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If, in some cataclysm, all of
scientific knowledge were to be
destroyed, and only one sentence
passed on to the next generation
of creatures, what statement
would contain the most
information in the fewest words? I
believe it is the atomic hypothesis
that all things are made of atoms

Richard Feynman





Abstract xv

MOLECULAR PROPERTIES IN THE LINEAR RESPONSE REGIME AND BEYOND WITH RELATIVISTIC
COUPLED-CLUSTER

Abstract

This thesis mainly focuses on the development and implementation of new meth-
ods to study various types of response properties for molecules containing heavy ele-
ments. We implement static and frequency-dependent linear and quadratic response
properties based upon relativistic coupled cluster wave function models. The valida-
tions are done by calculating various types of molecular properties such as frequency-
(in)dependent (hyper)polarizability (purely electric), indirect spin-spin coupling con-
stant (purely magnetic), and optical rotation (mixed electric-magnetic).
Moreover, the current implementations also allow evaluation of the absorption cross-
sections: the linear response code can evaluate the damped response functions, which
can be used to calculate the one-photon absorption cross-sections, and the quadratic
response code can evaluate the two-photon absorption cross-sections provided thewave
functions of the target states exist.
In addition, we also implement the equation-of-motion (EOM) coupled cluster theory
to evaluate the ionization potential, electron affinity, and excitation energy. The new
EOM codes reproduce the results from the previous implementation in the program
RELCCSD very well.
All the codes are implemented on the new GPU-accelerated coupled cluster module Ex-
aCorr in DIRAC. This module is designed for dealing with large systems and perform-
ing efficiently coupled cluster calculations on modern supercomputer architectures. To
further reduce the calculation cost, we implement the relativistic MP2 frozen natural
orbitals (FNOs) to reduce the virtual orbital space in the correlated calculation. The
pilot tests show with using FNOs, one can obtain reliable estimates for both energies
and molecular properties with only half the size of the full spaces.
Apart from the development work, this thesis also contains applications of the existing
relativistic quantum chemistry models to obtain the highly accurate electronic struc-
tures and transition properties of molecules containing heavy elements. We discuss
the importance of the evaluation of the relativistic effect and electron correlation on an
equal footing and the corresponding impact on different topics such as molecular laser
cooling and plasma physics.

Keywords: response properties, coupled cluster, relativistic effects

Laboratoire PhLAM
Laboratoire PhLAM – CNRS UMR 8523 – Université Lille Nord de France –
Bâtiment P5 – 59655 Villeneuve d’Ascq – France



xvi Abstract

PROPRIÉTÉS MOLÉCULAIRES DANS LE RÉGIME DE RÉPONSE LINÉAIRE ET AU-DELÀ AVEC MÉ-
THODES COUPLED CLUSTER RELATIVISTES

Résumé

Cette thèse se concentre principalement sur le développement et la mise en œuvre de
nouvelles méthodes pour étudier divers types de propriétés de réponse pour les molé-
cules contenant des éléments lourds.
Nous mettons en œuvre des propriétés de réponse linéaire et quadratique, statiques
et dépendantes de la fréquence, basées sur les modèles de fonction d’onde de cluster
couplé relativiste. Les validations sont effectuées en calculant divers types de proprié-
tés moléculaires telles que la (hyper)polarisabilité (purement électrique), la constante
de couplage spin-spin indirect (purement magnétique) et la rotation optique (mixte
électrique-magnétique).
De plus, les implémentations actuelles permettent également d’évaluer les sections ef-
ficaces d’absorption : le code de réponse linéaire peut évaluer les fonctions de réponse
amorties, qui peuvent être utilisées pour calculer les sections efficaces d’absorption à
un photon, et le code de réponse quadratique peut évaluer les sections efficaces d’ab-
sorption à deux photons à condition que les fonctions d’onde des états cibles existent.
De plus, nous avons également mis en œuvre la théorie equation-of-motion (EOM) cou-
pled cluster pour évaluer le potentiel d’ionisation, l’affinité électronique et l’énergie d’ex-
citation. Les nouveaux codes EOM reproduisent très bien les résultats de l’implémenta-
tion précédente dans le programme RELCCSD.
Tous les codes sont implémentés sur le nouveau module de cluster couplé accéléré par
GPU ExaCorr dans DIRAC. Ce module a été conçu pour traiter des systèmes à grand
taille et effectuer de façon efficace des calculs de coupled cluster sur des supercalcula-
teurs de dernière génération. Pour réduire encore le coût des calculs, nous avons mis
en œuvre les orbitales naturelles gelées MP2 relativistes (FNOs) pour réduire l’espace
orbital virtuel dans les calculs corrélés. Les tests pilotes montrent qu’en utilisant FNOs,
on peut obtenir des estimations fiables pour les énergies et les propriétés moléculaires
avec seulement la moitié de la taille des espaces complets.
Outre le travail de développement, cette thèse contient également des applications des
modèles existants de chimie quantique relativiste pour obtenir la structures électro-
niques et les propriétés de transition très précises pour des molécules contenant des
éléments lourds. Nous discutons de l’importance de l’évaluation des effets relativistes
et de la corrélation électronique quand ceux-ci sont traités sur un pied d’égalité et de
l’impact correspondant sur différents sujets tels que le refroidissement moléculaire au
laser et la physique des plasmas.

Mots clés : propriété de réponse, coupled cluster, effet relativiste
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Introduction

Molecules containing heavy elements, found in the lower rows of the periodic
table, are increasingly garnering interest in both physics and chemistry. For in-
stance, in chemistry, there are various notable applications, such as uranium
chemistry[1–8] in the nuclear sector, the development of new materials leverag-
ing the robust optical properties of Lanthanide[9–14] and Actinide[15–18] com-
plexes, and the exploration of gold nanoparticles for cancer treatments[19, 20].
These represent just a few examples of contemporary research in this domain.

Small molecules containing heavy elements are furthermore proposed in
fundamental physics to search for new physics beyond the Standard Model[21–
24]. Given the precision required for such experiments, the development of
slowing and trapping technologies for potential molecular candidates becomes
essential. However, the inherent complexities in molecules, such as their vibra-
tional and rotational structures, hinder the straightforward application of direct
laser cooling as done on their atomic counterparts. The criteria for molecular
candidates in laser cooling experiments are quite strict[25], so the laser systems
designed for cooling specific molecules are both specialized and costly. In this
context, advanced quantum chemistry calculations—which encompass both en-
ergy aspects (like determining the potential energy surfaces of the ground and
excited electronic states) and molecular properties (like transition dipole mo-
ments andpolarizabilities)—are pivotal in the domain of laser coolingmolecules[26].

In experiments, molecular properties are gauged through various spectro-
scopic methods and their interpretation relies on theoretical models of varying
degrees of sophistication. In theory, we assume that a molecule’s wave function
changes when subjected to an external electromagnetic field. For most molec-
ular spectroscopic experiments, where the field is relatively weak, one can ap-
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2 Introduction

ply time-dependent perturbation theory to assess the altered wave function and
subsequently observe the molecule’s response to the external field.

However, general time-dependent perturbation theory typically starts from
the exact unperturbed wave function. In this framework, evaluating molecu-
lar properties requires information on all excited states. This makes program-
ming challenging and restricts solutions to simple models. On the other hand,
response theory[27–30] provides an effective way for assessing molecular prop-
erties. Because it doesn’t necessitate explicit computations of all excited states
and also can be constructed based on approximated models of reference states
such as Hartree-Fock (HF), density functional theory (DFT), and various post-
HF models. As a result, it is implementable in most contemporary quantum
chemistry software.

DFT is a widely favored method in the computational chemistry community,
and the combination of response theory with DFT has been the primary tool for
evaluating frequency-dependent molecular properties[31–33]. However, un-
like methods based on wave function theory (WFT), current density functional
approximations don’t allow for systematic improvements in the quality of calcu-
lations. This limitation hinders the interpretation of DFT results, especially in
the absence of experimental data or other benchmarks. Furthermore, in the rela-
tivistic quantum chemistry field, DFT results may significantly diverge from ex-
perimental and other more accurate theoretical models[34–36]. Consequently,
there’s a pressing need to develop a response theory rooted in high-level rela-
tivistic wave function models. Such approaches will serve as a benchmark for
other less precise models like DFT in molecular property calculations, similar
to how benchmarks are established for energy calculations.

Among various post-HF wave function models, Coupled Cluster (CC) the-
ory stands out as a ”gold standard” due to its ability to produce results nearing
chemical accuracy for both correlation energies and properties[37–46]. How-
ever, the substantial computational cost—scaling as O(𝑁6) for CCSD, andO(𝑁7)
for CCSD(T)—restricts its applicability to larger systems. The swift advances in
computing technologies have fostered the emergence of highly parallelized im-
plementations[47–52], especially with that combined with the use of Graphics
Processing Units (GPU) acceleration technology[47, 53–57], have significantly
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expanded the scope of applicability of coupled cluster theory. For instance, Po-
totschnig et al.[58] introduced the ExaCorr code, a novel relativistic coupled
cluster implementation based on ExaTENSOR[59], a distributed numerical ten-
sor algebra library, and demonstrated the feasibility of CCSD calculations for
[(UO2)(NO3)3]

−, which involved correlating 200 electrons and approximately
1000 virtual orbitals. The efficiency of such implementations can be further en-
hanced through techniques like the use of localized orbitals [60–64], Cholesky
decomposition[65–68], and density fitting[68–70].

Building on the work of Pototschnig et al.[58], my main objective in this the-
sis has been to extend the capabilities of the DIRAC program[71, 72] to study
ground and excited state properties of molecular systems. This has been accom-
plished through the implementation in ExaCorr of relativistic coupled cluster
response theory and equation of motion approaches, as well as of a method to
reduce the cost of CC calculations. Moreover, I will present three application
cases computed using DIRAC, illustrating the impact of correlation and relativ-
ity on electronic structures and their subsequent effects on physical processes.

Outline of the thesis

The contents of this thesis are organized into three parts.
In the first part of this thesis, in Chapter 1, I will briefly discuss the electronic

structure theory including relativistic effects, and the standard models dealing
with electron correlation, including configuration interaction, Møller–Plesset
perturbation theory, and coupled cluster theory.

In the subsequent chapter (Chapter 2), I introduce response theory, review-
ing itsmain concepts. Startingwith the definition of time-averaged quasi-energy
in sections 2.1 and in 2.2, I present the time-dependent Hellmann–Feynman
theorem, which links time-dependent molecular properties to the derivatives
of the time-averaged quasi-energy. Following this, section 2.3 outlines the pa-
rameterization of the time-dependent wave function, and the transformation of
both quasi-energy and Lagrangian from the time domain to the frequency do-
main. Section 2.4 characterizes two approximated time-dependent wave func-
tion models: CC-CI and CC-CC. This characterization includes the derivation



4 Introduction

of their associated response equations and the response functions.
In the second part, I focus on the ExaCorr implementation including linear

and quadratic response properties, as well as the calculation of energies based
on equation-of-motion (EOM) coupled cluster models. In Chapter 3, I discuss
the implementation of the frequency-dependent linear response for both CC-CI
(EOM) and CC-CC models. These two models are founded on the same refer-
ence state—the time-independent coupled cluster wave function; however they
differ in their characterization of the time-evolution part. The CC-CI model
utilizes linear time evolution functions, while the CC-CC model employs ex-
ponential time evolution functions. Consequently, within the linear response
framework, these two models solve the same response equations but they have
different response functions.

As a measure of validation for the code, we evaluate various molecular prop-
erties: electric properties such as polarizability, magnetic properties like the
indirect spin-spin coupling constant, and optical rotation, which is a combined
electric-magnetic property. Notably, our current approach is rooted in complex
algebra, simplifying the extension to damped response theory through the use
of a complex frequency representing excitation energies and its inverse lifetime.
Utilizing damped response theory, we determine the absorption cross-sections
and stimulate the spectrum of I2. Our findings align closely with experimental
observations.

In Chapter 4, I will address the implementation of frequency-dependent
quadratic response property based on EOM-CC models. As an initial examina-
tion, we assess the frequency-dependent hyperpolarizability of hydrogen halide
molecules and Verdet constant of Xe and Rn. I also implement the EOM-based
two-photon absorption (TPA) cross-sections. Both the quadratic response prop-
erty outcomes and the TPA results are validated by extant experimental values
and non-relativistic calculations derived from the DALTON program.

Chapter 5 centers on the execution of the EOM-CC method. I provide a suc-
cinct overview of the implementation of sigma vectors and the Davidson mod-
ules, which can be used to compute energies encompassing the ionization po-
tential (IP), excitation energy (EE), and electron affinity (EA). Subsequently, I
present test results from a few small systems, contrasting them with outcomes
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from the legacy relativistic coupled cluster implementation in DIRAC, the REL-
CCSD code.

In the final chapter of this section (Chapter 6), I explore a method to reduce
cost for our current relativistic coupled cluster implementation. This involves
compressing the virtual orbital space using MP2 frozen natural orbitals (FNOs).
Through our evaluations of both correlation energy and expectation values, we
found that theMP2FNOapproach significantly accelerates convergence for both
energy and molecular properties.

In Part III, I move into the application of relativistic quantum chemistry us-
ing DIRAC for the molecules containing heavy elements. This entails the use of
four-component multi-reference configuration interaction (MRCI), Polarization
Propagator (PP), and coupled cluster models. The high-precision relativistic
correlated electronic structure becomes paramount in fundamental physics, as
illustrated in the analysis of the transition dipole moment and its consequential
impact on laser cooling dynamics, highlighted in section 7.1 of Chapter 7. In
sections 7.2 and 7.3, we determine high-accuracy potential energy curves (PECs)
of I2. Leveraging these PECs, we assess the collision cross-section and observe
that our results align closely with the most recent experimental values.
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Part I

Methodology





Chapter1
Electronic Structure Theory

In this chapter, we will give a brief summary of the electronic structure theory.
It starts with the introduction of relativistic Hamiltonian for both 4-component
and 2-component models. We then discuss Dirac-Hatree-Fock wave function
and three correlated wave functions including configuration interaction, Møller-
Plesset perturbation theory, and coupled cluster. Atomic units are used through-
out unless explicitly indicated: ℏ = 𝑒 = 𝑚𝑒 = 4𝜋𝜖0 = 1.

1.1 Relativistic Hamiltonian

1.1.1 Exact Hamiltonian

We start with the molecular Hamiltonian within Born–Oppenheimer approxi-
mation[73], since it provides a preferred reference framework for relativistic
treatment:

�̂� = 
𝑖

ℎ̂𝑖 +
𝑖,𝑗

�̂�𝑖,𝑗 + �̂�𝑁,𝑁 (1.1)

where, ℎ̂𝑖 is the one-electron operator including electronic kinetic energy and
electron-nuclear attraction potential, �̂�𝑖,𝑗 is the two-electron operator represent-
ing electron-electron interaction, and �̂�𝑁,𝑁 represents the nuclear repulsion po-
tential. We will discuss the molecular Hamiltonian separately in one-electron
and two-electron parts.

9



10 CHAPTER 1. Electronic Structure Theory

One-electron part

In relativistic quantum mechanics, the one-electron operator can be written
as[74]

ℎ̂ = 𝛽𝑚𝑐2 + 𝑐�⃗� ⋅ ̂�⃗� + 𝑞𝜙 (1.2)

̂�⃗� = ̂ ⃗𝑝 − 𝑞 ⃗𝐴 (1.3)

here, ̂ ⃗𝑝 is the momentum operator, 𝑚 is the mass of the electron, 𝑐 is the speed
of light, 𝑞 is the particle charge (electrons: 𝑞 = −𝑒; positrons: 𝑞 = 𝑒), 𝜙 is the
scalar potential, ⃗𝐴 is the vector potential, and 𝛼, 𝛽 are 4-dimensional matrices:

𝛽 =
⎡⎢⎢⎢⎢⎣
𝐼(2×2) 0
0 −𝐼(2×2)

⎤⎥⎥⎥⎥⎦
(1.4)

�⃗� =
⎡⎢⎢⎢⎢⎣
0 �⃗�
�⃗� 0

⎤⎥⎥⎥⎥⎦
(1.5)

where �⃗� is a vector whose components are the Pauli matrix.

The time-dependent Dirac equation is

𝑖 𝜕Ψ(𝑡, ⃗𝑟)
𝜕𝑡 = ℎ̂Ψ(𝑡, ⃗𝑟) (1.6)

Concerning the appearance of 4×4 matrix in the Dirac equation, the wave func-
tion has to be a 4-component vector:

Ψ(𝑡, ⃗𝑟) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜙1(𝑡, ⃗𝑟)
𝜙2(𝑡, ⃗𝑟)
𝜙3(𝑡, ⃗𝑟)
𝜙4(𝑡, ⃗𝑟)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.7)

In quantum chemistry, one usually starts with the time-independent equa-
tions:

ℎ̂Ψ( ⃗𝑟) = 𝐸Ψ( ⃗𝑟) (1.8)
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where 𝐸 is the energy associated to the stationary state Ψ( ⃗𝑟)

Ψ( ⃗𝑟) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜙1( ⃗𝑟)
𝜙2( ⃗𝑟)
𝜙3( ⃗𝑟)
𝜙4( ⃗𝑟)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.9)

By evaluating the equation 1.8 for a single free particle, one can find that
there are four energy solutions, and two of them are negative[75].

𝐸1 = +𝑚2𝑐4 + 𝑐2𝑝2; Ψ1 = 𝑁𝑒𝑖 ⃗𝑘⋅ ⃗𝑟

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0

𝑐𝑘𝑧/(𝐸 + 𝑚𝑐2)
𝑐(𝑘𝑥 + 𝑖𝑘𝑦)/(𝐸 + 𝑚𝑐2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐸2 = +𝑚2𝑐4 + 𝑐2𝑝2; Ψ2 = 𝑁𝑒𝑖 ⃗𝑘⋅ ⃗𝑟

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

𝑐(𝑘𝑥 − 𝑖𝑘𝑦)/(𝐸 + 𝑚𝑐2)
−𝑐𝑘𝑧/(𝐸 + 𝑚𝑐2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐸3 = −𝑚2𝑐4 + 𝑐2𝑝2; Ψ3 = 𝑁𝑒𝑖 ⃗𝑘⋅ ⃗𝑟

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑘𝑧/(𝐸 − 𝑚𝑐2)
𝑐(𝑘𝑥 + 𝑖𝑘𝑦)/(𝐸 − 𝑚𝑐2)

1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐸4 = −𝑚2𝑐4 + 𝑐2𝑝2; Ψ4 = 𝑁𝑒𝑖 ⃗𝑘⋅ ⃗𝑟

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝑘𝑥 − 𝑖𝑘𝑦)/(𝐸 − 𝑚𝑐2)
−𝑐𝑘𝑧/(𝐸 − 𝑚𝑐2)

0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where 𝑁 is the normalization constant

Since we are interested in chemistry, we consider only 𝑞 = −𝑒 with electronic
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solutions. It is normally not necessary to explicitly take into account negative
energy solutions.

The ratio between the upper two components with those of the lower two is
large: when the lower two components are large, the lower two are small, and
vice versa. One can then group together the upper and lower two components
as 2-component spinors (Φ𝐿 and Φ𝑆 respectively) and write the wave function
as

Ψ( ⃗𝑟) =
⎡⎢⎢⎢⎢⎣
Φ𝐿( ⃗𝑟)
Φ𝑆( ⃗𝑟)

⎤⎥⎥⎥⎥⎦
(1.10)

In the non-relativistic limit, we find that small components Φ𝑆 → 0 and
large component becomes the non-relativistic wave function in two-component
form. Such behavior inspires developments to eliminate the small components
and transform the equations to the 2-component form.

Two-electron part

For the two-electron operator �̂�1,2, apart from the classic Coulomb electrostatic
potential, we need to consider the Lorentz covariance for the electron-electron
interaction, which results in the magnetic induction effects that introduce inter-
actions beyond the static Coulomb potential[74].

