Adv. Quantum Chem. 32, 227 (1998) [web]
[Aucar1999]G. Aucar, T. Saue, H. J. Aa. Jensen, L. Visscher, On the origin and contribution of the diamagnetic term in four-component relativistic calculations of magnetic properties, J. Chem. Phys. 110, 6208 (1999) [web]
[Autschbach2012]J. Autschbach, Perspective: Relativistic effects, J. Chem. Phys. 136, 150902 (2012) [web]
[Baker1993]J. Baker, Techniques for geometry optimization: A comparison of cartesian and natural internal coordinates, J. Comp. Chem. 14, 1085 (1993) [web]
[Bast2009]Radovan Bast, Hans Jørgen Aa. Jensen and Trond Saue, Relativistic adiabatic time-dependent density functional theory using hybrid functionals and noncollinear spin magnetization, Int. J. Quant. Chem. 109, 2091 (2009) [web]
[Bast2011]Radovan Bast, Anton Koers, André Severo Pereira Gomes, Miroslav Iliaš, Lucas Visscher, Peter Schwerdtfeger and Trond Saue Analysis of parity violation in chiral molecules, PCCP 13, 864 (2011) [web]
[Barysz2010]Barysz, Maria; Ishikawa, Yasuyuki (Eds.), Relativistic Methods for Chemists, Series: Challenges and Advances in Computational Chemistry and Physics, Vol. 10, 1st Edition., 2010, XIV, 613 p. [web]
[Bauschlicher1980]C. W. Bauschlicher, Jr., The construction of modified virtual orbitals (MVO’s) which are suited for configuration interaction calculations, J. Chem. Phys. 72, 880 (1980) [web]
[Becke1988]A. D. Becke, Density-Functional Exchange-Energy Approximation With Correct Asymptotic Behavior, Phys. Rev. A 38, 3098 (1988) [web]
[Becke1988a]A. D. Becke, A multicenter numerical integration scheme for polyatomic molecules, J. Chem. Phys. 88, 2547 (1988) [web]
[Borschevsky2012]A.Borschevsky, M.Ilias, V.A.Dzuba, K.Beloy, V.V.Flambaum, P.Schwerdtfeger, P-odd interaction constant \(W_A\) from relativistic ab initio calculations of diatomic molecules, Phys. Rev. A 85, 052509 (2012) [web]
[Chesnut1994]D. B. Chesnut, Ab Initio Calculations of NMR Chemical Shielding, Annual Reports on NMR Spectroscopy 29, 71 (1994) [web]
[Dirac1930]P. A. M. Dirac, Note on Exchange Phenomena in the Thomas Atom, Math Proc Cambridge 26, 376 (1930) [web]
[DiRemigio2014]R. Di Remigio, R. Bast, L. Frediani and T. Saue, Four-Component Relativistic Calculations in Solution with the Polarizable Continuum Model of Solvation: Theory, Implementation and Application to the Group 16 Dihydrides :math:`H_{2}X` (X = O, S, Se, Te, Po) [web]
[Dubillard2006]S. Dubillard, J.-B. Rota, T. Saue and K.Fægri, Bonding analysis using localized relativistic orbitals: Water, the ultrarelativistic case and the heavy homologues :math:`H_{2}X` (X=Te, Po, eka-Po), J. Chem. Phys. 124, 154307 (2006) [web]
[Dunning1989]T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys. 90, 1007 (1989) [web]
[Dyall1994]K. G. Dyall, An exact separation of the spin-free and spin-dependent terms of the Dirac-Coulomb-Breit hamiltonian, J. Chem. Phys. 100, 2118 (1994) [web]
[Dyall2007]K. G. Dyall and K. Fægri jr., Introduction to Relativistic Quantum Chemistry, Oxford University Press, New York, 2007 [web]
[Ekstrom2005]Ulf Ekstrom and Patrick Norman and Antonio Rizzo, Four-component Hartree–Fock calculations of magnetic-field induced circular birefringence—Faraday effect—in noble gases and dihalogens, The Journal of Chemical Physics 122, 074321 (2005) [web]
[Eliav2005]Ephraim Eliav and Marius J. Vilkas and Yasuyuki Ishikawa and Uzi Kaldor, J. Chem. Phys. 122 (22), 224113/1-224113/5 (2005)