�̂�1,2 = 𝑞1𝜙2 − 𝑞1 ⃗𝑣1 ⋅ ⃗𝐴( ⃗𝑟2, 𝑡) (1.11)

𝜙( ⃗𝑟2, 𝑡) =  𝜌( ⃗𝑟2, 𝑡)
𝑟12

(𝑑 ⃗𝑟2)3; 𝑟12 = | ⃗𝑟1 − ⃗𝑟2| (1.12)

⃗𝐴( ⃗𝑟1, 𝑡) =
4𝜋
𝑐2 

⃗𝑗(𝑟2, 𝑡′)
𝑟12

𝑑 ⃗𝑟32 ; 𝑡′ = 𝑡 − 𝑟12
𝑐 (1.13)

where 𝑡′ is the retarded time, 𝑞1, 𝑞2 are the charge of the particle 1,2, respectively,
and ⃗𝑣 is the relativistic velocity operator:

⃗𝑣 = 𝑐�⃗� (1.14)
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1.1.2 Approximated Hamiltonian

Breit interaction

The exact two-electron interaction is too complex to be implemented in a practi-
cal computation, one usually takes account of the first-order relativistic correc-
tion in a similar manner to the case of the classical Darwin approximation[74]:

𝑞1𝜙2 − 𝑞1 ⃗𝑣1 ⋅ ⃗𝐴( ⃗𝑟2, 𝑡) =
𝑞1𝑞2
𝑟12

− 𝑞1 ⃗𝑣1 ⋅ 𝑞2 ⃗𝑣2
2𝑐2𝑟12

− (𝑞1 ⃗𝑣1 ⋅ ⃗𝑟12)(𝑞2 ⃗𝑣2 ⋅ ⃗𝑟12)
2𝑐2𝑟312

(1.15)

Going to quantum mechanics in which the velocity operator is 𝑐�⃗�, the part
(Breit interaction) that corrects the Coulomb potential could be written as

�̂�𝐵 = −[𝑐 ⃗𝛼1 ⋅ 𝑐 ⃗𝛼2
2𝑐2𝑟12

+ (𝑐 ⃗𝛼1 ⋅ ⃗𝑟12)(𝑐 ⃗𝛼2 ⋅ ⃗𝑟12)
2𝑐2𝑟312

] (1.16)

The first term on the right side is known as the Gaunt term representing the
current-current interaction, and the second term is a gauge-dependent term.

These magnetic interactions could be understood as the combination of var-
ious terms: spin-orbit coupling (SOC), orbit-orbit interaction, and spin-spin in-
teraction. We can further subdivide spin-orbit coupling into spin-same-orbit
(SSO) and spin-other-orbit (SOO) effects. SSO describes the coupling of mag-
netic moment between the spin of electron i, and its own orbital in the reference
systems of electron j. SOO corresponds to the coupling between the spin of elec-
tron i and the orbital of electron j and vice versa. Particularly, the SOO solely
results from the Gaunt term.

Four-Component Hamiltonian

One can combine the exact 4-component one-electron Hamiltonian ℎ̂ and dif-
ferent terms of Breit interaction to obtain various types of 4-component Hamil-
tonians[74, 75]:

1. Dirac-Coulomb (DC): only consider the instantaneous Coulomb interac-
tion 1

𝑟12
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2. Dirac-Coulomb-Gaunt (DCG): add to theDCHamiltonian theGaunt terms
in two-electron interaction 𝛼1⋅𝛼2

𝑟12

3. Dirac-Coulomb-Breit (DCB): add to theDCHamiltonian the full (frequency-
independent) Breit interaction.

Two-Component Hamiltonian

Aswe shall see in the following, performing 4-component calculations is compu-
tationally expensive, particularly for large systems containing many electrons.
The idea is thus to transform the 4-component (4c) equation into the 2-component
(2c) equation while maintaining only the positive energy solutions.

Here, we show only the transformation within the one-electron part. For the
two-electron operator, the transformation requires the full set of two-electron
integrals at the 4c level and the generation of the 2c two-electron integral ismore
expensive than the corresponding 4c calculation[74], and one should consider
additional approximation.

The first attempt to transform Dirac Hamiltonian from 4c to 2c is called
Foldy-Wouthuysen transformation[76].

U† ⎡⎢⎢⎢⎢⎣
ℎ𝐿𝐿 ℎ𝐿𝑆
ℎ𝑆𝐿 ℎ𝑆𝑆

⎤⎥⎥⎥⎥⎦
U =

⎡⎢⎢⎢⎢⎣
ℎ++ 0
0 ℎ−−

⎤⎥⎥⎥⎥⎦
(1.17)

The general matrix form for the Foldy–Wouthuysen transformation can be
written as:

U =
⎡⎢⎢⎢⎢⎣
Ω+ −𝑅†Ω−

𝑅Ω+ Ω−

⎤⎥⎥⎥⎥⎦
(1.18)

with Ω± being defined as

Ω+ = 1
√1 + 𝑅†𝑅

and Ω− = 1
√1 + 𝑅𝑅†

and 𝑅 is the connection factor between large and small component in 4c wave
function, which is normally energy-dependent:

Φ𝑆 = 𝑅Φ𝐿 (1.19)
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𝑅 = (2𝑚𝑐2 − 𝑉 + 𝐸+)−1𝑐(�⃗� ⋅ ⃗𝑝) (1.20)

Since the energy dependence of 𝑅 and U, the exact Foldy-Wouthuysen trans-
formation is very complicated. It is necessary to find other approximated meth-
ods to carry out the 4c to 2c transformation.

Exact Two-component Hamiltonian(X2C)

There have been various ways to perform approximated 4c to 2c transforma-
tion such as Douglas-Kroll-Hess (DKH)[77–79], Zeroth Order Regular Approx-
imation (ZORA)[80–82], and eXact two-component Hamiltonian (X2C)[83–86].
Here, we present the X2C scheme, which is the Hamiltonian used in most of
calculations in this thesis.

The X2C method constructs R by solving the one-electron equation directly
in the corresponding matrix form[84]. The generic equation is given by

hci =
⎡⎢⎢⎢⎢⎣
hLL hLS

hSL hSS

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
cLi
cSi

⎤⎥⎥⎥⎥⎦
= 𝜖𝑖

⎡⎢⎢⎢⎢⎣
cLi
cSi

⎤⎥⎥⎥⎥⎦
(1.21)

cSi = RcLi (1.22)

From this relation, one can then obtain the exact form of the transformation
matrix U explicitly, within the finite basis set[87, 88].

U = W1W2 (1.23)

W1 =
⎡⎢⎢⎢⎢⎣
I −R†

R I

⎤⎥⎥⎥⎥⎦
(1.24)

W2 =
⎡⎢⎢⎢⎢⎣
(I + R†R)−1/2 0

0 (I + RR†)−1/2
⎤⎥⎥⎥⎥⎦

(1.25)

where I is the unit matrix.
The key difference between X2C and other approximated two-component

philosophies is that other methods derive the analytical expressions of the two-
component Hamiltonian with an approximated U, but X2C directly determines
the matrix form of U without approximation. Therefore, X2C doesn’t have the
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analytical expression of the Hamiltonian like Breit-Pauli but it gives the exact
matrix form in the given basis set. The X2C scheme can be summarized in three
steps:

1. Solve the parent 4c one-electron equation on the matrix form

2. Extract coupling factor R in matrix form from the connection between the
large and small component solution

3. Construct transformation matrix U from R

For molecular property calculations, which require the evaluation of prop-
erty integrals, one needs to also transform the property operators Ω from 4-
component into 2-component[74]:

Ω2𝑐 = [U†Ω4𝑐U]++ (1.26)

where we take the ++ block of the transformed 4c parent property matrix as we
did for Hamiltonian in the equation 1.17.

One advantage of the X2C scheme is that one can obtain the explicit repre-
sentation of matrix U, and transform the property operator on the fly. For other
schemes such as DKH, one may take the approximated expression

Ω2𝑐 ≈ [Ω4𝑐]𝐿𝐿 (1.27)

which will lead to significant picture change errors[89].

1.2 Dirac-Hartree-Fock method

Now we turn to many-electron systems, we start from the time-independent
Dirac equation with the molecular Hamiltonian defined in 1.1.

⒧
𝑖

ℎ̂𝑖 +
𝑖,𝑗

�̂�𝑖,𝑗 + �̂�𝑁,𝑁⒭Ψ( ⃗𝑟) = 𝐸Ψ( ⃗𝑟) (1.28)
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The first approach to solving the many-body problems is to consider that
each particle is moving in the mean field of others (Hartree-Fock approxima-
tion).

Mathematically, an exact many-electron wave function can always be ex-
panded by a set of Slater determinants functions, and the most simple approxi-
mation is to use only one determinant[90]:

|0′⟩ = 𝑒−�̂� |0⟩ (1.29)

here, �̂� is the orbital rotation operator, and |0⟩ is an initial guess state. The �̂�
can be expressed in the second quantization form:

�̂� = 
𝑝>𝑞

𝜅𝑝𝑞(𝑎†𝑝𝑎𝑞 − 𝑎†𝑞𝑎𝑝) = 
𝑝>𝑞

𝜅𝑝𝑞𝐴𝑝𝑞 (1.30)

where 𝑎†, 𝑎, and 𝐴 are creation, annihilation, and orbital rotation operators, re-
spectively. 𝑝 and 𝑞 indicate general (occupied or virtual) spinors.

The energy of the Hartree-Fock state is the expectation value of the Hamil-
tonian in the rotated basis:

𝐸(𝜅𝑝𝑞) = ⟨0′| �̂� |0′⟩ = ⟨0| 𝑒�̂��̂�𝑒−�̂� |0⟩ (1.31)

which can be expanded with the Baker-Campbell-Hausdorff (BCH) series:

𝐸(𝜅𝑝𝑞) = ⟨0| �̂� |0⟩ + ⟨0| [�̂�, �̂�] |0⟩ + 1
2! ⟨0| [�̂�, [�̂�, �̂�]] |0⟩ + ... (1.32)

The coefficients 𝜅𝑝𝑞 can be obtained with the help of the variation principle
that is, by determining the stationary points of the gradient 𝑔 of the energy with
respect to the coefficients 𝜅𝑝𝑞:

𝜕𝐸
𝜕𝜅𝑝𝑞


|0′⟩=|𝐻𝐹⟩

= 𝑔𝑝𝑞 = ⟨0| [𝐴𝑝𝑞, �̂�] |0⟩ = 0 (1.33)
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In second quantization form 𝑔 can be expressed as [75]

𝑔𝑝𝑞 = 𝑓𝑝𝑞 − 𝑓∗
𝑞𝑝 (1.34)

where 𝑓 is the Fock matrix:

𝑓𝑝𝑞 = ℎ𝑝𝑞 +
𝑜𝑐𝑐


𝑖

⟨𝑖𝑝| |𝑖𝑞⟩ (1.35)

with the integral notation:

⟨𝑝𝑟| |𝑞𝑠⟩ = ⟨𝑝𝑟| 1
𝑟12

|𝑞𝑠⟩ − ⟨𝑝𝑟| 1
𝑟12

|𝑠𝑞⟩ (1.36)

⟨𝑝𝑟| 1
𝑟12

|𝑞𝑠⟩ = 𝑑𝑟31 𝑑𝑟32𝜙∗
𝑝(𝑟1)𝜙∗

𝑟 (𝑟2)
1
𝑟12

𝜙𝑞(𝑟1)𝜙𝑠(𝑟2) (1.37)

Therefore, the gradientmatrix 𝑔 is being zero corresponds to the Fockmatrix
𝑓 becoming diagonal, leading to the HF equations,

𝑓𝑞𝑞|𝑞⟩ = 𝜖𝑞|𝑞⟩, (1.38)

where 𝜖𝑞 are the spinor energies.

The Hartree-Fock energy can be expressed as:

𝐸(𝐻𝐹) =
𝑜𝑐𝑐


𝑖

ℎ𝑖𝑖 +
1
2

𝑜𝑐𝑐


𝑖𝑗

⟨𝑖𝑗| |𝑖𝑗⟩ + 𝑉𝑁,𝑁 (1.39)

To diagonalize the Fock matrix, we expand the molecular orbitals in terms
of atomic basis functions 𝜒:

|𝑞⟩ = 
𝜇

𝐶𝑞𝜇𝜒𝜇 (1.40)

and evaluate the pseudoeigenvalue equation (Roothaan equations) with self-



1.3. Correlated wave functions 19

consistent-field (SCF) methods until the results converge[90]:

FAOC = SC𝜖 (1.41)

where FAO is the Fock matrix in the atomic basis set, and S is the overlap matrix.
Unlike in the non-relativistic case, the 4-component Roothaan-type of Dirac-

Hartree-Fock equation generates both positive and negative energy states. That
indicates one has to pick up a suitable basis set to expand both the large and
small components, otherwise, an arbitrary expansion will result in ”variational
collapse” because of the presence of the negative energy solutions.

In the 4c calculation, one usually uses basis sets following the kinetic bal-
ance[75, 91], that is the small component basis set has to be expressed in terms
of the large component basis set:

𝜒𝑆 = 𝑁(�⃗� ⋅ ⃗𝑝)𝜒𝐿 (1.42)

where 𝑁 is the normalization constant.
On the other hand, in the usual X2C scheme, we transform the Hamilto-

nian from 4c to 2c before the SCF procedure, so in the latter, only positive en-
ergy orbitals are generated, except for the X2C molecular-mean-field (X2Cmmf)
scheme[88], where we run the 4c molecular Hartree-Fock calculation first to ob-
tain the transformation matrix.

1.3 Correlated wave functions

1.3.1 Configuration Interaction

TheHartree-Fock approximation treats electronsmoving in an average potential
while ignoring the instantaneous electron-electron interaction (dynamic elec-
tron correlation). To consider such influence, one can put electrons on a set of
’configurations’ where electrons could occupy different orbitals.

TheHartree-Fock equation provides the orbitals to construct the ground and
excited determinants, in which we then solve the equation1.28. Considering all
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possible configurations within the given basis set (Full-CI limits), we can obtain
the exact wave function and energy. The electronic correlation problem can then
be translated into how we evaluate the coefficients of the CI expansion.

|Ψ⟩ =
∞


𝑖

𝑐𝑖 |𝜙𝑖⟩ (1.43)

The first way is that we directly solve the many-body equation1.28. In prac-
tice, we always truncate theCI space. For example, thewell-knownCISDmethod
is to pick up all excited determinants that are singly and doubly excited from
the Hartree-Fock determinant,

|Ψ𝐶𝐼𝑆𝐷⟩ = |𝐻𝐹⟩ +
𝑎


𝑖

𝑐𝑎𝑖 |𝜙𝑎
𝑖 ⟩ +

𝑎𝑏


𝑖𝑗

𝑐𝑎𝑏𝑖𝑗 |𝜙𝑎𝑏
𝑖𝑗 ⟩ (1.44)

|𝜙𝑎
𝑖 ⟩ = 𝑎†𝑎𝑎𝑖 |𝐻𝐹⟩ (1.45)

|𝜙𝑎𝑏
𝑖𝑗 ⟩ = 𝑎†𝑎𝑎†𝑏𝑎𝑗𝑎𝑖 |𝐻𝐹⟩ (1.46)

To evaluate theCI coefficients, one puts Eq.1.44 into Eq.1.28 and left-multiplies
with the corresponding determinants to obtain a matrix equation[92]

HC = 𝐸C (1.47)

H�� = ⟨𝜙𝜈| �̂� |𝜙𝜇⟩ (1.48)

where the eigenvalues and eigenvectors of the Hamiltonianmatrix represent the
energy and wave function of ground and excited states. The correlation energy
can be defined as the difference between the exact total energy and the Hartree-
Fock energy.

In the second way, we start from the variational principle, since the exact
solution should be stable under any perturbations[90].

𝐸(𝑐𝑖) =
⟨Φ(𝑐𝑖)| �̂� |Φ(𝑐𝑖)⟩
⟨Φ(𝑐𝑖)| |Φ(𝑐𝑖)⟩

(1.49)
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𝜕𝐸(𝑐𝑖)
𝜕𝑐𝑖

= 0 (1.50)

Here the variational parameters are the CI coefficients associated with the de-
terminants.

The variational equation1.50 gives the samematrix form as 1.47. Thatmeans
the solutions of the CI method satisfy the variational principle and the roots
represent the upper bound of the exact ground and excited states.

The single reference (SR) CI method shown above is based on the dominance
of the HF determinant, so the calculations become meaningless in case the HF
determinant is not dominant, such as in molecular dissociation problems. To
overcome these shortcomings, multi-reference (MR) CI methods are proposed.
TheMRCIwave functions are based on the concept of the reference space |𝜓(𝑚)⟩
including more than a single determinant[93]:

|𝜓(𝑚)𝑎𝑖 ⟩ = 𝑎†𝑎𝑎𝑖 |𝐻𝐹⟩ ; (1.51)

|𝜓(𝑚)𝑎𝑏𝑖𝑗 ⟩ = 𝑎†𝑎𝑎†𝑏𝑎𝑗𝑎𝑖 |𝐻𝐹⟩ ; ... (1.52)

𝑚 = 1...𝑁𝑟𝑒𝑓 (1.53)

where 𝑁𝑟𝑒𝑓 is the number of configurations in the reference space.
The MRCI wave function is then generated by including all configurations

belonging to the reference space and all excitations up to a given level from each
reference configuration[93].

|Ψ𝑀𝑅𝐶𝐼⟩ =
𝑚

𝑐𝑚 |𝜓(𝑚)⟩

+
𝑚


𝑖,𝑎

𝑐(𝑚)𝑎𝑖 |𝜓(𝑚)𝑎𝑖 ⟩

+
𝑚


𝑖>𝑗,𝑎>𝑏

𝑐(𝑚)𝑎𝑏𝑖𝑗 |𝜓(𝑚)𝑎𝑏𝑖𝑗 ⟩

+ ...

(1.54)

The MRCI model can provide very accurate results as long as the user can
include all important configurations in the reference space. However, for large
systems, the number of configurations in the reference space is large, resulting
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in the calculation being impossible. Therefore, setting a suitable reference space
is the key step in theMRCI calculation, which relies on the user’s experience and
patience.

Other significant issues in CI methods are the lack of size-extensivity and
size-consistency. These issues exist in all truncated CI models for both SR and
MR approaches. The size-consistency states that for two noninteraction molec-
ular fragments A and B, the total energy should be additively separable[90]:

�̂�𝐴 |𝜙𝐴⟩ = 𝐸𝐴 |𝜙𝐴⟩ (1.55)

�̂�𝐵 |𝜙𝐵⟩ = 𝐸𝐵 |𝜙𝐵⟩ (1.56)

�̂�𝐴𝐵 |𝜙𝐴𝐵⟩ = 𝐸𝐴𝐵 |𝜙𝐴𝐵⟩ (1.57)

𝐸𝐴𝐵 = 𝐸𝐴 + 𝐸𝐵 (1.58)

However, for the truncated CI models, for instance, in the CI-doubles (CID)
wave function, there are double excitations in the total wave functions for the
dimer, but there are quadruple excitations if we do the calculations for each sub-
system, separately (double excitations on each monomer). Size-extensivity is a
more mathematically formal characteristic which refers to the correct scaling of
a method with the number of electrons[94]. These issues will introduce substan-
tial errors into calculated properties such as dissociation energy. While it can
be partially fixed by some approximated methods such as Davidson correction
(+Q)[95], it would be better to develop a method to consider the size-extensivity
exactly such as perturbation theory and coupled cluster discussed in the follow-
ing.

1.3.2 Møller–Plesset Perturbation Theory

The second approach is to use the perturbation theory, which has been widely
used in physics. In most situations, compared to the Hartree-Fock energy, the
correlation energy is so small that can be safely treated as a perturbation. Unlike
the CI method, the Møller–Plesset Perturbation Theory (MPPT) doesn’t follow
the variational principle, but it is the simplest method to compute the electron
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correlation.

As the first strategy to derive the CI equation, we also start from the equa-
tion1.28, but divide the total Hamiltonian into two parts: 1) the unperturbed
Hamiltonian (𝐻0); and 2) the perturbation term 𝑉[90]:

𝐻 |Ψ⟩ = (𝐻0 + 𝜆𝑉) |Ψ⟩ = 𝐸 |Ψ⟩ (1.59)

Here, 𝐻0 denotes the Hartree-Fock Hamiltonian, and we know the correspond-
ing eigenfunctions and eigenvalues:

𝐻0 |Φ0
𝑚⟩ = 𝐸0

𝑚 |Φ0
𝑚⟩ (1.60)

Then, we expand the exact wave function and energy in a Taylor series with
respect to the perturbation parameter 𝜆:

𝐸 = 𝐸0 + 𝜆𝐸1 + 𝜆2𝐸2 + ... + 𝜆𝑛𝐸𝑛 + ... (1.61)

|Ψ⟩ = |Φ0⟩ + 𝜆 |Φ1⟩ + 𝜆2 |Φ2⟩ + ...𝜆𝑛 |Φ⟩𝑛 + ... (1.62)

Substituting Eq. 1.61,1.62 into Eq.1.59 while keeping perturbation corrections
always orthogonal to the zeroth order part:

⟨Φ0| Φ𝑛⟩ = 0 (1.63)

and collecting all terms of the same order under the perturbation. Then, we can
obtain expressions for the n-th order perturbation energies and wave functions.
We show the expression for the perturbation energy until the second order be-
low:

𝐸0 =
𝑜𝑐𝑐


𝑖

𝜖𝑖 (1.64)

𝐸1 = ⟨Φ0| 𝑉 |Φ0⟩ = −12

𝑜𝑐𝑐


𝑖,𝑗

⟨𝑖𝑗| |𝑖𝑗⟩ (1.65)
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𝐸2 = 
𝑚

| ⟨Φ0
0| 𝑉 |Φ0

𝑚⟩ |2

𝐸0
0 − 𝐸0

𝑚
= 1

4

𝑜𝑐𝑐


𝑖,𝑗

𝑣𝑖𝑟


𝑎,𝑏

| ⟨𝑖𝑗| |𝑎𝑏⟩ |2

𝜖𝑖 + 𝜖𝑗 − 𝜖𝑎 − 𝜖𝑏
(1.66)

Compared to equation 1.39, we note that the Hartree-Fock energy is the sum
of the zeroth order and the first-order energies. Therefore, the first-order cor-
rection to the Hartree-Fock energy is the second-order perturbation energy 𝐸2.

1.3.3 Coupled Cluster Theory

As we see in Eq.1.44, the CI type of wave functions expand the electronic cor-
relation by a linear combination of higher order Slater determinants including
double, triple, quadruple excitations, and so forth. However, it suffers from two
serious disadvantages: the lack of size-extensivity and the fairly slow conver-
gence towards the Full CI limit[37, 90]. On the other hand, in Coupled Cluster
theory, the wave function is parametrized as an exponential function:

|Ψ𝐶𝐶⟩ = 𝑒�̂� |𝐻𝐹⟩ (1.67)

where �̂� is the cluster operator:

�̂� = ̂𝑇1 + ̂𝑇2 + ̂𝑇3 + ... (1.68)

For example, in the well-known CCSD wave function �̂� is restricted to terms ̂𝑇1

and ̂𝑇2 only:
|Ψ𝐶𝐶𝑆𝐷⟩ = 𝑒 ̂𝑇1+ ̂𝑇2 |𝐻𝐹⟩ (1.69)

in second quantization, ̂𝑇1 and ̂𝑇2 can be defined as:

̂𝑇1 =
𝑎


𝑖

𝑡𝑎𝑖 ̂𝑎†𝑎 ̂𝑎𝑖 (1.70)

̂𝑇2 =
1
4

𝑎𝑏


𝑖𝑗

𝑡𝑎𝑏𝑖𝑗 ̂𝑎†𝑎 ̂𝑎†𝑏 ̂𝑎𝑗 ̂𝑎𝑖 (1.71)
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yielding

|Ψ𝐶𝐶𝑆𝐷⟩ = |𝐻𝐹⟩ +
𝑎


𝑖

𝑡𝑎𝑖 |𝜙𝑎
𝑖 ⟩ +

𝑎>𝑏


𝑖>𝑗

𝑡𝑎𝑏𝑖𝑗 |𝜙𝑎𝑏
𝑖𝑗 ⟩ +

𝑎,𝑏


𝑖,𝑗

𝑡𝑎𝑖 𝑡𝑏𝑗 |𝜙𝑎𝑏
𝑖𝑗 ⟩ +

𝑎,𝑐>𝑑


𝑖,𝑘>𝑙

𝑡𝑎𝑖 𝑡𝑐𝑑𝑘𝑙 |𝜙𝑎𝑏𝑐
𝑖𝑗𝑘 ⟩ + ...

(1.72)

Unlike the CISD wave function, the CCSD wave function contains determi-
nants higher than double excitations by the so-called unconnected terms. For
instance, the CCSD wave function has part of triple excitations by including the
product of ̂𝑇1 and ̂𝑇2, which are not present in the linear type of wave function
CISD.

While there has been some progress recently in evaluating the CCwave func-
tion with the variational principle[96], such methods are still difficult to pro-
gram for a classical computer. Alternatively, one uses the intermediate normal-
ization as Eq. 1.63 in perturbation theory[90]:

�̂� |Ψ𝐶𝐶⟩ = 𝐸𝑒�̂� |𝐻𝐹⟩ (1.73)

⟨𝐻𝐹|Ψ𝐶𝐶⟩ = 1, (1.74)

we obtain the Coupled-Cluster ground state energy:

𝐸 = ⟨𝐻𝐹| �̂� |Ψ𝐶𝐶⟩ = ⟨𝐻𝐹| 𝑒−�̂��̂�𝑒�̂� |𝐻𝐹⟩ = ⟨𝐻𝐹| ̂�̄� |𝐻𝐹⟩ (1.75)

where ̂�̄� is called similarity-transformed Hamiltonian.

Projecting the Eq.1.73 against the excited determinants ⟨𝜇|, we obtain the set
of equations for the amplitudes:

⟨𝜇| ̂�̄� |𝐻𝐹⟩ = 0 (1.76)

Another way to derive the CC amplitude equations is by introducing the
Lagrangian multiplier 𝜆𝜇 to construct the CC Lagrangian 𝐿[97]:

𝐿 = ⟨𝐻𝐹| ̂�̄� |𝐻𝐹⟩ +
𝜇

𝜆𝜇 ⟨𝜇| ̂�̄� |𝐻𝐹⟩ (1.77)
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where 𝐿 is orbital-unrelaxed.
Making the CC Lagrangian stationary with respect to the amplitudes 𝑡, and

multipliers 𝜆:
𝜕𝐿
𝜕𝜆 = 0 (1.78)

𝜕𝐿
𝜕𝑡 = 0 (1.79)

We can recognize that equation 1.78 corresponds to the amplitude equation
1.76. Moreover, with equation 1.79, one can evaluate the multipliers 𝜆, which
can be used to construct the ground state (one-body reduced) density matrix
and from it obtain ground-state expectation values for one-body operators.

The CC equations are expressed in the molecular orbital (MO) basis as other
correlation models like CI and MP2, so a transformation between atomic or-
bitals (AO) to MO is necessary before performing the CC evaluation. A further
improvement beyond the CCSD is the CCSD(T) model[98], which considers the
triple excitations with a non-iterative perturbation fashion.



Chapter2
Response Theory

In this chapter, a brief overview of response theory is given. We start with
defining static molecular properties with the help of time-independent pertur-
bation theory. For frequency-dependent properties, while the formulation can
be defined with the so-called Ehrenfest approach, we follow the formulation
based upon the quasi-energy formalism. Then we discuss the parametrization
of the time-dependent wave function, particularly focusing on the coupled clus-
ter models. We note the quasi-energy formulation of coupled cluster molecular
properties is extensively discussed in the articles by Christiansen et al.[27], and
Pawłowski et al.[92], and we refer the reader to these references for further de-
tails.

2.1 Molecular response properties

Molecular response properties describe how molecules respond to changes in
the environment. For example, when we apply a static external electromag-
netic field to a molecule, such a field will change the system’s wave function
and energy following the time-independent equations:

𝐻(𝜖) |0(𝜖)⟩ = 𝐸(𝜖) |0(𝜖)⟩ (2.1)

𝐻(𝜖) = 𝐻0 + 𝑉(𝜖) (2.2)

27
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where 𝐻 and 𝐻0 are the total and unperturbed Hamiltonian, respectively, |0(𝜖)⟩
is the total wave function, 𝑉 is the time-independent external perturbation, 𝐸 is
the total molecular energy, and 𝜖 is the parameter to describe the perturbation
such as field strength.

There are two primary methods to define molecular properties. The first
method views molecular properties as variations (derivatives) in molecular en-
ergy due to an external perturbation. For instance, the electric dipole moment
(𝜇), electric polarizability (𝛼), first-order hyperpolarizability (𝛽), and second-
order hyperpolarizability (𝛾) can be defined as the first, second, third, and fourth-
order derivatives, respectively, of 𝐸 with respect to the 𝜖.

𝜇 = 𝜕𝐸
𝜕𝜖


𝜖=0

(2.3)

𝛼 = 𝜕2𝐸
(𝜕𝜖)2


𝜖=0

(2.4)

𝛽 = 𝜕3𝐸
(𝜕𝜖)3


𝜖=0

(2.5)

𝛾 = 𝜕4𝐸
(𝜕𝜖)4


𝜖=0

(2.6)

The second approach beginswith the derivatives of expectation values (Ehren-
fest approach)[30, 99], such as the dipole moment. It treats properties like po-
larizability and first-order hyperpolarizability as expansion coefficients of the
electric dipole moment using subsequent Taylor series expansions.

𝜇(𝜖) = ⟨0(𝜖)| �̂� |0(𝜖)⟩ (2.7)

𝜇(𝜖) = 𝜇 + 𝛼𝜖 + 1
2𝛽𝜖

2 + 1
6𝛾𝜖

3 + ... (2.8)

Both methods have their respective advantages and limitations. The first is
versatile as it can connect energy with various static properties, leveraging the
Hellmann–Feynman theorem.

𝑑𝐸
𝑑𝜖 = ⟨0(𝜖)| 𝑑𝐻𝑑𝜖 |0(𝜖)⟩ (2.9)
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However, this approach faces challenges when studying time-dependent prop-
erties, where energy isn’t clearly defined. Conversely, the method based on ex-
pectation values can be seamlessly extended to time-dependent cases, as the
time-dependent expectation value can be defined as

𝜇(𝜖, 𝑡) = ⟨0(𝜖, 𝑡)| �̂� |0(𝜖, 𝑡)⟩ (2.10)

2.2 Quasi-energy

While the Ehrenfest approach is quite flexible for dealingwith the time-dependent
response properties and Koch and Jørgensen[100] derived the corresponding re-
sponse functions and equations for coupled cluster wave function, in this the-
sis we focus on an alternative method based on the concept of quasi-energy. It
is more attractive than the Ehrenfest approach in that it treats the variational
and nonvariational wave functions in a unified framework as similar to time-
independent theory, which can be naturally formulated in the limit of static
perturbations.

The quasi-energy 𝑄(𝑡) is defined with the expressions[92]

𝑄(𝑡) = ⟨0(𝜖, 𝑡)| (𝐻(𝜖, 𝑡) − 𝑖 𝜕𝜕𝑡 ) |0(𝜖, 𝑡)⟩ (2.11)

𝐻(𝜖, 𝑡) = 𝐻0 + 𝑉(𝜖, 𝑡) (2.12)

where |0(𝜖, 𝑡)⟩ is the time-dependent wave function corresponding to the time-
independent wave function |0(𝜖)⟩ in the static limit. 𝑉(𝜖, 𝑡) is a time-dependent
perturbation, and can be expanded in a sum over Fourier components,

𝑉(𝜖, 𝑡) = 
𝑖

𝑋𝑖𝜖𝑋𝑖𝑒
−𝑖𝜔𝑋𝑖 𝑡 (2.13)

where 𝑋𝑖 is a Hermitian time-independent operator, and 𝜔𝑋𝑖 is the associated
real frequency.

Consequently,𝑄(𝑡)has the same content as the energy in the time-independent
limit. Furthermore, for periodic perturbations, it has been demonstrated that
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one can compute the derivatives of the time-averaged quasi-energy to define
time-dependent properties [27]:

⟨𝑋⟩ = 𝑑{𝑄}𝑇
𝑑𝜖𝑥(0)

(2.14)

⟨⟨𝑋; 𝑌⟩⟩𝜔𝑦 =
𝑑2{𝑄}𝑇

𝑑𝜖𝑥(𝜔0)𝑑𝜖𝑦(𝜔𝑦)
(2.15)

⟨⟨𝑋; 𝑌, 𝑍⟩⟩𝜔𝑦 ,𝜔𝑧 =
𝑑3{𝑄}𝑇

𝑑𝜖𝑥(𝜔0)𝑑𝜖𝑦(𝜔𝑦)𝑑𝜖𝑧(𝜔𝑧)
(2.16)

⟨⟨𝑋; 𝑌, 𝑍, ...⟩⟩𝜔𝑦 ,𝜔𝑥 ,... =
𝑑𝑛+1{𝑄}𝑇

𝑑𝜖𝑥(𝜔0)𝑑𝜖𝑦(𝜔𝑦)𝑑𝜖𝑧(𝜔𝑧)...
(2.17)

where the time-averaged quasi-energy is defined by

{𝑄}𝑇 = 1
𝑇 

𝑇/2

−𝑇/2
𝑄(𝑡)𝑑𝑡 (2.18)

and the frequency 𝜔 should follow the relations:


𝑖

𝜔𝑖 + 𝜔0 = 0 (2.19)

The concept of quasi-energy significantly simplifies the process of deriving
time-dependent response functions and their associated response equations, be-
cause we can apply the same procedures used for computing energy derivatives
in time-independent problems. Additionally, this approach allows for the reuse
of techniques such as Wigner’s 2n+1 and 2n+2 rules[92].

The 2n+1 rule states that from the n-th and lower-order wave function on the
right-hand side of eq 2.11 one can determine the (2n+1)-th order of perturba-
tion to the energy. For non-variational wave functions such as CC, the left-hand
wave-function is not merely the complex conjugate of the right-side counter-
part. However, it allows for further simplifications by applying the 2n+2 rule
to the wave function on the left-hand side, as with the determination of the
n-th order left-hand side wave function we can determine the (2n+2)-th order
of perturbation to the energy. Specifically, for the linear response, which is
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the second-order perturbation to energy, we are required to evaluate the first-
order and zeroth-order perturbation for the right and left wave functions, re-
spectively. For the quadratic response, which is the third-order perturbation,
we are required to calculate first-order perturbation for both left and right wave
functions.

2.3 Parametrization of time-dependent wave func-
tion

The time-dependent wave function can be defined in general form via an expo-
nential parametrization[92, 101]:

|0𝑅(𝑡, 𝜖)⟩ = 𝑁(𝑡, 𝜖)𝑒𝐵0𝑒𝐵(𝑡) |𝑅⟩ (2.20)

where, 𝑁(𝑡, 𝜖) is the normalization constant, |𝑅⟩ is the time-independent refer-
ence state such asHartree-Fockwave function. 𝐵0, and𝐵(𝑡) are time-independent
and time-dependent operators, respectively.

𝐵0 = 
𝑘

𝑏0𝑘𝛽0
𝑘 (2.21)

𝐵(𝑡) = 
𝑘

𝑏𝑘(𝑡)𝛽𝑘 (2.22)

They are determined by the specific wave function forms, which are discussed
in the following. Then, the time-averaged quasi-energy is defined as [92]

𝑄 = 𝑅𝑒{⟨𝑅| 𝑒−𝐵(𝑡)(𝐻𝐵0 − 𝑖 𝜕𝜕𝑡 )𝑒
𝐵(𝑡) |𝑅⟩}𝑇 (2.23)

where 𝐻𝐵0 is the similarity-transformed Hamiltonian ̂�̄� defined in 1.75.

For a non-variational wave function such as coupled cluster, one should
make use of a Lagrangian with time-dependent multipliers ̄𝑏𝑘(𝑡). Using Fourier
transformation, the time-averaged Lagrangian in the frequency domain can be
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expressed as

𝐿 = 𝑅𝑒{{⟨𝑅| 𝑒−𝐵(𝑡)(𝐻𝐵0 − 𝑖 𝜕𝜕𝑡 )𝑒
𝐵(𝑡) |𝑅⟩}𝑇 +

𝑘,𝐾

̄𝑏𝑘(𝜔𝐾){⟨𝑘| 𝑒−𝐵(𝑡)(𝐻𝐵0 − 𝑖 𝜕𝜕𝑡 )𝑒
𝐵(𝑡) |𝑅⟩}𝑇}

(2.24)
where, ̄𝑏𝑘(𝜔𝐾) are the Fourier components of the time-dependent multipliers
̄𝑏𝑘(𝑡):

̄𝑏𝑘(𝑡) = 
𝐾

̄𝑏𝑘(𝜔𝐾)𝑒−𝑖𝜔𝐾 𝑡 (2.25)

̄𝑏𝑘(𝜔𝐾) = ̄𝑏0𝑘𝛿(0 − 𝜔𝐾) +
𝑖

̄𝑏𝑋𝑖
𝑘 (𝜔𝑋𝑖 )𝜖𝑋𝑖 (𝜔𝑋𝑖 )𝛿(𝜔𝑋𝑖 − 𝜔𝐾)

+ 1
2 

𝑖

𝑗

̄𝑏𝑋𝑖𝑋𝑗
𝑘 (𝜔𝑋𝑖 , 𝜔𝑋𝑗 )𝜖𝑋𝑖 (𝜔𝑋𝑖 )𝜖𝑋𝑗 (𝜔𝑋𝑗 ) × (𝜔𝑋𝑗 )𝛿(𝜔𝑋𝑖 + 𝜔𝑋𝑗 − 𝜔𝐾)

+ ...

+ 1
𝑛! 𝑖

...
𝑛

̄𝑏𝑋𝑖 ...𝑋𝑛
𝑘 (𝜔𝑋𝑖 , ..., 𝜔𝑋𝑛) × (

𝑛


𝑚=1

𝜖𝑋𝑚(𝜔𝑋𝑚))𝛿(
𝑛


𝑚=1

𝜔𝑋𝑚 − 𝜔𝐾)

+ ...

(2.26)

with

𝛿(𝑋) = 0(𝑥 ≠ 0)
= 1(𝑥 = 0)

(2.27)

Eachmolecular response property, characterized by a response function, can
be derived from the Taylor expansion of the Lagrangian with respect to the field
strength 𝜖 at different orders.

𝐿 = 
𝑛

𝐿𝑛 (2.28)

𝐿𝑛 = 1
𝑛! 𝑖

...
𝑛

𝑁𝐿𝑋𝑖 ,...,𝑋𝑛(𝜔𝑋𝑖 , ..., 𝜔𝑋𝑛) × 𝜖𝑋𝑖 (𝜔𝑋𝑖 )...𝜖𝑋𝑛(𝜔𝑋𝑛) (2.29)

𝐿𝑋𝑖 ...𝑋𝑛(𝜔𝑋𝑖 , ..., 𝜔𝑋𝑛) = ⒧ 𝑑𝑛𝐿
𝑑𝜖𝑋𝑖 (𝜔𝑋𝑖 )...𝑑𝜖𝑋𝑛(𝜔𝑋𝑗𝑛)

⒭
0

(2.30)

The Lagrangian at each order is then determined by making it stationary with
respect to the wave function parameters (𝑏𝑘, ̄𝑏𝑘), yielding the response equations
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for a given order. Thus, for 𝐿𝑛 one has:

𝜕𝐿𝑋𝑖 ...𝑋𝑛(𝜔𝑋𝑖 , ..., 𝜔𝑋𝑛)
𝜕𝑏𝑋𝑖 ...𝑋𝑛(𝜔𝑋𝑖 , ..., 𝜔𝑋𝑛)

= 0 (2.31)

𝜕𝐿𝑋𝑖 ...𝑋𝑛(𝜔𝑋𝑖 , ..., 𝜔𝑋𝑛)
𝜕 ̄𝑏𝑋𝑖 ...𝑋𝑛(𝜔𝑋𝑖 , ..., 𝜔𝑋𝑛)

= 0 (2.32)

whose solution may be simplified, or not required at all, due to the 2n+1 and
2n+2 rules. Once the necessary wave function parameters have been deter-
mined, the response functions defined as

⟨⟨𝑋𝑖; ..., 𝑋𝑛⟩⟩𝜔𝑋𝑖 ,...,𝜔𝑋𝑛
= 1

2⒧𝐿
𝑋𝑖 ...𝑋𝑛(𝜔𝑋𝑖 , ..., 𝜔𝑋𝑛) + 𝐿𝑋𝑖 ...𝑋𝑛∗(𝜔−𝑋𝑖 , ..., 𝜔−𝑋𝑛)⒭ (2.33)

𝜔𝑋𝑖 + ... + 𝜔𝑋𝑛 = 0 (2.34)

2.4 Response functions for Coupled Cluster models

There are different parametrization schemes for the time-dependent wave func-
tion [92]. In this thesis, our emphasis is on the coupled cluster model, in which,
the time-independent reference state is represented by the normal coupled clus-
ter wave function, so 𝐵0 is the time-independent cluster operator:

𝑏0𝑘 = 𝑡0𝑘 (2.35)

𝛽0
𝑘 = �̂�𝑘 (2.36)

𝐵0 = 𝑇0 = 
𝑘

𝑡0𝑘 �̂�𝑘 (2.37)

where, �̂�𝑘 denotes the excitation operator, which transforms the Hartree-Fock
state to an excited Slater determinant |𝑘⟩:

|𝑘⟩ = �̂�𝑘 |𝑅⟩ (2.38)

When solving the response equations 2.31 and 2.32, it is convenient to in-
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troduce the Jacobian matrix A, which is defined by differentiating 𝑄 or 𝐿 with
respect to the independent parameters 𝑏𝑘, and ̄𝑏𝑘, in the limit of the zero per-
turbation strength. The Jacobian matrix is equal to the similarity-transformed
Hamiltonian matrix within the coupled cluster framework:

A = HB0 = HT0 = H̄ (2.39)

For the time evolution function 𝐵(𝑡), it can be defined as either linear or non-
linear. The former corresponds to the CC-CImodel, while the latter is indicative
of the CC-CC model.