[Eliav2009]Ephraim Eliav, Anastasia Borschevsky, K. R. Shamasundar, Sourav Pal, Uzi Kaldor, Intermediate Hamiltonian Hilbert space coupled cluster method: Theory and pilot application, Int.J.Quant.Chem. 109, 2909–2915 (2009) [web]
[Ermler1981]W. C. Ermler, Y. S. Lee, P. A. Christiansen and K. S. Pitzer, Ab initio effective core potentials including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular wavefunctions, Chem. Phys. Lett. 81, 70 (1981) [web]
[Faegri2001]K. Fægri and T. Saue, Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding, J. Chem. Phys. 115, 2456 (2001) [web]
[Fleig2003]T. Fleig, J. Olsen, and L. Visscher, The generalized active space concept for the relativistic treatment of electron correlation. II: Large-scale configuration interaction implementation based on relativistic 2- and 4-spinors and its application J. Chem. Phys. 119, 2963 (2003) [web]
[Fleig2005]T. Fleig and L. Visscher, Large-Scale Electron Correlation Calculations in the Framework of the Spin-Free Dirac Formalism. The Au:sub:`2` Molecule Revisited, Chem. Phys. 311, 113 (2005) [web]
[Fleig2006]T. Fleig, J. Olsen, H. J. Aa. Jensen, and L. Visscher, The generalized active space concept for the relativistic treatment of electron correlation. III: Large-scale configuration interaction and multi-configuration self-consistent-field four-component methods with application to UO_2, J. Chem. Phys. 124, 104106 (2006) [web]
[Fleig2006a]T. Fleig, `Habilitation thesis, University of Düsseldorf (Germany) ‘*, ‘ (2006)* [web]
[Fossgaard2003]O. Fossgaard, O. Gropen, M. Corral Valero, and T. Saue, On the performance of four-component relativistic density functional theory: Spectroscopic constants and dipole moments of the diatomics HX and XY (X, Y = F, Cl, Br and I), J. Chem. Phys. 118, 10418 (2003) [web]
[Gomes2008]André Severo Pereira Gomes, Christoph R. Jacob and Lucas Visscher, Calculation of local excitations in large systems by embedding wave-function theory in density-functional theory, Phys. Chem. Chem. Phys., 10, 5353-5362 (2008) [web]
[Gomes2012a]André Severo Pereira Gomes and Christoph R. Jacob, Quantum-chemical embedding methods for treating local electronic excitations in complex chemical systems, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 108, 222-277 (2012) [web]
[Gruning2001]M. Grüning, O. V.Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends, Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region, J. Chem. Phys. 114, 652 (2001) [web]
[Hamilton1986]T. Hamilton and P. Pulay, Direct inversion in the iterative subspace (DIIS) optmization of open-shell, excited-state, and small multiconfiguration SCF wave functions, J. Chem. Phys. 84, 5728 (1986) [web]
[Hofener2012]Sebastian Höfener, André Severo Pereira Gomes and Lucas Visscher, Molecular properties via a subsystem density functional theory formulation: A common framework for electronic embedding, J. Chem. Phys., 136, 044104 (2012) [web]
[Hofener2013]Sebastian Höfener, André Severo Pereira Gomes and Lucas Visscher, Solvatochromic shifts from coupled-cluster theory embedded in density functional theory, J. Chem. Phys., 139, 104016 (2013) [web]
[Hughes1992]S. R. Hughes and Uzi Kaldor, High sectors in the Fock space coupled-cluster method, Chem.Phys.Lett., 194, 99-104 (1992) [web]
[Hughes1993]S. R. Hughes and Uzi Kaldor, The coupled-cluster method with full inclusion of single, double and triple excitations applied to high sectors of the Fock space, Chem.Phys.Lett., 204, 339-342 (1993), [web]