2.4.1 CC-CI

In the CC-CI model, the 𝛽𝑘 in 𝐵(𝑡) of equation 2.22 is defined with the state-
transfer operator

𝛽𝑘 = |𝑘⟩ ⟨𝑅| (2.40)

and we use 𝑠(𝑡) to replace the wave function coefficients 𝑏(𝑡):

𝐵(𝑡) = 𝑆(𝑡) = 
𝑘

𝑠𝑘(𝑡)𝛽𝑘 (2.41)

It follows from this definition of S(𝑡) that

𝑆(𝑡)𝑆(𝑡) = 0 (2.42)

Then, the wave function is linear for the time evolution part:

|0𝐼(𝑡,𝜖)⟩
𝐶𝐶−𝐶𝐼 = 𝑒𝑆(𝑡)𝑒𝑇0 |𝑅⟩ = 𝑒𝑇0 |𝑅⟩ +

𝑘
𝑠𝑘(𝑡)�̂�𝑘𝑒𝑇0 |𝑅⟩ (2.43)

Following the equation 2.28, 2.30, and 2.33, the zeroth, first-order, and second-
order perturbed Lagrangian in the frequency domain are:

𝐶𝐶−𝐶𝐼𝐿(0) = 𝐸0 = ⟨𝑅|𝐻𝑇0
0 |𝑅⟩ (2.44)
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𝐶𝐶−𝐶𝐼𝐿𝑋1 = ⟨𝑅|𝑋𝑇0
1 |𝑅⟩ +

𝑘

̄𝑡(0)𝑘 ⟨𝑘| 𝑋𝑇0
1 |𝑅⟩ (2.45)

𝐶𝐶−𝐶𝐼𝐿𝑋1,𝑋2(𝜔𝑋1 , 𝜔𝑋2) =𝑃
𝑋1,𝑋2

[
𝑘𝑚

̄𝑠𝑋1
𝑘 (𝜔𝑋1)𝑠

𝑋2
𝑚 (𝜔𝑋2)(𝐴𝑘𝑚 − 𝜔𝑋2𝛿𝑘𝑚)

+
𝑚

𝑠𝑋2
𝑚 (𝜔𝑋2) ⟨𝑅| [𝑋

𝑇0
1 , |𝑚]⟩ ⟨𝑅|] |𝑅⟩

+
𝑘

̄𝑠𝑋2
𝑘 (𝜔𝑋2) ⟨𝑘| 𝑋

𝑇0
1 |𝑅⟩]

−
𝑘

̄𝑡0𝑘 𝑠
𝑋1
𝑘 (𝜔𝑋1)

𝑚
𝑠𝑋2
𝑚 (𝜔𝑋2) ⟨𝑅|𝐻

𝑇0
0 |𝑚⟩

−
𝑘𝑚

̄𝑡0𝑘 𝑠𝑋2
𝑚 (𝜔𝑋2)𝑠

𝑋2
𝑚 (𝜔𝑋2) ⟨𝑘| [𝑋

𝑇0
1 , |𝑚⟩ ⟨𝑅|] |𝑅⟩]

(2.46)

where ̄𝑡0 is the ground state Lagrangian amplitudes, which can be obtained by
solving the Lambda-equations of the ground state. 𝑃𝑋1,𝑋2 acts to permute per-
turbations 𝑋1 and 𝑋2.

The 𝑠𝑋1
𝑚 and ̄𝑠𝑋1

𝑚 are the first-order perturbed amplitudes for the right and
left state, respectively. They are determined by the corresponding right and left
first-order response equations:


𝑚

(𝐴𝑘𝑚 − 𝜔𝑋1𝛿𝑘𝑚)𝑠
𝑋1
𝑚 = − ⟨𝑘| 𝑋𝑇0

1 |𝑅⟩ (2.47)


𝑚

̄𝑠𝑋1
𝑚 (𝐴𝑚𝑘 + 𝜔𝑋1𝛿𝑘𝑚) =(

𝑚

̄𝑡(0)𝜈𝑚 𝑠
𝑋1
𝑚 ) ⟨𝑅|𝐻𝑇0

0 |𝑘⟩

+ ̄𝑡(0)𝑘 
𝑚

𝑠𝑋1
𝑚 ⟨𝑅|𝐻𝑇0

0 |𝑚⟩

− ⟨𝑅| [𝑋𝑇0
1 , |𝑘]⟩ ⟨𝑅|] |𝑅⟩

−
𝑚

̄𝑡(0)𝑚 ⟨𝑚| [𝑋𝑇0
1 , |𝑘]⟩ ⟨𝑅|] |𝑅⟩

(2.48)
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2.4.2 CC-CC

In the CC-CC model, the 𝐵(𝑡) is defined with the excitation operator �̂�𝑘, and we
use 𝑡𝑘(𝑡) to present the coefficients 𝑏𝑘(𝑡)

𝛽𝑘 = �̂�𝑘 (2.49)

𝐵(𝑡) = 𝑇(𝑡) = 
𝑘

𝑡𝑘(𝑡)�̂�𝑘 (2.50)

The wave function is exponential for the time evolution part:

|0𝐼(𝑡,𝜖)⟩
𝐶𝐶−𝐶𝐶 = 𝑒𝑇(𝑡)𝑒𝑇0 |𝑅⟩ = 𝑒𝑇0 |𝑅⟩+

𝑘
𝑡𝑘(𝑡)�̂�𝑘𝑒𝑇0 |𝑅⟩+

1
2 

𝑘,𝑙
𝑡𝑘(𝑡)𝑡𝑙(𝑡)�̂�𝑘�̂�𝑙𝑒𝑇0 |𝑅⟩+...

(2.51)

The zeroth, first-order, and second-order perturbation Lagrangian are:

𝐶𝐶−𝐶𝐶𝐿(0) = 𝐸0 = ⟨𝑅|𝐻𝑇0
0 |𝑅⟩ (2.52)

𝐶𝐶−𝐶𝐶𝐿𝑋1 = ⟨𝑅|𝑋𝑇0
1 |𝑅⟩ +

𝑘

̄𝑡(0)𝑘 ⟨𝑘| 𝑋𝑇0
1 |𝑅⟩ (2.53)

𝐶𝐶−𝐶𝐶𝐿𝑋1,𝑋2(𝜔𝑋1 , 𝜔𝑋2) =𝑃
𝑋1,𝑋2

[
𝑘𝑚

̄𝑡𝑋1
𝑘 (𝜔𝑋1)𝑡

𝑋2
𝑚 (𝜔𝑋2)(𝐴𝑘𝑚 − 𝜔𝑋2𝛿𝑘𝑚)

+
𝑚

𝑡𝑋2
𝑚 (𝜔𝑋2) ⟨𝑅| [𝑋

𝑇0
1 , �̂�𝑚] |𝑅⟩

+
𝑘

̄𝑡𝑋2
𝑘 (𝜔𝑋2) ⟨𝑘| 𝑋

𝑇0
1 |𝑅⟩

+
𝑘𝑚

̄𝑡0𝑘 𝑡𝑋2
𝑚 (𝜔𝑋2) ⟨𝑘| [𝑋

𝑇0
1 , �̂�𝑚] |𝑅⟩

+ 1/2
𝑚𝑛

𝑡𝑋1
𝑚 (𝜔𝑋1)𝑡

𝑋2
𝑛 (𝜔𝑋2) ⟨𝑅| [[𝐻

𝑇0
0 , �̂�𝑚], �̂�𝑛] |𝑅⟩

+ 1/2
𝑘𝑚𝑛

̄𝑡0𝑘 𝑡𝑋1
𝑚 (𝜔𝑋1)𝑡

𝑋2
𝑛 (𝜔𝑋2) ⟨𝑘| [[𝐻

𝑇0
0 , �̂�𝑚], �̂�𝑛] |𝑅⟩

(2.54)

The zeroth and first-order Lagrangian is the same as the CC-CI model, but
the second-order is different.
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The first-order perturbed amplitudes 𝑡𝑋1
𝑚 and ̄𝑡𝑋1

𝑚 are determined with the
right and left response equations:


𝑚

(𝐴𝑘𝑚 − 𝜔𝑋1𝛿𝑘𝑚)𝑡
𝑋1
𝑚 = − ⟨𝑘| 𝑋𝑇0

1 |𝑅⟩ (2.55)


𝑚

̄𝑡𝑋1
𝑚 (𝐴𝑘𝑚 + 𝜔𝑋1𝛿𝑘𝑚) = −

𝑚
𝑡𝑋1
𝑚 ⟨𝑅| [[𝐻𝑇0

0 , �̂�𝑚], �̂�𝑘] |𝑅⟩

+
𝑚𝑛

̄𝑡(0)𝑚 𝑡𝑋1
𝑛 ⟨𝑚| [[𝐻𝑇0

0 , �̂�𝑚], �̂�𝑘] |𝑅⟩

− ⟨𝑅| [𝑋𝑇0
1 , �̂�𝑘] |𝑅⟩

−
𝑚

̄𝑡(0)𝑚 ⟨𝑚| [𝑋𝑇0
1 , �̂�𝑘] |𝑅⟩

(2.56)

It should be noted that the right response equation is the same forCC-CCand
CC-CI models. Additionally, Coriani et al.[101] demonstrated that the response
properties derived from the EOM-CC method are equivalent to those of the CC-
CI model.

The first-order derivatives of the Lagrangian represent the expectation value
of the ground state as shown before. The associated implementation on DIRAC
has been discussed in the reference[102]. The second and third-order deriva-
tives correspond to linear and quadratic response properties, respectively. De-
tailed discussions on their implementations are presented in Chapters 3 and 4.
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Part II

ExaCorr Implementation





Chapter3
Implementation of Linear Response
properties based on Relativistic
Coupled Cluster Theory

Paper: Formulation and Implementationof Frequency-
DependentLinearResponsePropertieswithRelativis-
tic CoupledCluster Theory forGPU-acceleratedCom-
puter Architectures

I worked out the equations, implemented the code, carried out all calculations,
and wrote the manuscript.
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Abstract

We present the development and implementation of the relativistic coupled cluster

linear response theory (CC-LR) which allows the determination of molecular prop-

erties arising from time-dependent or time-independent electric, magnetic, or mixed

1



electric-magnetic perturbations (within a common gauge origin for the magnetic prop-

erties), as well as to take into account the finite lifetime of excited states in the

framework of damped response theory. We showcase our implementation, which is

capable to offload the computationally intensive tensor contractions characteristic of

coupled cluster theory onto graphical processing units (GPUs), in the calculation of:

(a) frequency-(in)dependent dipole-dipole polarizabilities of IIB atoms and selected di-

atomic molecules, with a particular emphasis on the calculation of valence absorption

cross-sections for the I2 molecule;(b) indirect spin-spin coupling constants for bench-

mark systems such as the hydrogen halides (HX, X = F-I) as well the H2Se-H2O dimer

as a prototypical system containing hydrogen bonds; and (c) optical rotations at the

sodium D line for hydrogen peroxide analogues (H2Y2, Y=O, S, Se, Te). Thanks to

this implementation, we are able show the similarities in performance–but often the

significant discrepancies–between CC-LR and approximate methods such as density

functional theory (DFT). Comparing standard CC response theory with the flavor

based upon the equation of motion formalism, we find that, for valence properties such

as polarizabilities, the two frameworks yield very similar results across the periodic

table as found elsewhere in the literature; for properties that probe the core region

such as spin-spin couplings, on the other hand, we show a progressive differentiation

between the two as relativistic effects become more important. Our results also sug-

gest that as one goes down the periodic table it may become increasingly difficult to

measure pure optical rotation at the sodium D line, due to the appearance of absorbing

states.

1 Introduction

The fundamental molecular properties, that are connected to the response of a system to ex-

ternal perturbations such as electric or magnetic fields, are central to the study of linear and

non-linear optics.1–4 It is widely acknowledged that molecules containing heavy elements,

that is, those found towards the lower parts of the periodic table, have a plethora of appli-
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cations. For instance, by manipulating the molecular polarizability, researchers can design

materials with advanced optical properties for use in photovoltaic devices and glasses, such

as bismuth oxide-based materials.5 Another important example is the utilization of optical

activity to design Lanthanide complexes as chiral probes for biological processes.6 A detailed

understanding of the physical phenomena behind these properties at the atomic or molec-

ular level is very important to tune them or to provide insight for the development of new

materials and novel applications.

In quantum mechanics, molecular properties can be derived via perturbation theory,

or more specifically, through the response theory formalism, which in general lines iden-

tify molecular properties from the derivatives of the energy (or an equivalent quantity)

with respect to the external perturbations. The genesis of modern response theory may

perhaps be traced back to the introduction by Langhoff et al. 7 in 1972, of a formalism

that allowed both time-dependent and time-independent perturbations to be taken into ac-

count analytically, i.e., without employing finite-difference (finite-field) approaches, which

are numerically straightforward (but computationally expensive) and only applicable to the

time-independent case. Among the properties one can calculate, those related to the linear

response8,9 of the systems are particularly interesting since they give rise to e.g. the polar-

izability and optical activity, and can provide us with information on electronically excited

states.

The current formulations of response properties may be categorized into those employ-

ing either Ehrenfest theorem10,11 or quasi-energy approaches.12–14 Although response theory

based on exact wave functions can provide the expressions for molecular properties directly,

practical applications require the use of approximate models such as Hartree-Fock (HF) and

density functional theory (DFT), and many other wave function based approaches such as

multi-configuration self-consistent field (MCSCF), configuration interaction (CI), coupled

cluster (CC) to name just a few (see Helgaker et al. 9 for a comprehensive survey). To date

response theory has achieved great success in dealing with a wide variety of molecular proper-

3



ties, and treating both small and large-scale systems.8,9,15–18 Here, the availability of analytic

derivatives approaches has proven to be important for efficient calculations, particularly for

large-scale molecule simulations.

However, while most formulations (and implementations) of response theory mentioned

above are based on non-relativistic quantum mechanics, it is now widely recognized that when

dealing with molecules containing heavy elements, relativistic effects must also be taken into

account.19–22 In addition, heavy elements also have more electrons than their lighter counter-

parts, which can bring about subtler effects due to electron correlation that may significantly

impact the molecular properties. In the domain of relativistic quantum chemistry, the linear-

response function based on approximate models including HF,23,24 DFT,25,26 and Second-

Order-Polarization-Propagator Approximation (SOPPA)27 has been well-established. Due

to its modest computational cost, DFT has become the most widely used approach for corre-

lated electronic structure theory, even though it is not possible to systematically improve the

quality of calculations with currently available density functional approximations.28 Due to

that, depending on the property of interest, DFT results may deviate strongly from experi-

mental or accurate theoretical models for relativistic electronic structure calculations, even

for closed-shell species around the ground-state equilibrium structure.29,30 An alternative to

DFT is found in CC theory, which is considered as a “gold standard”31,32 among electronic

structure methods due to its ability to yield results that approach chemical accuracy for

both correlation energies and properties.

To date, there are various CC linear-response (CC-LR) implementations based on stan-

dard models such as CC2,33 CCSD14,15 and CC3.34 These approaches have been shown to

achieve good agreement with experimental values for both electric and magnetic molecular

properties.35–40 We also note the emergence in recent years of response theory implemen-

tations based on the equation-of-motion coupled cluster (EOM-CC) model,41–46 which are

appealing due to their simpler programmable expressions while yielding exactly the same

excitation energies as CC-LR, and nearly equivalent numerical results for response proper-
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ties. In the time-dependent framework, as pointed out by Coriani et al. 41 , the EOM-CC

response is equivalent to the combination of an exponential parametrization for the ground-

state wavefunction, and a linear parametrization for the time-dependent wavefunction (which

these authors refer to as a CC-CI type wave function), as opposed to the CC-LR case, which

employs exponential parametrizations for both time-dependent and time-independent wave-

functions (referred to as CC-CC type wavefunctions).

A significant downside of these implementations, however, is that they are available

only for non-relativistic or rather approximate relativistic Hamiltonians. As such, they are

not generally suitable for treating molecular systems containing heavy elements. In this

manuscript, we aim to bridge this gap and present the implementation and pilot applica-

tions of CC-LR and EOM-CC models in combination with relativistic Hamiltonians, as part

of the ExaCorr47 module of the DIRAC program.48 One feature of ExaCorr is its ability,

through the use of the ExaTENSOR49 library, to carry out distributed tensor operations

with offloading to graphical processing units (GPUs)–which have been shown to be ideally

suited to accelerate coupled cluster calculations due to the latter’s substantial floating-point

operation and memory-intensive nature.47,50–53 In the work detailed here we take advantage

of GPU offloading and thread-level parallelism, and will discuss the currently ongoing work

to enable large-scale parallel calculations in a subsequent publication.

Apart from discussing our implementation, we showcase its generality and versatility by

examining examples of three distinct classes of molecular properties: those involving purely

electrical perturbations, purely magnetic perturbations, and mixed electric and magnetic

perturbations.

As an example of the first class, we take the electric dipole polarizabilities because of

their significance in a wide range of applications and because they provide valuable insights

into the properties and behavior of molecules. For example, materials with high dipole

polarizabilities and dielectric constant are used in the polymers that are needed for high-

energy-density capacitors,54 while materials with low dipole polarizabilities55 are used as
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insulators in electrical devices. For optical spectroscopies, in the calculation of resonant

processes such as electronic excitations it is important, from both a practical and physical

points of view, to account for the finite excited-state lifetimes in the calculation of response

functions, since these will relate to the broadening in the measured spectra. The damped

coupled cluster response theory has in recent years emerged as a very effective tool for

incorporating such effects in simulating the spectroscopy of complex molecules.56–60 In this

manuscript, we demonstrate our ability to calculate damped response functions, as we can

handle perturbing external fields with either real or complex frequencies.

We consider indirect nuclear spin-spin coupling constants as a representative of the second

class. Indirect nuclear spin-spin coupling constants manifest themselves in Nuclear Magnetic

Resonance (NMR) spectroscopy, which alongside optical spectroscopies is another invaluable

tool in chemistry. As a substantial fraction of the atoms in the periodic table is NMR-active,

the technique can very often be used to provide critical information about their chemical

environment61–63 in a non-destructive way. Regarding computational analysis, apart from the

fact that theoretical calculations are extremely useful to interpret experimental signals, it has

been demonstrated that it is essential to account for relativistic effects already for elements

around the third row of the periodic table.64–68 Magnetic properties are often challenging to

calculate, due to the dependence of the results on the gauge origin of an external magnetic

field for incomplete bases sets. However, the indirect spin-spin coupling is expressed as the

second derivative of the electronic energy with respect to the internal magnetic fields caused

by nuclear spins, so that the gauge-origin issue does not arise.

Optical rotation is taken as an example of the third class. Studying optical rotation is

of significant interest for several reasons. First and foremost, optical rotation measurements

can provide information about the chiral nature of molecules. This is particularly impor-

tant in the pharmaceutical industry, as many drugs are chiral and their properties can vary

depending on their handedness.69 In addition to its applications in the pharmaceutical in-

dustry, studying optical rotations can also provide insights into the electronic and structural
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properties of molecules. Optical rotations are influenced by a variety of factors, including

the electronic structure of the molecule, the molecular geometry, and the surrounding en-

vironment. Moreover, in materials science, the optical properties of materials can be used

to design and develop new materials.70 For this property the gauge-origin issue mentioned

above also arises.9 In subsequent work we will explore approaches to ensure gauge-invariance

for coupled-cluster calculations of optical rotation,71–73 but we note that for the small, sym-

metric molecules studied here the use of a common gauge origin yields sufficiently accurate

results to allow for a comparison of different electronic structure approaches,74–76 which is

our goal here.

The manuscript is organized as follows: In Section 2, response theory and its correspond-

ing parametrization for time-dependent coupled cluster wave-function are summarized. In

Section 3, we described the details of the implementation. Section 4 is devoted to the details

of the computations we used to test the implementation. The calculations are presented and

discussed in Section 5. Finally, a brief summary is given in Section 6.

2 Theory

We base the theory on the time-averaged quasienergy formalism, which we briefly summarize

below, and refer the reader to the landmark paper by Christiansen et al. 14 for a detailed

discussion on it, as well as other more recent works.15,41,77

2.1 Response functions based on time-average quasienergy

We aim to solve the time-dependent wave equation

i
∂

∂t
|Ψ(t)⟩ = H|Ψ(t)⟩ (1)
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where H is the total electronic Hamiltonian

H = H0 + V (t), (2)

composed of H0, which represents the time-independent electronic Hamiltonian (e.g. the

Dirac-Coulomb Hamiltonian, the eXact 2-component Hamiltonian (X2C), the Levy-Leblond

Hamiltonian, etc., see20,48 and references therein), and V (t) representing a sum of N pertur-

bations that are periodic in time with frequencies ωk

V (t) =
N∑
k=1

[
(eiωkt + e−iωkt)

∑
x

ϵx(ωk)X

]
(3)

expressed in terms of a one-body operator X and the associated frequency-dependent pertur-

bation strength ϵx(ωk). In the present study, X corresponds, for instance, to the x-component

of the electric dipole operator µ̂x, or to the y-component of the magnetic dipole operator,

m̂y, etc.

According to the time-averaged time-dependent Hellmann-Feynman theorem,7,14 by defin-

ing a time-averaged quasienergy {Q}T (over the period T )

{Q}T =
1

T

∫ T/2

−T/2

⟨0(t)| (Ĥ − i
∂

∂t
) |0(t)⟩ dt, (4)

and making it stationary to changes in |0(t)⟩, we arrive at a definition of time-dependent

response properties as derivatives of {Q}T

{Q}T = E0 +
∑
x

⟨X⟩ϵx(0) +
1

2

∑
x,y,k

⟨⟨X;Y ⟩⟩ωk
ϵy(ωk)δ(ω0 + ωk) (5)

where

⟨X⟩ =
d{Q}T
dϵx(0)

(6)
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corresponds to an expectation value and

⟨⟨X;Y ⟩⟩ωk
=

d2{Q}T
dϵx(ω0)dϵy(ωk)

, ω0 = −ωk (7)

to linear response properties.

2.2 Parametrization of the time-dependent wave-function

In the following, we shall be concerned with wavefunctions based on an exponential parametriza-

tion of the ground state wavefunction such as the coupled cluster expansion,

|0⟩ = eT0 |R⟩ = |CC⟩ (8)

in which |R⟩ denotes the reference state, typically the Hartree-Fock wavefunction, and T0 is

the time-independent cluster operator, here restricted to single (ν1) and double (ν2) excita-

tions

T0 = T1 + T2 =
∑
ν1

tν1 τ̂ν1 +
∑
ν2

tν2 τ̂ν2 =
∑
ai

tai {a†aai} +
1

4

∑
abij

tabij {a†aa
†
bajai} (9)

with a, b indicating particle lines and i, j hole lines, respectively,31 and ν1, ν2 represent-

ing excited configurations with respect to the reference (ν1 ↔ |νa
i ⟩ = {a†aai} |R⟩ , ν2 ↔

|νab
ij ⟩ = {a†aa

†
bajai} |R⟩); in the following, we shall sometimes omit explicit excitation ranks

and particle/hole labels and instead employ the shorthand notation µ, ν to denote excited

determinants.

As suggested by Paw lowski et al. 15 , the time-dependent wave-function |0(t)⟩ can be

parametrized in a general manner as :

|0(t, ϵx)⟩ = eB0eB(t,ϵx) |R⟩ , (10)
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where eB0 and eB(t,ϵx) define the parametrization of the time-independent and time-dependent

wavefunctions associated with perturbation X with perturbation strength ϵx, respectively.

In the case of coupled cluster wavefunctions, B0 = T0, and the choice to be made is that

of the parametrization of the time-dependent part. If the exponential parametrization is

retained, we have the CC-CC model (more commonly known as LR-CC), whereas for a

linearized version we have the CC-CI model (also referred to as EOM-CC)

eB(t,X) ≃ 1 + B(t, ϵx) = 1 +
∑
ai

tai (t, ϵx){a†aai} +
1

4

∑
abij

tabij (t, ϵx){a†aa
†
bajai}. (11)

2.3 The coupled cluster linear response function

As in the time-independent case, the non-variational nature of the coupled cluster method

requires that we define a second-order quasienergy Lagrangian

{L}T = {Q}T +
∑
µ

t̄(0)µ {⟨µ̄| e−B(1)(t,ϵx)(H − i
∂

∂t
)eB

(1)(t,ϵx) |CC⟩}T (12)

in order to obtain the linear response functions. Here, ⟨µ̄| ≡ ⟨µ| e−T0 and t̄
(0)
µ are the Lagrange

multipliers for the ground-state, obtained solving the linear system

t̄(0)A = −η, (13)

in which the matrix A is the Jacobian matrix. We note that A is strictly equivalent to the

normal-ordered similarly transformed Hamiltonian H̄N

Aµν ≡ (H̄N)µν =
[
exp(−T̂0)Ĥ0 exp(T̂0) − ⟨HF| Ĥ0 |HF⟩

]
. (14)

In the following, we shall use the two terms interchangeably, and for brevity drop the sub-

script N in H̄N .

10



The linear response functions are expressed as

CC-CC⟨⟨X;Y ⟩⟩ωk
=

1

2
C±ωP (X(ω0), Y (ωk))

[
ηX +

1

2
FtX(ω0)

]
tY (ωk) (15)

for CC-CC14,15,41 and

CC-CI⟨⟨X;Y ⟩⟩ωk
=

1

2
C±ωP (X(ω0), Y (ωk))

[
EOMηXtY (ωk) −

∑
µ

t̄(0)µ tXµ (ω0)
∑
ν

t̄(0)ν ξYν

]
(16)

for CC-CI.15,41,46 In the equations above, P (X(ω0), Y (ωk)) acts to permute perturbations X

and Y , and

C±ωfXY (ω0, ωk) = fXY (ω0, ωk) + fXY (−ω0,−ωk)∗ (17)

symmetrizes the response functions with respect to simultaneous complex conjugation and

inversion of the sign of the frequencies.14

We have also implemented an alternative expression for the response function, that can

be rewritten in an asymmetric form:14

CC-CC⟨⟨X;Y ⟩⟩ωk
=

1

2
[ηXtY (ωk) + t̄Y (ωk)ξX ] (18)

where t̄Y collect the derivatives of Lagrange multipliers with respect to one perturbation.

The asymmetric form gives the same results as the symmetric form and has advantages in

some cases such as NMR calculations78 as one needs to solve response equations for one

operator (e.g. Y ), but at the cost of having to solve response equations for both perturbed

amplitudes and multipliers. In the properties investigated in this manuscript, the asymmetric

form does not offer a clear advantage, and as such we focus on the symmetric form in the

following.

To evaluate the linear response function, we need to obtain the frequency (in-)dependent

first-order perturbed amplitudes tY by solving the corresponding first-order right-hand side
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response equations:14

(H̄− ωkI)t
Y = −ξY . (19)

with I as the identity matrix.

Because of the equivalence between A and H̄, Eq. (19) is the same for the CC-CC and

CC-CI models, and the poles of the response functions will occur at the same places in

the two formulations. This is in line with the fact that excitation energies for CC-LR and

EOM-CC are the eigenvalues of A or H̄ respectively.

Here, we use the same definitions for matrices ηY , ξY and F (the coupled cluster Hessian)

as done by Christiansen et al. 14 , which are listed in Table 1, and note that in the case of

CC-CI, ηY is replaced by EOMηY as defined by Faber and Coriani 46 . The detailed working

equations used in our implementation are listed in the supplementary material.

Table 1: Vectors and matrices for CC linear response functiona

ηY ⟨Λ| [Y, τ̂µ] |CC⟩
ξY ⟨µ̄|Y |CC⟩
F ⟨Λ |[[H0, τ̂µ] , τ̂ν ]|CC⟩
A ⟨µ̄|[H0, τ̂µ]|CC⟩

a |CC⟩ = eT0 |R⟩ denote the regular CC reference wavefunc-
tion, and |R⟩ is the reference state for the CC parametriza-
tion such as Hartree-Fock state. ⟨Λ| = ⟨R| +

∑
µ t̄

0
µ ⟨µ̄|.

⟨µ̄| = ⟨R| τ̂ †µe−T0 ≡ ⟨µ| e−T0 , where τ̂ †µ is the deexcitation
operator, which is biorthogonal to excitation operator τ̂µ,
satisfying

〈
R|τ̂ †µτ̂ν |R

〉
= δµν .

Finally, due to the fact that ExaCorr was originally designed for treating systems with-

out symmetry and that in such a case the relativistic wave functions are complex-valued,

complex algebra is used throughout. This makes the implementation of damped coupled

cluster response theory relatively straightforward; it suffices, in the computation of the re-

sponse function of interest (for instance the yy component of the electric dipole polarizability,

αyy(ω0;ωk)), to set the imaginary component of the perturbing frequency ωk to a particular
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inverse lifetime γ

ωk ≡ ωk + i0 → ωk + iγ (20)

when solving the response equation:56–58

(H̄− (ωk + iγ)I)tY (ωk + iγ) = −ξY , (21)

subject to the condition that (ωk + iγ) + (−ω0 − iγ) = 0. We note that, while we can in

principle use a different value of γ for each ωk, in practice we will follow common usage and

keep this value constant for a range of frequencies for which we shall calculate a particular

response function. With that, the absorption cross-section for dipole transitions can be

determined by the imaginary part of the complex electric dipole polarizability79 :

σ(ω) =
4πω

c
Im[ᾱ(ω)] (22)

3 Implementation

The above-mentioned algorithm has been implemented in the development version of the rel-

ativistic quantum chemistry package DIRAC48 as a part of the ExaCorr code.47 Currently,

the implementation allows for calculations to be carried out only using a single-node config-

uration. The implementation of multi-node is currently in progress and will be reported in

forthcoming works. We can summarize the main computational tasks in the following four

steps :

1. Solve closed-shell ground state CCSD equations to obtain the t1, t2 amplitudes.

2. With t1, t2, construct the one and two-body intermediates, that are necessary for

building the H̄ and linear response functions.

3. Solve the linear response equation in the full single-double excitation space to obtain
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the first-order perturbed amplitudes for each operator-frequency combination. To avoid

the explicit construction of large matrix H̄, an iterative solver is employed.

4. Construct the response function by combining the first-order perturbed amplitudes

and the property integrals in the molecular orbital (MO) basis.

The first step is carried out within a Kramers-unrestricted formalism80 and has been

extensively discussed in prior work.47

The intermediates in the second step consist of two sets: The first set is property-

independent and is utilized to construct the σ-vectors, which are the projection of H̄ in

the trial vector space. These intermediates were previously discussed in the literature81,82

and an implementation of relativistic EOM-CC is available in the RelCCSD module83 as

well. We have included a rewritten version of the σ-vectors for EOM-CC for excitation en-

ergies (EOM-EE) in the supplementary material (for completeness, expressions for the left

EOM-EE σ-vectors are also given), due to our use of full tensors in this implementation.

We have also corrected misprints identified in the expressions given by Shee et al. 83 (the

previously implemented expressions were verified and found to be correct).

In deriving the working equations, we note that for the matrix F it is not possible to obtain

its matrix elements diagrammatically,84 due to the number of unconnected hole/particle-

lines. However, F is never used by itself but rather as the vector-matrix product tXF,

in analogy to the σ-vector expressions for the eigenvalue and response equations. Apart

from being readily expressed diagrammaticaly, dealing with the vector-matrix product is

computationally advantageous as it reduces storage requirements.

Moreover, as Faber and Coriani 46 suggested, we can avoid computing the F matrix in

CC-CI implementation by computing the EOMηX , which is easily accomplished by modifying

the existing ηX routine (see working equation in the supplementary material).

In the current implementation, the set of all property-related intermediates is computed

on the MO basis, but as the property integrals are first generated in the atomic orbital

(AO) basis in DIRAC, it is necessary to transform all desired property integrals from AO to
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MO prior to the response calculations. All the intermediates and the property integrals in

MO basis are therefore stored as tensor objects according to the definition of the TAL-SH

library,85 so that they can be efficiently employed in constructing the elements of ξX ,ηX

and EOMηX .

In the supplemental information, we will focus on discussing the third step, which involves

solving the first-order response equation. There are different algorithms to solve linear

equations such as direct inversion of the iterative subspace (DIIS),86–88 as well as the Lanczos-

chain89,90 and Davidson91 schemes. In the current work, we utilized the latter, which required

minor modifications with respect to evaluating the eigenvalues and eigenvectors of H̄ in our

EOM-CC implementation. We also note that the default algorithm in ExaCorr to solve for

the unperturbed amplitudes t was recently changed to Conjugate Residual with OPtimal trial

vectors (CROP)92,93 as this reduces the memory requirements in this stage of the calculation.

One particular difference between our implementation and the one by Shee et al. 83 is

that the ExaTENSOR and TAL-SH libraries, for reasons of scalability and generality, do

not enforce triangularity or the (anti)symmetry of tensors with respect to exchange of pairs

of indices. Consequently, and in contrast to the prior implementation, beyond rank-2 ten-

sors antisymmetry needs to be enforced in order to ensure that at all times we satisfy the

underlying fermionic nature of the problem.

For example, in the generation of trial vectors for the tx2 amplitudes (or r2 in EOM-CC),

this means that we pick out a unique element |abij ⟩, where a > b and i > j, generate the

permutations and antisymmetrize them. During Davidson iterations we also ensure that the

trial vectors remain antisymmetric during the Gram-Schmidt orthonormalization process, as

we found that if explicit antisymmetrization is not carried out, numerical noise may lead to

loss of the antisymmetry in new vectors during iterations.

With respect to the choice of starting vectors, differently from the eigenvalue case in

which the pivoting was done on the basis of the value of the diagonal of H̄ (see Shee et al. 83

for details), for linear systems, the pivoting is done on the basis of the magnitude of the
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property gradient ξX vector elements (from highest to lowest), in order to avoid selecting

initial vectors with zero norm.

4 Computational details

All coupled cluster linear-response calculations were carried out with a development ver-

sion of the DIRAC code,48,94 employing the uncontracted singly-augmented valence double

zeta Dyall basis set s-aug-dyall.v2z for the heavy elements (Zn,95 Cd,95 Hg,95 Cs,95 I,96,97

T e96,97), and a similar uncontracted Dunning basis set aug-cc-pVDZ for the light elements

(H,98 Li,99 Na,99 K,100 F,98 Cl,101 O,98 S,101 Se,102 Br102). In most calculations, we utilized

the exact two-component (X2C)103 relativistic Hamiltonian, where the spin-orbit operator

takes the form of an effective one-electron operator. The screening of the nuclear charges

is in the version that we used approximated by an atomic mean field.104 To show the effect

of relativity explicitly we also provide results using the non-relativistic Hamiltonian.105,106

We furthermore show some results with the spin-free X2C Hamiltonian in which spin-orbit

coupling terms are identified by transforming to the modified Dirac representation107 and

eliminated prior to defining the X2C transformation and Hamiltonian. To study the ef-

fect of electron correlation, we performed linear-response calculations based on mean-field

methods like Hartree-Fock (HF)108 as well as density-functional theory109 (especially with

the B3LYP110 density functional approximation). The relativistic and non-relativistic cal-

culations have been carried out with the Gaussian type111 and point charge nucleus model,

respectively.

In our calculations, we have profited from the components of an ongoing implementation

in ExaCorr of the Cholesky-decomposition112–114 approach to reduce the memory footprint

of our calculations in the step to transform two-electron integrals from AO to MO basis,

by avoiding the storage in memory of the whole AO basis two-electron integral tensor. The

Cholesky vectors (generated with a conservative threshold of 10−9, as to retain most of them)
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are then used to explicitly form all six two-electron integral classes needed by the coupled

cluster method. In a subsequent publication115 we shall address the use of Cholesky vectors

directly in the coupled cluster implementation of ground and excited state properties.

The molecular structures employed in all calculations are taken from the literature: In

case of the diatomic molecules, from Huber 116 for HX(X=F, Cl, Br, I), I2, ICl, from Hessel 117

for NaLi, and from Ferber et al. 118 for CsK. The internuclear distances employed are thus

H-F(0.91680 Å), H-Cl(1.27455 Å), H-Br(1.41443 Å), H-I(1.60916 Å), Cl-I(2.32087 Å), I-I

(2.6663 Å), Li-Na(2.81 Å), and K-Cs(4.285 Å). For the chiral molecules H2Y2(Y=O, S, Se,

Te), the Y-Y bond length, H-Y bond length, and H-Y-Y bond angle are taken from Table I

of Laerdahl and Schwerdtfeger 119 and the dihedral angle is kept fixed at 45 degrees.

The size of the correlated virtual spinor spaces in the coupled cluster calculations is trun-

cated by discarding spinors with energies above 5 a.u. For the IIB atoms, we correlate both

semi-core and valence electrons for Zn(3d,4s), Cd(4d,5s), Hg(5d,6s), respectively. In the po-

larizability and optical rotation calculations of molecular systems, we correlate only valence

electrons. In the spin-spin coupling calculations, which are known to be more sensitive to

core relaxation and correlation, we correlate all occupied and virtual orbitals.

All optical rotation calculations (HF, DFT, CC) employed a common gauge origin, set

to the origin of the coordinate system, chosen at the midpoint of the bond between the

two chalcogen atoms, which nearly coincides with the systems’ center of mass. The atomic

coordinates for each system under consideration as well as further details on the calculations

(position of center of mass etc.) are provided respectively as XYZ and output files in the

dataset associated with this manuscript (see “Supporting Information Available”).
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5 Sample applications

5.1 Polarizability of IIB atoms

We begin the discussion by analyzing the obtained results for the polarizability of the Zn,

Cd, and Hg atoms and present in Table 2 the static polarizability of these atoms, calculated

by different methods. A comparison of the first three rows of this Table shows the growing

influence of relativity on the static polarizability from Zn to Hg. For example, the relativistic

HF value for Hg (44.82 a.u.) is nearly half of its nonrelativistic counterpart (81.05 a.u.). This

is mainly due to the strong relativistic contraction of the 6s-shell.

In contrast, the effect of electron correlation at CCSD level is rather constant for these

elements ( −10.15 a.u. for Zn, −15.39 a.u, and −9.57 a.u, for Hg).

For Zn, electron correlation primarily accounts for the discrepancy between HF and

the experimental results. However, for Cd and especially Hg, the inclusion of relativity is

crucial. The above-mentioned contraction of the valence s-shell reduces the magnitude of

the polarizability, whereas spin-orbit coupling (SOC) becomes increasingly important by

enabling spin-forbidden transitions. We will discuss this consequence of relativity in greater

depth when looking at the frequency-dependence of the polarizability in the next section.

An error of approximately 1-2 a.u. remains between our relativistic CCSD results and the

experimental values. To locate the source of this error, we performed CCSD(T) calculations

using the finite-field method, since the analytic gradient is not yet available for CCSD(T) in

DIRAC. In these CCSD(T) finite-field calculations, we used an external electric strength of

0.005 a.u, which is sufficiently large to avoid numerical issues and small enough to remain

in the linear regime.

From a comparison between the results of CCSD and CCSD(T), it is evident that the

inclusion of the triple excitations indeed enhances the accuracy: from 95.99% to 99.84% for

Zn, from 98.44% to 99.71% for Cd, and from 96.20% to 97.95% for Hg, respectively. In the

results of CCSD(T), we also performed a calculation in which all virtual orbitals were used

18



(so without energy truncation), but this did not significantly affect the results. Upon using

the valence triple-zeta basis set s-aug-dyall.v3z, the Hg results improve and come close to

the experimental error bar.