[Hughes1993a]S. R. Hughes and Uzi Kaldor, Fock-space coupled-cluster method: The (1,2) sector, Phys. Rev. A, 47, 4705-4712 (1993) [web]
[Hughes1995]S. R. Hughes and Uzi Kaldor, The coupled-cluster method in high sectors of the Fock space, Int.J.Quant.Chem., 55, 127-132 (1995) [web]
[IIkura2001]Hisayoshi Iikura and Takao Tsuneda and Takeshi Yanai and Kimihiko Hirao, A long-range correction scheme for generalized-gradient-approximation exchange functionals, J. Chem. Phys., 115, 3540-3544 (2001) [web]
[Ilias2001]M. Iliaš and V. Kello and L. Visscher and B. Schimmelpfennig, Inclusion of mean-field spin–orbit effects based on all-electron two-component spinors: Pilot calculations on atomic and molecular properties, J.Chem.Phys. 115, 9667 (2001) [web]
[Ilias2005]M. Iliaš and H. J. Aa. Jensen and V. Kello and B. O. Roos and M. Urban, Theoretical study of PbO and the PbO anion, Chem.Phys.Lett. 408, 210 (2005) [web]
[Ilias2007]M. Ilias and T. Saue, An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation, J. Chem. Phys. 126, 064102 (2007) [web]
[Ilias2010]M. Ilias, V. Kello and M. Urban, Relativistic effects in atomic and molecular properties, Acta Physica Slovaca. Reviews and Tutorials, 60, 259-391 (2010) [web]
[Ilias2013]Miroslav Iliaš, Hans Jørgen Aa. Jensen, Radovan Bast and Trond Saue, Gauge origin independent calculations of molecular magnetisabilities in relativistic four-component theory, Mol. Phys. 111 (2013) 1373 [web]
[Jacob2013]Christoph R. Jacob and Johannes Neugebauer, Subsystem density-functional theory, Wiley Interdisciplinary Reviews: Computational Molecular Science, [web]
[Jensen1988]H. J. Aa. Jensen, P. Jørgensen, H. Ågren, and J. Olsen, Second-order Møller–Plesset perturbation theory as a configuration and orbital generator in multiconfiguration self-consistent field calculations. J. Chem. Phys., 88, 3834 (1988). Erratum 89, 5354 (1988). [web]
[Jensen1996]H. J. Aa. Jensen and K. G. Dyall and T. Saue and K. Fægri jr., `Relativistic 4-component Multi-Configurational Self-Consistent Field Theory for Molecules: Formalism J. Chem. Phys. 104, 4083 (1996) [web]
[Keal2003]T. W. Keal, D. J. Tozer, The exchange-correlation potential in Kohn–Sham nuclear magnetic resonance shielding calculation, J. Chem. Phys. 119, 3015 (2003) [web]
[Knecht2008]S. Knecht and H. J. Aa. Jensen and T. Fleig, Large-Scale Parallel Configuration Interaction. I. Non-Relativistic and Scalar-Relativistic General Active Space Implementation with Application to (Rb-Ba)+.*, J. Chem. Phys. 128,*014108*(2008)* [web]
[Knecht2009]S. R. Knecht, `PhD thesis, University of Düsseldorf (Germany) ‘*, ‘ (2009)* [web]
X2Cmod: A modular code for Exact-Two-Component Hamiltonian
Transformations, S. Knecht (ETH Zuerich, Switzerland) and T. Saue (Toulouse, France), 2010-2013 with contributions

from M. Ilias, H. J. Aa. Jensen and M. Repisky.

[Knecht2010a]S. Knecht and H. J. Aa. Jensen and T. Fleig, Large-Scale Parallel Configuration Interaction. II. Two- and 4-Component Double-Group General Active Space Implementation with Application to BiH., J. Chem. Phys. 128, 014108 (2010) [web]
[Knecht2014a]S. Knecht, O. Legeza, and M. Reiher, Communication: Four-component density matrix renormalization group, J. Chem. Phys., 140, 041101 (2014). [web]
[Knecht2014]S. Knecht, M. Repisky, H. J. Aa. Jensen, K. Ruud, and T. Saue, Genuine relativistic quantum chemistry with exact two-component Hamiltonians: The easy way to infinite-order two-electron spin-orbit corrections, J. Chem. Theory Comp., in preparation (2014).