Table 2: Static polarizability (a.u.) of IIB atoms calculated with the X2C Hamiltonian

Zn Cd Hg
NR-HFa 53.88 76.01 81.05
SF-HFb 50.58 63.65 44.90

HF 50.57 63.64 44.82
SF-CCSDb 40.42 48.28 35.35

CCSD 40.42 48.25 35.25
CCSD(T) 38.86 47.64 34.62

CCSD(T) (all virtual dz) 38.80 47.69 34.66
CCSD(T) (tz) 38.86 46.64 34.27

Exp 38.8±0.80120 47.5±2121 33.91±0.34122

a Nonrelativistic calculation with the Levy-Leblond Hamiltonian
b Scalar relativistic calculation with the spin-free107 X2C Hamiltonian

We now turn to the frequency-dependence of the polarizability and look at the effect of

SOC. In Figure 1, the frequency-range from 0.0 to 0.30 a.u. is displayed. The singularities at

the frequencies of spin-allowed transition 1S0 →1 P1(ns → np) dominate these curves, while

the non-relativistically spin-forbidden transition to the 3P state is clearly visible for Hg and,

after zooming in on the transition energy, also already for Zn. Calculating and plotting the

polarizability60

ααβ(ω) = −
∑
n

[
⟨0| µ̂α |n⟩ ⟨n| µ̂β |0⟩

En − ω
+

⟨0| µ̂β |n⟩ ⟨n| µ̂α |0⟩
En + ω

]
(23)

over a range of frequencies {ω} implicitly shows all excitation energies En in the associated

energy range. However, when interested in the values of these energies it is of course more

efficient to directly solve for the poles by diagonalizing H̄. To check the correctness of the

implemented solvers, we therefore compared the linear response and EOM-EE results em-

ploying the same Hamiltonian and basis set. The resulting excitation energies are depicted in

Fig 1 with red lines and do indeed precisely align with the pole locations in the polarizability
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curves.

Looking at the low-lying parity-allowed (ns → mp) transitions in the studied frequency-

range, for Zn and Cd we find two ns → (n)p transitions (A and B, respectively spin-forbidden

1S0 → 3P o
1 and spin-allowed 1S0 → 1P o

1 transitions) and two ns → (n + 1)p transitions (C

and D, similarly spin-forbidden and spin-allowed transitions). For Hg on the other hand,

only A and B are within the studied frequency-range, with C and D coming at higher energies

and therefore not observed.

On the right side of Fig 1, we also show a simulated spectrum of the first spin-allowed

transition 1S0 → 1P o
1 by calculating the damped linear response function for both CC-CC

and CC-CI models. While CC-CI is an approximation of the CC-CC model, we note that

the CC-CI curve exhibits a shape very similar to that of CC-CC curves, in that both are

Lorentzian-type line shapes and share the exact same peak location since they solve the

same response equation as demonstrated in the Eq. (19). The CC-CI model spectrum shows

only a minor difference in the peak height with a relative error of about 1%. To verify

the implementation of the complex polarizability, we pay particular attention to the peak

value of the spectrum of B atomic transition. Around the pole of the transitions we are

investigating, the stationary point in the curves should be well approximated by the norm

of the transition dipole moment divided by γ,

Im (ααβ(ω)) = Im

(
−
∑
n

[
⟨0| µ̂α |n⟩ ⟨n| µ̂β |0⟩

En − ω − iγ
+

⟨0| µ̂β |n⟩ ⟨n| µ̂α |0⟩
En + ω + iγ

])

≈ Im

(
⟨0| µ̂α |n⟩ ⟨n| µ̂β |0⟩

iγ

)
(24)

In the current work, we set the imaginary component of the frequency γ as 0.01 a.u. for

all three atoms. Even though the EOMCC transition dipole moment is not yet avail-

able in DIRAC, we can still compare the intensity ratios (Zn:Cd:Hg) between our results

(1.39:1.55:1.0) and the values derived from the experimental lifetimes123–125 (1.48:1.54:1.0).

It is noteworthy that our results qualitatively mirror the experimental trend. The small dif-
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ference in ratios likely stems from the omission of higher-order correlation and the quality of

the basis set used. In supplementary information, we simulate the spectrum of BH molecules

with damped CC-CC and find our results exactly reproduce the DALTON results.
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Figure 1: Frequency dependent polarizability of Zn(top), Cd(middle), and Hg (bottom).
The left figures show the real (undamped) polarizability with frequency ranging from 0.0
to 0.30 a.u. The right figures, with insets to zoom in on the peak maxima, show the simu-
lated spectra focusing on the B transition, and are obtained from the imaginary part of the
complex (damped) polarizability with an imaginary component of the frequency γ = 0.01
a.u. The red vertical lines are the EOM excitation energy: For Zn: A(3P o

1 (4s14p1)0.1403
a.u.); B(1P o

1 (4s14p1)0.2089 a.u.); C(3P o
1 (4s15p1)0.2723 a.u.); D(1P o

1 (4s15p1)0.2828 a.u.).
For Cd: A(3P o

1 (5s15p1)0.1356 a.u.); B(1P o
1 (5s15p1)0.1989 a.u.); C(3P o

1 (5s16p1)0.2634 a.u.);
D(1P o

1 (5s16p1)0.2728 a.u.). For Hg: A(3P o
1 (6s16p1)0.1771 a.u.); B(1P o

1 (6s16p1)0.2463 a.u.).
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5.2 Polarizability of Molecules

As our implementation is mainly intended for molecular systems, we will now look at results

for molecular polarizabilities which may have up to three distinct values upon diagonalizing

the polarizability tensor. For diatomic and other symmetric molecules it is sufficient to

consider the mean dipole polarizability α(ω) and the anisotropy ∆α(ω):

α(ω) =
1

3
(αzz(ω) + αxx(ω) + αyy(ω)) (25)

∆α(ω) =αzz(ω) − 1

2
(αxx(ω) + αyy(ω)) , (26)

where z is the molecular symmetry axis. In Table 3, we list the static mean and anisotropic

polarizability of hydrogen halides and alkali-metal diatomic molecules assessed by HF, B3LYP,

and CC models with both relativistic (X2C) and nonrelativistic Hamiltonians, and the corre-

sponding experimental values as well. Unless otherwise specified, ’CC’ refers to ’CC-CC-LR’.

The HF results deviate from the experimental value for both the mean and anisotropic

polarizability and the impact of the relativistic effect increases as we move from lighter to

heavier molecules. For example, the relativistic correction is nearly zero for hydrogen fluoride

but amounts to 1.3 a.u. for I2. In the case of the CsK molecule, the relativistic correction

at the HF level is 31 a.u, emphasizing the necessity of considering the relativistic effect in

the calculation of heavy elements. For this molecule, the effect of relativity may again be

rationalized in terms of contraction of the outermost valence s-orbitals, in particular that of

Cs, which reduces the polarizability, similar to what we observed in the Hg atom.

Apart from relativity, another source of discrepancy between HF and experiment lies in

the importance of electron correlation. Electron correlation is modeled in DFT by the B3LYP

functional, and explicitly calculated in the CC models. From the results, it is evident that

in both cases the electron correlation and the relativistic correction are not strictly additive.

For example, computed with CC the relativistic corrections for I2 and CsK are 0.91 a.u. and

-26 a.u, respectively, while they are 1.30 a.u. and -31 a.u. when computed with HF.
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The B3LYP calculations yield much better values than HF for both the relativistic and

nonrelativistic Hamiltonian. The relativistic correction on the B3LYP model is similar in

magnitude as found for HF, but with a different sign. For instance, the relativistic correction

of anisotropic polarizability for CsK for HF is +9 a.u while it is −11 a.u. in B3LYP. For

the halides, the B3LYP calculations yield values that are close to the CC results and are-

within or only slightly outside the experimental error bars for both isotropic and anisotropic

polarizability. However, for the alkali-metal diatomic molecules NaLi and CsK, the B3LYP

values significantly deviate from the experimental value.

The CC results are close to the experimental data for both halide and alkali-metal

molecules. We have also tried using the triple-zeta basis set for CC on three light hydrogen

halide molecules (HF, HCl HBr) to reduce the error and indeed observe an improvement of

CC values which then fall within the experiment error bar for the isotropic polarizability.

Getting the smaller anisotropic polarizability agree with experimental data is more demand-

ing on the model and may require addition of more diffuse functions and/or the inclusion of

the triple excitations.

One may note for the anisotropic polarizability of HI the considerable deviation of all

three theoretical values (around 2 a.u.) from the experimental value of 11.4 a.u. that was de-

termined in 1940 by Denbigh.126 Curiously, this value appears to have not been re-evaluated

since then, while the isotropic polarizabilities of HCl and HBr, that were also reported

by Denbigh, were later estimated to be significantly lower by Kumar and Meath.127 The

anisotropy of HBr that was given as 6.14 a.u. by Denbigh was adjusted to just 1.7 a.u.

by Pinkham and Jones,128 but we could not find a similar re-evaluation of the anistropic

polarizability of HI on basis of experimental data in the literature. This discrepancy be-

tween theory and the old experimental value for the anisotropy was also noted in theoretical

work of Maroulis 129 and Iliaš et al. 130 . Iliaš et al. used relativistic CCSD(T) and included

vibrational corrections on both dipole moment and static polarizability and found their re-

sults to be significantly lower than the experimental value: their anisotropic polarizability
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was 2.33±0.05 a.u, which agrees well with the current relativistic CC linear response value

of 2.51 a.u. While their suggestion that also the experimental value of the dipole moment

could be inaccurate could not be not sustained131,132 we agree that the discrepancy between

theory and experiment for the anisotropic polarizability is likely due to an inaccuracy in

the experimental value. Nonetheless, it would be nice to put more firm error bars on the

theoretical value as well by employing a larger basis set, including g and h functions. This

was not feasible with our current implementation due to memory constraints related to the

use of a single compute node.

Table 3: Static dipole polarizability (a.u.) of diatomic molecules

HFa HFb B3LYPa B3LYPb B3LYPc CCa CCb CCc Exp
Mean dipole polarizability

HF 4.40 4.40 5.11 5.12 5.57 5.04 5.05 5.52 5.60±0.10127

HCl 15.51 15.54 16.34 16.38 17.53 16.06 16.09 17.14 17.39±0.20127

HBr 21.86 21.90 22.85 22.94 24.43 22.52 22.58 24.02 23.74±0.50127

HI 33.62 33.50 34.63 34.69 36.71 34.36 34.30 35.30±0.50133

ICl 46.48 46.52 47.53 47.66 49.80 47.48 47.59 43.8±4.4134

I2 67.90 69.20 68.72 69.92 72.55 68.81 69.72 69.7±1.8135

NaLi 231 230 210 209 210 240 240 239 263±20136

CsK 723 692 581 548 549 637d 611d 601±44137

Anisotropic dipole polarizability
HF 1.79 1.79 1.91 1.91 1.46 1.96 1.96 1.45 1.62138

HCl 2.35 2.34 2.18 2.16 1.66 2.39 2.38 1.85 2.10139

HBr 2.43 2.45 1.98 1.92 1.65 2.35 2.30 2.02 1.7128

HI 2.66 2.81 2.09 2.00 1.87 2.60 2.51 11.4126

ICl 26.14 26.96 24.27 24.63 24.50 25.30 25.82
I2 44.92 49.01 41.31 43.75 42.88 44.00 45.87 45.1± 2.3135

NaLi 92 92 109 109 108 154 154 149
CsK 353 362 400 389 390 510d 499d

a Nonrelativistic calculation using the Levy-Leblond Hamiltonian
b Relativistic calculation using the X2C Hamiltonian
c Using diffuse Triple-zeta basis set
d Correlate both 6s and 5p electrons of Cs

We now turn our attention to the frequency-dependent polarizability and focus on the

I2 molecule given the extensive experimental research on this molecule and the abundance

of experimental spectral data that can be used to validate theoretical models. Relevant in
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the frequency region that we consider are the lowest electronically excited states, that arise

from the σ2
gπ

4
uπ

3
gσ

1
u and σ1

gπ
4
uπ

4
gσ

1
u configurations. These are primarily triplet states that are

denoted in the literature140 as A3Πu, B3Πu and C3Σu, with the latter originating from the

second configuration. The lowest singlet state is from the first configuration and is indicated

as 1B
′′
. In Table 4, we present the computed frequency-dependent polarizability for three

theoretical methods alongside the experimental values135 measured by Maroulis et al. at

three frequencies. Like the experimental values, the values computed with CC at these three

frequencies are quite close to each other and we find reasonable agreement with the CC

values slightly underestimating the experimental data. The HF and B3LYP results deviate

rather strongly from the experimental results for the first two frequencies which can be

rationalized as being caused by an error in the position of the pole close to the first two laser

frequencies, that is computed at a too low energy with HF and DFT(B3LYP). Due to the

selection rules for this transition to the B3Π0+u state, this then leads to a negative value of

the parallel (zz-)component of the polarizability for HF and B3LYP, while the perpendicular

(xx-)component is not affected and has a similar value for HF, B3LYP and CC.

Table 4: Frequency dependent polarizability (a.u.) of I2 molecule

αzz(ω) αxx(ω) α(ω)
ω1=15798 cm−1

HF 152.0 55.0 87.4
B3LYP −10.7 58.7 35.6

CC 114.8 55.8 75.5
Exp135 86.8±2.2

ω1=16832.3 cm−1

HF −97.3 56.0 4.9
B3LYP 75.4 62.0 66.5

CC 124.0 56.8 79.2
Exp135 93.6±3.4

ω1=30756.9 cm−1

HF 117.9 55.3 76.2
B3LYP 114.5 61.0 78.8

CC 113.9 59.9 77.9
Exp135 95.3±1.9
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Rather than looking at the values for just these three frequencies, two of which are close

to the X→B transition, it is more illustrative to apply Eq. (22) and plot simulated absorption

cross-section curves. We scan the wavelength ranging from 400 nm to 700 nm and set the

imaginary component of the complex frequency (γ) to 0.005 a.u, which corresponds to the

experimental lifetime of the B3Π0+ state. As selection rules are different for the transitions to

the B3Π0+ and C1Π1 states we may thereby identify the zz-component of the complex dipole

electric polarizability as being (primarily) due to the B3Π0+ state, while the xx-component is

due to the C1Π1 state. This facilitates the comparison to the experimental analysis that was

carried out by Tellinghuisen.141 The resulting curves for three models, NR-HF(green lines),

X2C-HF(red lines), and X2C-CC(blue lines), are depicted in Fig. 2 and clearly show the effect

of SOC. The NR computed curves are entirely due to the weaker transition X1Σ0+ to C1Π1

and severely underestimate the absorption cross-section. With SOC, this transition becomes

a shoulder on the dominant X1Σ0+ to B3Π0+ transition. Comparison with the measured

curves (black lines) from the work of Tellinghuisen 141 shows a quite good agreement for

the height of the dominant peak that is slightly red-shifted compared to the experimental

transition.

The dominant peak in the X2C-HF exhibits a severe red-shift, which clarifies the error

seen in the frequency-dependent polarizability in Table 4. For the peak values, the X2C-

HF result 2.95 10−18cm−2 is, however, quite close to the X2C-CC value 2.98 10−18cm−2

suggesting that the value of the transition dipole moment is similar in both models under

the current calculation conditions. This suggest that the relativistic HF model does describe

this excited state qualitatively well, albeit at a wrong energy.

Regarding the spin-allowed transition from X1Σ0+ to C1Π1 state, displayed by the dotted

line in Fig 2, we observe the X2C-CC model to agree well with the experimental analysis of

Tellinghuisen.141 The discrepancy in pole location is around 20 nm and the difference in the

peak value is minor at 0.02 10−18cm−2.

To further analyze the results, we calculate and present the excitation energy of B3Π0+
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and C1Π1 states in Table 5. We note that HF underestimates the excitation energy of

B3Π0+ compared to the CC values no matter what relativistic effects are included. This can

be attributed to the triplet instability of the TDHF model.142–150 On the other hand, such

underestimation can be largely avoided by using the simpler configuration interaction singles

(CIS) approach. Thus, we perform nonrelativistic CIS calculations by DALTON and find

that the CIS value indeed is higher by about 0.011 a.u. for the B3Π0+ state.

For the singlet state C1Π1, HF excitation energies are larger than the CC values in both

nonrelativistic and spin-free calculations. However, when spin-orbit coupling is introduced

via X2C, HF energies become lower. While SOC raises the excitation energy in CC, it

reduces the excitation energy in HF, implying that SOC effects and correlation are again

not additive.
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Figure 2: Simulated Spectrum of I2. The green lines are non-relativistic HF, the red lines are
X2C-HF, the blue lines are X2C-CC, and the black lines are experimental value from work
of Tellinghuisen.141 The dashed lines represent the contribution of transition from ground
state X1Σ0+ to the B3Π0+ state. The dot lines are contributions of transition from X1Σ0+

state to C1Π1 state. The solid lines are total absorption cross-section.

Table 5: Excitation energy (a.u.) for I2

States NR-HF NR-CISa NR-CC SF-HF SF-CC X2C-HF X2C-CC
B3Π0+ 0.065 0.076 0.076 0.060 0.070 0.076 0.084
C1Π1 0.103 0.107 0.098 0.097 0.092 0.084 0.094
a Calculations were performed using the DALTON program

In the supplemental materials, we provide a calculation of the spectrum of BH molecule

which was used to verify the correctness of our implementation. We compare our damped CC-

LR calculation with the broadening of coupled cluster transition dipole moment computed

by the DALTON program.151,152 and find good agreement.
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5.3 Spin-spin coupling

In the previous section, we investigated electric properties. In the current section, we show

a calculation of the indirect nuclear spin-spin coupling constant as an illustrative example

of the use of our implementation for a magnetic property. The coupling constant KKL can

be related to the experimentally observed coupling JKL between the nuclear spins of atoms

K and L via

JKL =
1

2π
γKγLKKL (27)

where γK is the gyromagnetic ratio of nucleus K. The KKL tensor can in a relativistic

framework be expressed in terms of linear response functions with respect to the hyperfine

operator ĥhfs
K :9

KKL,µν =
∂2

∂mK;µ∂mL;ν

⟨⟨ĥhfs
K ; ĥhfs

L ⟩⟩ωk1,ωk2
(28)

ĥhfs
K =

1

c

∑
i

mK · riK ×ααα

r3iK
(29)

In the non-relativistic framework, it is common to formulate K in terms of three distinct

contributions: diamagnetic spin-orbit coupling (DSO), paramagnetic spin-orbit (PSO), and

the Fermi contact-Spin dipolar (FC-SD) term. Of these, the first term can be computed

as an expectation value, whereas the second and third require the use of response theory.

Moreover, the PSO term involves only singlet excitations, whereas the FC-SD term couples

a singlet ground state to triplet excited states due to the triplet nature of the Fermi contact

and spin-dipolar operators. An explicit sum-over-states form of the contributions to KKL in

the nonrelativistic framework is:9,153

KKL =
1

2c4
⟨0| r

T
KrLI − rKr

T
L

r3Kr
3
L

|0⟩ − 2

c4

∑
nS

⟨0| r−3
K IK |nS⟩ ⟨nS| r−3

L IL |0⟩
EnS

− E0

− 2

c4

∑
nT

⟨0| 8π
3
δ(rL)s +

3rLr
T
L−r2LI3
r5L

s |nT ⟩ ⟨nT | 8π
3
δ(rL)sT +

3rLr
T
L−r2LI3
r5L

sT |0⟩
EnT

− E0

(30)
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As discussed in Reference 154, the PSO and FC-SD response functions can in the rela-

tivistic framework of Eq. (28) be identified as orbital responses involving rotations amongst

positive energy orbitals. The DSO contribution, on the other hand, comes from the rotations

between positive and negative energy orbitals and can in a sequence of approximations be

brought into an expectation value form that is identical to the non-relativistic expression and

is then called the Sternheim approximation.155 Therefore, in relativistic calculations, there

are two ways to obtain the diamagnetic terms: one by including electron-positron rotations

explicitly in the response calculation or by making use of the Sternheim approximation.

In contrast to the Sternheim approximation, in which a numerically very stable expec-

tation value is computed, the formally more rigorous response approach is quite sensitive to

the quality of sampling of the positronic orbital space in a finite basis.64,154 This is why in

the current study, we compute the diamagnetic terms as an expectation value. An important

modification as compared to the original application in 4-component theory is the use of the

X2C transformation, in which all operators are first transformed to a 2C representation. The

generic expression is:

XX2C = X++ =

L,S∑
V,W

[UV+]
†
XVWUW+ (31)

in which UL+ and US+ are blocks of the X2C transformation matrix that block-diagonalizes

the matrix representation of a reference Hamiltonian operator (usually and also in this work

taken as the molecular Hamiltonian without 2-electron interactions) and allows to solve only

for positive (+) energy solutions. In case of magnetic properties, the original 4C matrix

representation of operator (29) is off-diagonal with respect to the Large (L) and (S) Small

parts of the 4C basis so that

hhfs,X2C
K =

1

c
[UL+]

†
[mK · σ × riK

r3iK
]LSUS+ + h.c. (32)

This matrix representation can be interpreted as providing the X2C equivalent of the sin-
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glet PSO and triplet FC-SD operators that are used in nonrelativistic response calculations.

The Sternheim approximation yields a diagonal 4C DSO operator kKL that is transformed

as

kX2C
KL = [UL+]

†
kLL
KLU

L+ + [US+]
†
kSS
KLU

S+ (33)

kVW
KL =

1

2c4
[
rTKrLI − rKr

T
L

r3Kr
3
L

]VW δVW (34)

and contracted with the unperturbed density matrix to obtain the DSO contribution to

the spin-spin coupling.

In Table 6, we list the resulting reduced isotropic and anisotropic spin-spin coupling con-

stants of HX(X=F, Cl, Br, I) computed by HF, B3LYP, CC-CI, and CC-CC models with both

nonrelativistic and relativistic Hamiltonians. As is well-known, relativistic effects are very

important for magnetic properties and we see the expected increase of their magnitude upon

descending the periodic table from hydrogen fluoride to hydrogen iodide. To benchmark the

quality of the X2C transformation, we also carried out four-component Dirac-Coulomb(DC)

HF calculations with default approximation for the all small two-electron integrals156 and

see that the X2C values match the DC results very well for all molecules.

At the Hartree-Fock level, the isotropic constants generally exhibit a downward trend

from HF to HI, while the anisotropic values typically show an upward trend for both rela-

tivistic and nonrelativistic calculations. After including electron correlation, these trends are

qualitatively the same although the precise values change considerably, especially for HBr.

To verify our CC implementation, we also utilize the CFOUR program157 for nonrelativistic

CC response and find our CC-CC models with the nonrelativistic Hamiltonian to reproduce

the CFOUR values for all three light molecules.

Although the nonrelativistic calculation is useful for analysis, we cannot ignore relativistic

effects for heavy molecules. For example, the relativistic correction at the coupled cluster

level for HBr is around 25% and slightly smaller than that with Hartree-Fock. We also
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performed DFT calculations, the results obtained with B3LYP functionals are quite far from

both the HF and the CC results. As there are no suitable experimental values to compare

with one cannot assess rigorously the performance of the methods, but the large discrepancy

between the commonly used B3LYP DFT and CC makes these systems of interest for future

benchmarking with converged CC expansion (we deem both our employed basis set as well

as excitation level not yet suitable for this purpose).

Looking at the two ways of carrying out CC response calculations, we observe minor

variances between the CC-CI and CC-CC, which appear to become more pronounced for the

heavier elements. It is known that LR-CC transition moments are size-extensive whereas

EOM-CC ones are not ,41,46,158–164 though in these comparisons it was found the numerical

differences between LR-CC and EOM-CC were rather small for a single molecule. Numer-

ical studies have been primarily concerned with light molecules and properties within the

valence domain, like the electric transition dipole moment,46,162,164 and the dipole polariz-

ability,158,161 and our results for polarizabilities are in line with these findings. A notable

exception is the work of Sekino and Bartlett 161 , which have investigated spin-spin couplings

for ethane and found a difference of 0.05% between EOM-CC and LR-CC for JCC . This

value is comparable to our difference of about 0.19% for the HF molecule.

If the lack of size extensivity in EOM-CC transition moments is a significant source of

discrepancies, one would expect the difference between CC-CI and CC-CC to grow as the

number of electrons correlated increases across the HX series, but the difference per correlated

electron to remain roughy constant. Our analysis of the zz, xx and yy components of the

linear response contribution to KHX (see supplementary information) provides some evidence

this is the case, as differences (in absolute value) for each component fall between 0.004 and

0.02 a.u. for all molecules. There are some differences between Hamiltonians for HBr and HI,

but these are of smaller magnitude than those due to non-extensivity. However, we believe

the sample size is not large enough for definitive conclusions, and in future investigations we

intent to revisit this issue for a broader range of molecules.
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Table 6: Isotropic and anisotropic reduced spin-spin coupling K(1019 m−2 kg s−2 A−2) for
HX(X=F, Cl, Br, I)

Models 1HF19 1HCl35 1HBr79 1HI127

Isotropic
NR-HF 49.5486 28.1528 10.8253 -0.8979

NR-B3LYP 33.3898 19.7146 -1.8769
NR-CC-CI 40.5554 31.3181 30.7926
NR-CC-CC 40.4794 31.0971 29.9730
NR-CC-CCa 40.4778 31.0970 29.9729

X2C-HF 49.5023 27.2261 -4.5338 -83.1522
X2C-B3LYP 33.2367 18.9409 -11.6914 -57.3316
X2C-CC-CI 40.4834 30.9008 23.8246 3.4887
X2C-CC-CC 40.4047 30.6448 22.7588 0.7481

DC-HF 49.4725 27.1494 -4.8396 -84.0079
Anisotropic

NR-HF 2.5499 59.6666 161.9806 277.7237
NR-B3LYP 6.3484 50.1075 130.4249
NR-CC-CI -3.7566 36.3828 100.9785
NR-CC-CC -3.4931 37.1193 102.9362

X2C-HF 2.5858 60.2375 168.5425 305.7204
X2C-B3LYP 6.4477 50.3990 130.5655 201.0597
X2C-CC-CI -3.6579 36.8838 106.6559 192.8454
X2C-CC-CC -3.3929 37.6281 108.7226 196.3474

DC-HF 2.5978 60.2822 168.7214 306.1280
a Calculations were performed using the CFOUR program

As most experimental work is carried out in the condensed phase, we wanted to go beyond

isolated diatomic molecules, and provide a sample investigatation of solvent effects. For this

purpose we chose the solvent shift on the spin-spin coupling constant 1Hb-
34Se in the the

H2Se-H2O dimer. The supermolecular structure is taken from the work of Olejniczak et al. 165

and displayed on Fig.3. It can readily be seen from Table 7 that all calculations show the

solvent effect on the Se-Hb coupling for the bond involved in the hydrogen bond to be quite

substantial. However, the shifts ∆J in the correlated models have a different magnitude than

that at the HF level. For example, the shifts of Se-Hb are 19.5403 Hz and 19.0648 Hz for

CC-CC and B3LYP, respectively, while they are almost twice as large at 40.0220 Hz for HF.

Although, the shifts of DFT are quite close to those computed with CC, the absolute Jsuper
iso
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and Jiso deviate a lot. Comparing with BLYP and B3LYP values, we find the addition of

exact exchange to the DFT to have a significant effect, with the hybrid DFT B3LYP results

being closer to the CC values.

Figure 3: H2Se-H2O complex system. Color of atoms: Se (blue), O(red), H(white), Hb is the
Hydrogen atom that belongs to Se and is close to O.

Table 7: Isotropic and anisotropic indirect spin-spin coupling (Jiso and Janiso in Hz) for isolated
H2Se subsystem, (Jsuper

iso and Jsuper
aniso in Hz) for H2Se subsystem in H2Se-H2O, and the shifts (∆J ,

in Hz) for the isolated (”ME”) H2Se molecules in the presence of H2O

Models Jiso Jsuper
iso ∆JME

iso Janiso Jsuper
aniso ∆JME

ianso
1Hb-Se34

HFa 90.4949 128.2837 36.7888 305.8746 302.1583 -3.7163
HF 52.7369 92.7589 40.0220 353.6191 353.4049 -0.2142

BLYP -26.8400 -11.0675 15.7725 265.5061 271.8454 6.3393
B3LYP -9.1404 9.9244 19.0648 269.7740 275.2143 5.4403
CC-CI 66.6432 85.8755 19.2303 215.4586 218.7408 3.2821
CC-CC 65.9553 85.4956 19.5403 219.8036 223.0023 3.1987

a Nonrelativistic calculation with the Levy-Leblond Hamiltonian

5.4 Optical rotation

Finally, we consider both electric and magnetic fields, by looking at optical rotation (in

the length gauge and for a common gauge origin) for the archetypical chiral molecules

H2Y2(Y=O, S, Se, Te). At the frequency of the sodium D-line (in 589.29 nm), which is the

most common experimental setup, the specific optical rotation [α]25D in unit [◦ dm−1(g/mol)−1]

is given by the equations74
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[α]25D = −228 · 10−30π
2Na40ω

3M

∑
α

G′
αα (35)

G′
αβ(−ω;ω) = −Im⟨⟨µ̂α; m̂β⟩⟩ω (36)

where M is the molecular mass in g mol−1, N is the number density, and µα and mβ are the

electric and magnetic dipole operator, respectively.

In Fig 4, we display the results for HF, B3LYP, and CC for both the nonrelativistic and

X2C Hamiltonian. First, to verify our implementation, we performed the calculation on

H2S2 with the DALTON program with the same basis set. The resulting data are available

in the supplemental information and show good agreement, confirming the correctness of

the implementation. To benchmark the influence of the truncation on the virtual orbital

space, we furthermore performed a calculation in which we truncated the virtual orbital

space with an energy threshold of 100 a.u. instead of the otherwise used value on 5 a.u. and

found that results match up to 99%. This is similar to the tendency observed in the electric

dipole polarizability, as expected as both optical rotation and electric dipole polarizability are

predominantly determined by the valence electrons and do not require core-like high-energy

virtuals.

Fig 4 shows that for the lighter molecules, H2O2 and H2S2, the B3LYP and CC values

are nearly twice as large than those of the HF. While the relativistic effect is negligible for

H2O2, with a correction of less than 1%, it cannot be neglected for H2S2, where it rises to

10%. The impact of the relativistic effect is present for all models, but correlation and rela-

tivistic effects are again not additive. For instance, we find a relativistic HF correction of -12

[◦ dm−1(g/mol)−1], while for B3LYP and CC, these corrections are -26 [◦ dm−1(g/mol)−1]

and -18 [◦ dm−1(g/mol)−1], respectively. For the heavier molecules H2Se2 and H2Te2, val-

ues computed for the sodium D-line frequency become exceedingly large as these molecules

have an excitation that is almost at resonance with this frequency. To better understand
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this phenomenon, we have therefore calculated the excitation energy of the first eleven mi-

crostates for these two molecules. The resulting values are compiled and presented in Table

8. Note that we display all degenerate components of triplet states for better comparison to

relativistic states.

Figure 4: Optical rotation of Hydrogen peroxide series (H2Y2) in [◦ dm−1(g/mol)−1] with a
frequency corresponding to the sodium D-line (589.29 nm, 0.077319 a.u.) calculated with
the X2C and Levy-Leblond Hamiltonians

The computed excitation values show that in case of H2Se2, the relativistic CC value is

significantly larger than the nonrelativistic CC because the employed frequency is quite close

to the resonance frequency of the second excited state in the relativistic calculation (0.0789

a.u.), whereas it is distant from all excited states in the nonrelativistic CC calculation. For

the B3LYP computations, we see that the frequency is close to the fourth excited state in both

relativistic and nonrelativistic scenarios (0.0863 and 0.0889 respectively). This proximity
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results in large values being obtained from both calculations.

When we examine the H2Te2 molecule, we find the relativistic effect to be substantial

for all three models and even reversing the sign of the optical rotation. For example, the

nonrelativistic CC value is -263.59 [◦ dm−1(g/mol)−1], but the relativistic CC is 218.83 [◦

dm−1(g/mol)−1]. Besides reversing the sign, with HF also the magnitude of the optical

rotation is very different in the relativistic and nonrelativistic cases. This is because the first

six excited states, while being close to transitions, are triplets and hence do not contribute

to the optical rotation that is in the nonrelativistic case. In the relativistic case, SOC makes

these transitions allowed, which combined with their proximity to the sodium D-line leads

to a much larger optical rotation of opposite sign than computed non-relativistically. The

B3LYP values are large in both the relativistic and the NR case because the frequency is

then close to the singlet state (0.0721 a.u. and 0.0777 a.u. respectively). To avoid artifacts

due to the proximity of poles and the associated infinity of the real frequency-dependent

response function, it is probably opportune to consider the lifetime of the excited state and

use damped response theory like shown for the complex polarizability for I2.

In addition, we observe the triplet instability in HF results as well, similar to what we

observed for I2. For example, we note the excitation energy of HF’s first triplet is larger

than that in CC. In HF calculations, the second triplet state lies below the first singlet state.

However, in both the correlation models B3LYP and CC, the first singlet state is positioned

above the second triplet. To address this issue, we perform nonrelativistic calculations for

ten lowest states including five triplets and five singlets. Detailed results are provided in

the supplementary information. Similar to I2, we note the CIS largely overcomes the triplet

instability seen in HF and yields a more systematic error pattern when compared to B3LYP

and CC.
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Table 8: Excitation energy (a.u.) of the first eleven microstates for H2Se2 and H2Te2

.
State HF HFa B3LYP B3LYPa CC CCb CCa

H2Se2 1 0.0671 0.0719 0.0639 0.0661 0.0789 0.0785 0.0812
2 0.0672 0.0719 0.0639 0.0661 0.0789 0.0785 0.0812
3 0.0699 0.0719 0.0642 0.0661 0.0792 0.0788 0.0812
4 0.0860 0.0954 0.0863 0.0889 0.0988 0.0984 0.1016
5 0.0911 0.0954 0.1098 0.1121 0.1285 0.1282 0.1309
6 0.0913 0.0954 0.1099 0.1121 0.1286 0.1282 0.1309
7 0.1082 0.1083 0.1100 0.1121 0.1288 0.1284 0.1309
8 0.1289 0.1315 0.1314 0.1343 0.1443 0.1440 0.1478
9 0.1293 0.1315 0.1497 0.1510 0.1541 0.1541 0.1561
10 0.1295 0.1315 0.1499 0.1510 0.1543 0.1542 0.1561
11 0.1600 0.1624 0.1500 0.1510 0.1545 0.1544 0.1561

H2Te2 1 0.0517 0.0635 0.0542 0.0584 0.0672 0.0672 0.0721
2 0.0517 0.0635 0.0543 0.0584 0.0673 0.0673 0.0721
3 0.0605 0.0635 0.0558 0.0584 0.0689 0.0686 0.0721
4 0.0697 0.0924 0.0721 0.0777 0.0835 0.0835 0.0898
5 0.0873 0.0924 0.0931 0.0968 0.1098 0.1097 0.1143
6 0.0888 0.0924 0.0935 0.0968 0.1101 0.1100 0.1143
7 0.0993 0.0957 0.0940 0.0968 0.1109 0.1108 0.1143
8 0.1098 0.1138 0.1102 0.1158 0.1220 0.1220 0.1292
9 0.1123 0.1138 0.1316 0.1320 0.1349 0.1349 0.1367
10 0.1139 0.1138 0.1324 0.1320 0.1357 0.1356 0.1367
11 0.1370 0.1402 0.1324 0.1320 0.1360 0.1359 0.1367

a Nonrelativistic calculation with the Levy-Leblond Hamiltonian
b With trucation of virtual orbitals on 100 a.u. donce by RELCCSD.

6 Conclusion

In this work, we describe the formulation and implementation of the relativistic coupled

cluster linear response method for static and frequency-dependent molecular property calcu-

lations, which can accurately treat both relativistic and electronic correlation effects. This

implementation was accomplished in the GPU-accelerated coupled cluster module of the

DIRAC program leveraging a framework designed to handle similar transformed Hamilto-

nian in subspace. This framework aids in solving both eigenvalue and linear system prob-

lems. The current code is capable of calculating excitation energies within the EOM-CCSD
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framework and computing the linear response function for both CC-CI and CC-CC type

wave-function models.

We have validated the implementation by assessing purely electric properties such as

static and frequency-dependent polarizability for Group IIB atoms (Zn, Cd, Hg) and several

diatomic molecules. Compared to previous Hartree-Fock linear response calculations, our

current linear response calculation based on the relativistic coupled cluster approach offers a

notably improved accuracy. This enhancement is particularly evident in terms of relativistic

corrections and correlation, bringing our results closer to the experimental data.

In this study, we also tested the indirect spin-spin coupling constant—a purely magnetic

property— for the hydrogen halide series HX(X=F, Cl, Br, I). Validation was done by

reproducing the results obtained by other programs such as DALTON and CFOUR using a

nonrelativistic Hamiltonian. We extended our study to explore the impact of solvent effect

on the H2Se-H2O complex systems. Both correlation and relativistic corrections were found

to have pronounced effects on the solvent shift. While CC and DFT gave similar magnitudes

for the shifts in solvent effect, the absolute spin-spin coupling constants differed significantly.

This finding calls for caution when employing DFT for such calculations.

Lastly, we computed the optical rotation— an electric and magnetic mixed property—

for chiral molecules H2Y2 (Y=O, S, Se, Te) at the wave-length of sodium D-line (589.29

nm). Our exploration revealed potential challenges when using this frequency for heavy

molecules. We analyzed the poles of the response function by calculating the excitation

energy, and advise caution when using sodium D-line for these heavier molecules in future

investigations.

A distinguishing aspect of our implementation is its use of complex algebra, which fa-

cilitates a straightforward extension of real to complex frequencies for the evaluation of the

damped linear response function. We used this feature to simulate the spectrum of I2 through

the assessment of the absorption cross-section.

As a final point and perspective, it is worth noting that our current implementation
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relies on the single-code tensor operation library TAL-SH. While efficient, this library is

limited to using the memory capacity of a single node. Therefore, a natural development is

to extend the current code for the EOM-CCSD energy and linear response to use a library

suited for distributed memory computing architectures, such as the ExaTENSOR library

already employed for the CC energy evaluation, but still lacks some features needed in the

Davidson diagonalization procedure. After resolving these issues we are optimistic that we

can eliminate the limitations caused by the library being able to use the memory of only a

single compute node and enable treatment of larger systems.
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vectors and intermediates, comparison for the BH molecule of the damped response LR-CC

results obtained with DIRAC and standard LR-CC results obtained with DALTON, Indirect

spin-spin coupling constants (J) for the hydrogen halide molecule, additional comparisons

of methods for optical rotation.
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(18) Macak, P.; Luo, Y.; Norman, P.; Ågren, H. Electronic and vibronic contributions to

two-photon absorption of molecules with multi-branched structures. J. Chem. Phys

2000, 113, 7055–7061.

(19) Shee, A.; Visscher, L.; Saue, T. Analytic one-electron properties at the 4-component

relativistic coupled cluster level with inclusion of spin-orbit coupling. J. Chem. Phys

2016, 145, 184107.

(20) Saue, T. Relativistic Hamiltonians for Chemistry: A Primer. ChemPhysChem 2011,

12, 3077–3094.
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(78) von Ragué Schleyer, P.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P.; Schae-

fer, H. F.; Schreiner, P. R. Encyclopedia of computational chemistry ; Wiley Online

Library, 1998.

50



(79) Boyd, R. W. Nonlinear optics ; Academic press, 2020.

(80) Visscher, L.; Lee, T. J.; Dyall, K. G. Formulation and implementation of a relativistic

unrestricted coupled-cluster method including noniterative connected triples. J. Chem.

Phys 1996, 105, 8769–8776.

(81) Asthana, A.; Liu, J.; Cheng, L. Exact two-component equation-of-motion coupled-

cluster singles and doubles method using atomic mean-field spin-orbit integrals. J.

Chem. Phys 2019, 150, 074102.

(82) Peng, B.; Lestrange, P. J.; Goings, J. J.; Caricato, M.; Li, X. Energy-Specific Equation-

of-Motion Coupled-Cluster Methods for High-Energy Excited States: Application to

K -edge X-ray Absorption Spectroscopy. J. Chem. Theory Comput. 2015, 11, 4146–

4153.

(83) Shee, A.; Saue, T.; Visscher, L.; Severo Pereira Gomes, A. Equation-of-motion

coupled-cluster theory based on the 4-component Dirac–Coulomb (–Gaunt) Hamilto-

nian. Energies for single electron detachment, attachment, and electronically excited

states. J. Chem. Phys 2018, 149, 174113.

(84) Shavitt, I.; Bartlett, R. Many-Body Methods in Chemistry and Physics: MBPT and

Coupled-Cluster Theory ; Cambridge Molecular Science; Cambridge University Press,

2009.

(85) Lyakh, D. I. TAL-SH: Tensor Algebra Library for Shared Memory Computers. github.

com/https:/DmitryLyakh/TAL_SH, 2023.

(86) Scuseria, G. E.; Lee, T. J.; Schaefer, H. F. Accelerating the convergence of the coupled-

cluster approach. Chem. Phys. Lett 1986, 130, 236–239.