[Knecht2011]S. Knecht, S. Fux, R. van Meer, L. Visscher, M. Reiher, T. Saue, Mössbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury, Theor. Chem. Acc. 129, 631-650 (2011) [web]
[Kullie2011]O. Kullie and T. Saue, Range-separated density functional theory: a 4-component relativistic study of the rare gas dimers He2, Ne2, Ar2, Kr2, Xe2, Rn2 and Uuo2, J. Chem. Phys. 395, 54 (2011) [web]
[Kutzelnigg1984]W. Kutzelnigg, Chemical Bonding in the Higher Main Group Elements, Angew. Chem. Int. Ed. Engl. 23, 272 (1984), [web]
[Landau2004]A. Landau, E. Eliav, Y. Ishikawa and U. Kaldor, J. Chem. Phys. 121, 6634-6639 (2004)
[Laerdahl1997]J. K. Lærdahl, T. Saue and K. Fægri, Direct relativistic MP2: Properties of ground state CuF, AgF and AuF, Theor. Chem. Acc. 97, 177 (1997) [web]
[Laerdahl1999]J. K. Lærdahl and P. Schwerdtfeger, Fully relativistic ab initio calculations of the energies of chiral molecules including partiy-violating weak interactions, Phys. Rev. A 60, 4439 (1999) [web]
[Lee1977]Y. S. Lee, W. C. Ermler, and K. S. Pitzer, Ab initio effective core potentials including relativistic effects. I. Formalism and applications to the Xe and Au atoms, J. Chem. Phys. 67, 5861 (1977) [web]
[Lee1988]C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B 37, 785 (1988) [web]
[Levy1967]J.-M. Lévy-Leblond, Nonrelativistic particles and wave equations, Commun. Math. Phys. 6, 286 (1967) [web]
[Lindh2001]R. Lindh, P. A. Malmqvist, and L. Gagliardi, Molecular integrals by numerical quadrature. I.Radial integration, Theor. Chem. Acc. 106, 178 (2001) [web]
[Mulliken1955]R. S. Mulliken, Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I, J. Chem. Phys. 23, 1833 (1955) [web]
[Mayer1996]M. Mayer and O. D. Häberlen and N. Rösch, Relevance of relativistic exchange-correlation functionals and of finite nuclei in molecular density-functional calulations, Phys. Rev. A 54, 4775 (54) [web]
[Mennucci2007]B. Mennucci, R. Cammi (eds.); Continuum Solvation Models in Chemical Physics, Wiley, New York (2007)
[MOLFDIR]L. Visscher, O. Visser, P.J.C. Aerts, H. Merenga, and W.C. Nieuwpoort, Relativistic quantum chemistry : the MOLFDIR program package, Comp. Phys. Comm., 81, 120 (1994) [web]
[Moss1973]R. E. Moss, Advanced Molecular Quantum Mechanics: An Introduction to Relativistic Quantum Mechanics and the Quantum Theory of Radiation, Chapman and Hall, London, 1973 [web]
[Mukherjee2009]Debashis Mukherjee, B. K. Sahoo,H. S. Nataraj and B. P. Das, Relativistic Coupled Cluster (RCC) Computation of the Electric Dipole Moment Enhancement Factor of Francium Due to the Violation of Time Reversal Symmetry, J. Phys. Chem. A 2009, 113, 12549–12557, [web]
[Nataraj2007]H. S. Nataraj, B. K. Sahoo, B. P. Das, R. K. Chaudhuri and D. Mukherjee, The electron electric dipole moment enhancement factors of Rubidium and Caesium atoms, Journal of Physics: Conference Series 80 (2007) 012050 [web]
[Nielsen_JCP1980]Egon S. Nielsen, Poul Jørgensen, and Jens Oddershede, Transition moments and dynamic polarizabilities in a second order polarization propagator approach, J. Chem. Phys. 73, 6238 (1980) [web]
[Norman2011]Patrick Norman, * A perspective on nonresonant and resonant electronic response theory for time-dependent molecular properties*, Phys. Chem. Chem. Phys., 13 20519-20535 (2011) [web]
[Olejniczak2012]M. Olejniczak, R. Bast, T. Saue, M. Pecul, A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis, J. Chem. Phys. 136, 014108 (2012) [web]
[Olsen1990]J. Olsen and P. Joergensen and J. Simons, Passing the one-billion limit in Full CI calculations, Chem. Phys. Lett. 169, 463 (1990) [web]
[Park2012]Y. C. Park, I. S. Lim, and Y. S. Lee, Two-Component Spin-orbit Effective Core Potential Calculations with an All-electron Relativistic Program DIRAC Bull. Korean Chem. Soc. 33, 803 (2012) [web]
[Peach2008]M. J. G. Peach, P. Benfield, T. Helgaker, D. J. Tozer, J. Chem. Phys. 128, 044118 (2008) [web]
[Pecul2004]M. Pecul, T. Saue, K. Ruud, A. Rizzo, Electric field effects on the shielding constants of noble gases: A 4-component relativistic Hartree-Fock study, J. Chem. Phys. 121, 3051 (2004) [web]
[Peng2012]D. Peng and M. Reiher, Local relativistic exact decoupling, J. Chem. Phys. 136, 244108 (2012) [web]
[Perdew1986]J. P. Perdew and Y. Wang, Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation, Phys. Rev. B 33, 8800 (1986) [web]
[Pernpointner2003]M. Pernpointner and L. Visscher, Parallelization of four-component calculations. II. Symmetry- driven parallelization of the 4-spinor CCSD algorithm, J. Comput. Chem. 24, 754 (2003) [web]
[Pernpointner2004]M. Pernpointner, The one-particle Green’s function method in the Dirac–Hartree–Fock framework. II. Third-order valence ionization energies of the noble gases, CO and ICN, J. Chem. Phys. 121, 8782 (2004) [web]
[Pernpointner2010]M. Pernpointner, The four-component two-particle propagator for the calculation of double ionization spectra of heavy-element compounds I. Method., J. Phys. B 43, 205102 (2010) [web]
[Pulay1980]P. Pulay, Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett. 73, 393 (1980) [web]
[Pulay1982]P. Pulay, Improved SCF acceleration, J. Comput. Chem. 3, 556 (1982) [web]
[Reiher2009]M. Reiher and A. Wolf, Relativistic Quantum Chemistry, Wiley-VCH, Weinheim 2009 [web]
[Saue1997]T. Saue, K. Fægri, T. Helgaker, and O. Gropen, Principles of direct 4-component relativistic SCF: Application to cesium auride, Mol. Phys. 91, 937 (1997) [web]
[Saue2000]T. Saue and H. J. Aa. Jensen, Quaternion symmetry of the Dirac equation, in Mathematical Methods for Ab Initio Quantum Chemistry, edited by M. Defrancheschi and C. Le Bris, Springer, Berlin, 2000, [web]
[Saue2002]T. Saue and T. Helgaker, Four-component relativistic Kohn-Sham theory, J. Comput. Chem. 23, 814 (2002) [web]
[Saue2002a]T.Saue, Post Dirac-Hartree-Fock methods - Properties, in Relativistic Electronic Structure Theory - Part 1: Fundamentals, edited by P. Schwerdtfeger, Elsevier, Amsterdam, 2002 [web]
[Saue2003]T. Saue and H. J. Aa. Jensen, Linear response at the 4-component relativistic level: Application to the frequency-dependent dipole polarizabilities of the coinage metal dimers, J.Chem.Phys. 118, 522 (2003) [web]
[Saue2011]T. Saue Relativistic Hamiltonians for chemistry: a primer, ChemPhysChem 12, 3077 (2011) [web]
[Schipper2000]P. R. T. Schipper, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends, Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials, J. Chem. Phys. 112, 1344 (2000) [web]
[Schirmer1983]J. Schirmer and L. S. Cederbaum and O. Walter, New approach to the one-particle Green’s function for finite Fermi systems, Phys. Rev. A 28, 1237 (1983) [web]
[Schwerdtfeger2002]P. Schwerdtfeger (ed.), Relativistic Electronic Structure Theory, Part 1: Fundamentals, Elsevier, Amsterdam, 2002 [web]
[Schwerdtfeger2002a]P. Schwerdtfeger (ed.), Relativistic Electronic Structure Theory, Part 2: Applications, Elsevier, Amsterdam, 2002. [web]
[Sikkema2009]J. Sikkema, L. Visscher, T. Saue, and M. Ilias, The molecular mean-field approach for correlated relativistic calculations, J. Chem. Phys. 131, 124116 (2009) [web]
[Stanton1984]R. E. Stanton, S. Havriliak, Kinetic balance: A Partial solution to the problem of variational safety in Dirac calculations, J. Chem. Phys. 81, 1910 (1984) [web]
[Stone1969]R.G. Stone, J. M. Pochan and W. H. Flygare, Zeeman studies including the molecular g values, magnetic susceptibilities, and molecular quadrupole moments in phosphorus and nitrogen trifluorides and phosphoryl, thionyl, and sulfuryl fluorides, Inorg. Chem. 8 (1969) 2647 [web]
[Strange1998]P. Strange, Relativistic Quantum Mechanics: with applications in condensed matter and atomic physics, Cambridge University Press, Cambridge, 1998 [web]
[Sultzer2011]David Sulzer, Małgorzata Olejniczak, Radovan Bast and Trond Saue, 4-Component relativistic magnetically induced current density using London atomic orbitals, Phys. Chem. Chem. Phys., 13, 20682-20689 (2011) [web]
[Thyssen1998]J. Thyssen and H. J. Aa. Jensen, Average-of-configurations SCF manuscript, unpublished (1998).
[Thyssen2004]J. Thyssen, PhD thesis, University of Southern Denmark (Denmark) ‘*, ‘ (2004)* [web]
[Thyssen2008]J. Thyssen and T. Fleig and H. J. Aa. Jensen, A Direct Relativistic Four-Component Multi-Configuration Self-Consistent-Field Method for Molecules, J. Chem. Phys. 129, 034109 (2008) [web]
[Tomasi1994]J. Tomasi and M. Persico; Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent, Chem. Rev. 94, 2027 (1994) [web]
[Tomasi2005]J. Tomasi, B. Mennucci, R. Cammi; Quantum Mechanical Continuum Solvation Models, Chem. Rev. 105, 2999 (2005) [web]
[Tozer_JCP1998]David J. Tozer and Nicholas C. Handy Improving virtual Kohn–Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities, J. Chem. Phys. 109, 10180 (1998) [web]
[vanLenthe1994]E. van Lenthe, E. J. Baerends, and J. G. Snijders, Relativistic total energies using regular approximations, J. Chem. Phys. 101, 9783 (1994) [web]
[vanLenthe1996]E. van Lenthe, J. G. Snijders, and E. J. Baerends, The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules, J. Chem. Phys. 105, 6505 (1996) [web]
[vanLenthe2006]J. H. van Lenthe, R. Zwaans, H. J. J. Van Dam and M. F. Guest, Starting SCF calculations by superposition of atomic densities, J. Comp. Chem. 27, 926 (2006) [web]
[Varga1999]S. Varga, E. Engel, W.-D. Sepp, and B. Fricke, Systematic study of the Ib diatomic molecules Cu:sub:`2`, Ag:sub:`2`, and Au:sub:`2`using advanced relativistic density functionals, Phys. Rev. A 59, 4288 (1999) [web]
[Varga2000]S. Varga, B. Fricke, H. akaamatsu, T. Mukoyama, J. Anton, D. Geschke, A. Heitmann, E. Engel, and T. Bastug, Four-component relativistic density functional calculations of heavy diatomic molecules, J. Chem. Phys. 112, 3499 (2000) [web]
[Vies2012]Libor Veis, Jakub Viŝňák, Timo Fleig, Stefan Knecht, Trond Saue, Lucas Visscher and Jiří Pittner, Relativistic quantum chemistry on quantum computers, Phys. Rev. A 85 (2012) 030304 [web]
[Villaume2010]Sebastien Villaume, Trond Saue and Patrick Norman, Linear Complex Polarization Propagator in a Four-Component Kohn-Sham Framework, J. Chem. Phys. 133 064105 (2010) [web]
[Visscher1996]L. Visscher, T. J. Lee, and K. G. Dyall, Formulation and implementation of a relativistic unrestricted coupled cluster method including noniterative connected triples, J. Chem. Phys. 105, 8769 (1996) [web]
[Visscher1997]L. Visscher, T.J. Lee, and K.G. Dyall, Formulation and implementation of a relativistic unrestricted coupled cluster method including noniterative connected triples, J. Chem. Phys., 105 (1996), 8769 [web]
[Visscher1997a]L. Visscher, Approximate molecular Dirac-Coulomb calculations using a simple Coulombic correction, Theor. Chem. Acc. 98, 68 (1997) [web]
[Visscher1997b]L. Visscher and K. G. Dyall, Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions, At. Data Nucl. Data Tabl. 67, 207 (1997) [web]
[Visscher2000]L. Visscher and T. Saue, Approximate relativistic electronic structure methods based on the quaternion modified Dirac equation, J. Chem. Phys. 113, 3996 (2000) [web]
[Visscher2001]L. Visscher, E. Eliav, and U. Kaldor, Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules, J. Chem. Phys. 115, 9720 (2001) [web]
[Visscher2002]L. Visscher, The Dirac equation in quantum chemistry: strategies to overcome the current computational problems, J. Comput. Chem. 23, 759 (2002) [web]
[Vosko1980]S. J. Vosko, L. Wilk, and M. Nusair, Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis, Can. J. Phys. 58, 1200 (1980) [web]
[Wheeler2009]S. E. Wheeler and K. N. Houk, Through-Space Effects of Substituents Dominate Molecular Electrostatic Potentials of Substituted Arenes, J. Chem. Theory Comput. 5, 2301 (2009) [web]
[Yanai_CPL2004]Takeshi Yanai, David P. Tew and Nicholas C. Handy. “A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett. 393, 51 (2004) [web]