(87) Hättig, C.; Weigend, F. CC2 excitation energy calculations on large molecules using

the resolution of the identity approximation. J. Chem. Phys 2000, 113, 5154–5161.

51



(88) Nanda, K. D.; Krylov, A. I. Static polarizabilities for excited states within the spin-

conserving and spin-flipping equation-of-motion coupled-cluster singles and doubles

formalism: Theory, implementation, and benchmarks. J. Chem. Phys 2016, 145,

204116.
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Abstract

We present the implementation of quadratic response theory based upon the rela-

tivistic equation-of-motion coupled cluster method. We showcase our implementation,

whose generality allows us to consider both time-dependent and time-independent elec-

tric and magnetic perturbations, by considering the static and frequency-dependent

hyperpolarizability of hydrogen halides (HX, X = F-At), providing a comprehen-

sive insight into their electronic response characteristics. Additionally, we evaluated

the Verdet constant for noble gases Xe and Rn, and discussed the relative impor-

tance of relativistic and electron correlation effects for these magneto-optical prop-

erties. Finally, we calculate the two-photon absorption cross-sections of transition

(ns1S0 → (n + 1)s1S0) of Ga+, and In+, which are suggested as candidates for new
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ion clocks. As our implementation allows for the use of non-relativistic Hamiltonians

as well, we have compared our EOM-QRCC results to the QR-CC implementation in

the DALTON code, and show that the differences between CC and EOMCC response

are in general smaller than 5% for the properties considered. Collectively, the results

underscore the versatility of our implementation and its potential as a benchmark

tool for other approximated models such as density functional theory for higher-order

properties.

Introduction

Nonlinear optical properties (NLO) of matter provide a wealth of information on intra-

and inter-molecular interactions and are therefore widely studied in science and engineer-

ing.1–3 NLO properties are also central to materials and device design, with numerous impor-

tant applications such as optical devices for data transfer and storage. Among the materials

being considered, there is a growing interest in NLO properties of molecules containing heav-

ier elements, particularly in Lanthanide4–9 and Actinide10–12 complexes, as they can offer a

superior performance compared to molecules that contain only light elements.

In order to compute and analyze molecular properties in the linear and non-linear regime,

one typically resorts to response theory.13–16 Within this theory, the first-order nonlinear re-

sponse is characterized by the quadratic response function. Quadratic response functions

have been implemented for Hartree-Fock (HF) wave-functions17,18 as well as at the electron

correlated level employing second-order Møller–Plesset perturbation (MP2),19 multiconfigu-

rational self-consistent field (MCSCF),20,21 coupled cluster (CC),22–24 and density functional

theory (DFT)25,26 reference states. The common starting point of these developments has

been the non-relativistic molecular Hamiltonian.

For property calculations, the spin-orbit coupling operator can be added as one of the

perturbing properties. That will provide accurate results for lighter elements, at the expense

of needing to go one order higher in the responses that are considered. As we move down
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the periodic table, we reach a point where relativistic effects are too strong to be reliably

treated as perturbations. In this domain, it is therefore necessary to refine these methods,

ensuring relativistic effects are intrinsically accounted for by employing a variationally stable

relativistic Hamiltonian.

In the domain of relativistic quantum chemistry, to date, quadratic response function

derivations and implementations are primarily based on mean-field models, such as HF27 and

DFT.28 To improve precision and establish benchmarks for other models, in this manuscript

we discuss the development of quadratic response theory based on a relativistic equation-of-

motion (EOM)29–35 coupled cluster formulation (EOM-QRCC).

We showcase the generality and versatility of our implementation by examining two

molecular properties. First, we study the frequency-(in)dependent electric first hyperpolar-

izability (β) as it can describe the nonlinear response of a molecule to an applied electric

field, which is significant for second-harmonic generation36 associated with the design of op-

toelectronic devices and can provide valuable insights into the intermolecular interaction.37

For instance, as discussed by Datta and Pati 38 β is related to the weak intermolecular forces

such as dipolar interactions and hydrogen-bonding, thus it is possible to control β by mod-

ifying the interactions and accurate calculations would be instrumental to provide insight

into designing NLO materials like π-conjugated molecular assemblies.

We consider magnetic circular birefringence, also known as the Faraday effect, as the

second property. One example of the interest in studying the Faraday effect can be found

in the observation by Savukov et al. 39 of the inverse Faraday effect in the nuclear magnetic

resonance (NMR) sample of liquid water and liquid 129Xe , which has led to the suggestion

that the nuclear spin-induced optical rotation (NSOR) can provide a viable and potentially

more informative analog to the NMR chemical shift of traditional NMR detection. There

have been only a handful of theoretical investigations of this property, however. For 129Xe,

Ikäläinen et al. 40 performed non-relativistic (NR) time-dependent Hartree-Fock (TDHF),

time-dependent Density Functional Theory (TDDFT), coupled cluster response, and rela-
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tivistic TDHF, TDDFT calculations on the Verdet constant and NSOR. In subsequent work,

Cadène et al. 41 investigated the Verdet constant of 129Xe in both gas-phase experiments and

calculations derived from non-relativistic coupled cluster quadratic response calculations

(QR-CC), in which the relativistic effects were approximately accounted for by employing

relativistic effective core potentials (ECPs). With our implementation, we shall complement

these studies and in particular investigate the relative importance of relativistic (scalar and

spin-orbit coupling) effects and electron correlation to these properties.

The characterization of Two-Photon Absorption (TPA) cross-sections, which can be re-

lated to quadratic response theory, has also gained considerable attention in different domains

and is the third focus of our applications. TPA was first predicted, using perturbation theory,

by Göppert-Mayer 42 in 1931, but not observed in experiments until the advent of the lasers

that are capable of delivering sufficiently high intensity. The main feature of TPA is that

it occurs with a probability depending quadratically on the incident light intensity, which

results in the TPA-based techniques offering better spatial resolution than those based on

one-photon absorption (OPA). In materials science, materials with large TPA cross-sections

enable applications including drug delivery, photodynamic therapy, high-resolution, and opti-

cal storage.43 Moreover, TPA spectroscopy is also very useful as a research tool. Concerning

the different selection rules of TPA compared to OPA, TPA can characterize the excited

state in the spectrum in the case of OPA spectrum has been large dispersions, particularly

for complex molecules containing f-elements.44,45

TPA is proportional to the imaginary part of the second-order hyperpolarizability γ,

which requires evaluation of the cubic response function. However, under resonant con-

ditions, it becomes possible to express the TPA cross-sections in terms of the two-photon

matrix,46 which can be obtained from the quadratic response of the reference state wave func-

tion. With this strategy, the TPA cross-sections have been evaluated in various standard

models in quantum chemistry including Hartree-Fock,21 MCSCF,21 DFT,47–49 and CC.50–52

Moreover, in the last decades resonant inelastic X-ray Scattering (RIXS),53,54 a two-photon
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scattering process involving core electrons, received considerable attention because of the

corresponding improvements in sensitivity and energy resolution,55–58 which provides valu-

able information on the electronic structure of both occupied and virtual states that are

not easily accessible by the traditional spectroscopies. Several approaches aimed at the de-

scription of RIXS spectra for molecular systems based on non-relativistic or approximate

relativistic Hamiltonians have been proposed including algebraic diagrammatic construc-

tion (ADC),59 MCSCF,60 DFT,61 and EOM-CC.62–67 However, in the relativistic quantum

chemistry field, the implementations of TPA cross-sections are still scarce, owing to the

additional complexity of handling spin-orbit effects. An implementation in the DIRAC pro-

gram by Henriksson et al. 68 enabled pioneering calculations of TPA cross-sections from the

four-component Hartree-Fock quadratic response theory. In this manuscript, we will focus

on TPA for valence processes and will investigate processes involving core electrons such as

RIXS in a subsequent publication.

Finally, we pay attention to methods that can lower computational costs. This is of

practical importance here since we utilize uncontracted basis sets with adding many diffuse

functions, which generate a large virtual orbital space in CC calculations. The simplest and

most often used method is the utilization of the MP2 frozen natural orbitals (FNOs).69–71

While some authors have pointed out the shortcomings of MP2FNOs for the calculation

of linear response properties,71,72 Surjuse et al. 73 recently suggested using MP2FNOs in

EOM-CC calculations can bring about reduce computational cost while retaining sufficient

accuracy for ionization energies. On the other hand, to the best of our knowledge, there is

no reference yet reporting the performance of MP2FNOs on TPA calculations.

This manuscript is organized as follows: In Sec. 2, the EOM-CC quadratic response

theory and the corresponding two-photon absorption matrix formulation are summarized.

Section 3 is devoted to the details of the computations we used to test the implementation.

The calculations are presented and discussed in Secs. 4. Finally, a brief summary of our

findings is given in Sec. 5.
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Theory

We base the theory on the time-averaged quasi-energy formalism, which has been summa-

rized in the landmark paper by Christiansen et al. 13 . As the significant part of the formalism

to obtain the quadratic response functions is common to that of linear response functions,

and we have recently provided an extensive discussion of the implementation details for lin-

ear response properties,74 in the current manuscript, we only focus on the equations related

to quadratic response.

The CC quadratic response function is expressed below:

⟨⟨X;Y, Z⟩⟩ωY ,ωZ
=

1

2
CωPX,Y,Z[[1

2
FX +

1

6
GtX(ωX)

]
tY (ωY )

+ t̄X(ωX)
[
AY +

1

2
BtY (ωY )

]]
tZ(ωZ)

(1)

in which the wave function is parametrized by the CC amplitudes t and PX,Y,Z is a permu-

tation operator interchanging the perturbations X, Y, and Z. The tensors appearing in this

equation are defined in Table 1, with their dimensions determined by the number of excita-

tions considered in the model (in this work CCSD, so single and double excitations relative

to the reference state). These definitions are consistent with the ones given by Christiansen

et al. 13 , the main difference is that in our case these tensors require use of complex algebra

whereas in non-relativistic implementations it is typically assumed that matrix representa-

tions are either real of fully imaginary. This difference is caused by the intrinsic inclusion of

spin-orbit coupling effects.
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Table 1: Tensors required for the CC quadratic response functiona

ηY ⟨Λ| [Y, τ̂µ] |CC⟩
ξY ⟨µ̄|Y |CC⟩
F ⟨Λ |[[H0, τ̂µ] , τ̂ν ]|CC⟩
FY ⟨Λ |[[Y, τ̂µ] , τ̂ν ]|CC⟩
G ⟨Λ |[[[H0, τ̂µ] , τ̂ν ] , τ̂σ]|CC⟩
B ⟨µ̄ |[[H0, τ̂ν ] , τ̂σ]|CC⟩
AY ⟨µ̄|[Y, τ̂µ]|CC⟩

a |CC⟩ = eT0 |R⟩ denote the regular CC reference wavefunction,
and |R⟩ is the reference state for the CC parametrization such as
Hartree-Fock state. ⟨Λ| = ⟨R| +

∑
µ t̄

0
µ ⟨µ̄|. ⟨µ̄| = ⟨R| τ̂ †µe−T0 ≡

⟨µ| e−T0 , where τ̂ †µ is the deexcitation operator, which is biorthog-

onal to excitation operator τ̂µ, satisfying
〈
R|τ̂ †µτ̂ν |R

〉
= δµν . µ, ν

and σ indicate excited Slater determinants (comprising single and
double excitations for the CCSD model).

In CC theory, the similarity transformed Hamiltonian, H̄ = e−T̂ ĤeT̂ , plays an important

role in obtaining the amplitudes and their responses to external perturbations. Since H̄ and

its matrix representation H̄ are not Hermitian, the left response amplitudes are not just the

complex conjugate of their right counterparts. According to the 2n+1 and 2n+2 rules in

perturbation theory,13 for obtaining the quadratic response, it is necessary to solve both the

left and right first-order response equations, given respectively by:

(H̄− ωXI)t
X = −ξX (2)

and

t̄X(H̄ + ωXI) = −ηX − FtX (3)
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Within the EOM-CC approximation, the quadratic response function is expressed below:62,75,76

EOM⟨⟨X;Y, Z⟩⟩ωY ,ωZ
=

1

2
CωPX,Y,Z

[−EOM t̄X(ωX)tY (ωY )t̄0ξZ

+EOM t̄X(ωX)EOMAY tZ(ωZ)

− t̄0tY (ωY )EOM t̄Z(ωZ)ξX ]

(4)

where t̄0 indicates the zeroth-order multipliers, which can be obtained by solving the ground

state Lambda equations,77 and EOMAX is the EOM-CC property Jacobian matrix

EOMAX
µν = ⟨µ|

[
X̄, |ν⟩ ⟨HF |

]
|HF ⟩ (5)

X̄ = e−T̂ X̂eT̂ (6)

The EOM-CC response is known to have an identical right response equation, as indicated

in equation 2, when compared to linear response theory. On the other hand, EOM-CC left

response equation is different from equation 3 due to an approximation of the F matrix

leading to the expression:

EOM t̄X(H̄ + ωXI) = −ηX − t̄0Dξ
X
S + (t̄0ξX)t̄0. (7)

The detailed working equations for the matrix elements of the different terms in Eqs. 2

and 7 are given in our previous linear response work,74 including those for σ vectors (the

products H̄tX and t̄XH̄) and property gradients ξX . The working equations for new terms

appearing in the quadratic response functions, such as the EOMAX matrix are presented in

the supplementary information.

To define a two-photon absorption cross-section, we first consider the sum-over states

expression for the two-photon transition matrix elements between the reference state |0⟩ and
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the target excited state |f⟩:1

T f0
XY (ω) =

∑
n

[
⟨f | X̂ |n⟩ ⟨n| Ŷ |0⟩
ωn − (ω + iγ)

+
⟨f | Ŷ |n⟩ ⟨n| X̂ |0⟩
ωn − (ω′ + iγ)

]
(8)

where γ is the damping factor representing the inverse lifetime. The frequencies ω and ω′

represent the two external photons, while ωf corresponds to the excitation energy between

reference state |0⟩ and the final excited state |f⟩. For TPA the relation:

ω + ω′ − ωf = 0 (9)

should be satisfied which means that for a given final state there is only one independent

variable, whether for the most commonly studied case1 of ω′ = ω = ωf/2 or for cases in

which ω′ ̸= ω such as in resonant inelastic X-Ray scattering (RIXS).59,62 1 Within a response

formulation, the EOM-CC right and left frequency-dependent transition moments are written

as62

Right: EOMT f0
XY (ω) = − Lf [EOMAXtY (ω + iγ) +EOM AY tX(ω′ − iγ)

− (t̄0ξ
X)tY (ω + iγ) − (t̄0ξY )tX(ω′ − iγ)

− (t̄0tY (ω + iγ))ξX − (t̄0tX(ω′ − iγ))]

(10)

Left: EOMT 0f
XY (ω) = − [EOM t̄X(−ω′ − iγ)EOMAY +EOM t̄Y (−ω + iγ)EOMAX

− (t̄0ξX)EOM t̄Y (−ω + iγ) − (t̄0ξ
Y )EOM t̄X(−ω′ − iγ)]Rf

+ (t̄0Rf )[EOM t̄Y (−ω + iγ)ξX +EOM t̄(−ω′ − iγ)ξY ]

(11)

where Rf and Lf are right and left target excited states, respectively, obtained by solving

1Note that in these references the frequencies of the absorbed and emitted photon are both defined as
positive, while we define the frequencies of absorbed photons as positive and also take the frequency ωf

corresponding to the excitation energy as positive. Scattering can in our implementation be studied by
defining ω′ as negative in the input.
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EOM excitation energy (EOM-EE) equations:

H̄Rf = EfRf (12)

LfH̄ = LfEf (13)

where the operators R̂f and L̂f are given by in terms of the electron-creation (a†a and a†b)

and electron-annihilation operators (ai and aj)

R̂f = r0 +
∑
ia

rai a
†
aai +

∑
i>j,a>b

rabij a
†
aa

†
baiaj (14)

L̂f = l0 +
∑
ia

liaa
†
iaa +

∑
i>j,a>b

lijaba
†
ia

†
jaaab (15)

With these left and right transition moments available, the total scattering amplitudes

can then be evaluated by the equation:13,62

SXY,ZU = T 0f
XY (ω)T f0

ZU(ω) =
1

2
[T 0f

XY (ω)T f0
ZU(ω) + (T 0f

ZU(ω)T f0
XY (ω))∗] (16)

Finally, the TPA cross-section, δTPA, is determined by the components of scattering

amplitudes matrix S:78

δTPA =
1

15
{F

∑
X,Y

SXX,Y Y + G
∑
X,Y

SXY,XY + H
∑
X,Y

SXY,Y X} (17)

The constants F , G, and H depend on the polarization of the incident light. In this

work, F = G = H = 1 is selected to represent parallel linearly polarized light. Moreover, we

set up the frequency of the external field as half of the excitation energy of the target state

(ω′ = ω = ωf/2).
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Computational details

All EOM-CC quadratic response and two-photon absorption calculations were carried out

with development versions (see revision number in SI) of the DIRAC code,79,80 employing the

uncontracted triply-augmented valence triple zeta Dyall basis set (defined as t-aug-dyall.v3z

in inputs) for heavy elements (In, I, At, Xe, Rn),81,82 and an equivalent triply-augmented

uncontracted Dunning basis set (defined as t-aug-cc-pVTZ in inputs) for light elements (H,

F, Cl, Ga, Br).83–85 We utilized the exact two-component (X2C)86 relativistic Hamiltonian,

and in some cases, to show the effect of relativity explicitly, we also provide results using the

non-relativistic Hamiltonian87,88(as activated by the .Levy-Leblond keyword). To study the

effect of electron correlation, we performed quadratic-response and two-photon absorption

calculations based on mean-field methods such as Hartree-Fock (HF) and density-functional

theory (employing the B3LYP89 density functional approximation). The relativistic and

non-relativistic calculations have been carried out with the Gaussian type90 and point charge

nucleus model, respectively.

In what follows, we shall use the term orbital as shorthand for both spinors and spin-

orbitals, depending on the Hamiltonian used in the calculation.

In our calculations for heavy elements (HI, HAt, Xe, and Rn), we have profited from

the components of an ongoing implementation in ExaCorr of the Cholesky-decomposition

approach91–93 to reduce the memory footprint of our calculations in the step to transform

two-electron integrals from AO to MO basis, with thresholds of 10−9 (Xe and Rn), and

10−4 (HI and HAt), the latter is looser than the one employed in our previous work; we

have carried out benchmark calculations on selected systems to verify this change did not

significantly alter our results.

The molecular structures employed in all calculations have been taken from the literature:

from Huber 94 for HX (X=F, Cl, Br, I), and from Gomes and Visscher 95 for HAt. The

internuclear distances employed are thus H-F (0.91680 Å), H-Cl (1.27455 Å), H-Br (1.41443

Å), H-I (1.60916 Å), and H–At (1.722 Å).
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In the calculations, the size of the correlated virtual spaces in the coupled cluster is

truncated by discarding orbitals with energies above 5 a.u. For the occupied orbitals, we

correlate only valence electrons.

Results and discussion

First hyperpolarizability of HX(X=F, Cl, Br, I, At)

To demonstrate our implementation we first apply it to calculate the parallel component

of the static first hyperpolarizability (β||)
37 of the hydrogen halide molecules.

β|| =
1

5

∑
i=x,y,z

(βiiz + βizi + βzii) (18)

Each component is defined by the equation:16

βijk(−ωσ;ω1, ω2) =
∑

P−σ,1,2

∑
n,m

⟨0| µ̂i |n⟩ ⟨n| µ̂j |m⟩ ⟨m| µ̂k |0⟩
(ωn0 − ωσ)(ωm0 − ω2)

(19)

where µ̂i are Cartesian components of the electric dipole operators, and
∑

P−σ,1,2 indicates

the sum of six terms by permuting the pairs (i,−ωσ), (j, ω1), (k, ω2).

Before proceeding with the calculation, it is crucial to select an appropriate basis set and

establish the correlation space. Our study evaluates the impact of the basis set and corre-

lation space on the hyperpolarizability of HF molecules. The results are presented in Table

2 where they are compared with results from the DALTON program23,96 and experimental

data.

An analysis of the first three rows reveals that both diffuse functions and polarization

functions significantly influence the calculation of hyperpolarizability, as is well-known in the

literature.23,97 For example, when utilizing the doubly-augmented d-aug-cc-pVDZ basis set,

the result is only 58% of the value obtained with the augmented s-aug-cc-pVDZ basis set.
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Conversely, the effect of the correlation space is relatively minor. By comparing the results

of the third and fourth rows, it is evident that correlating all virtual orbitals enhances the

value by merely around 1%.

In the fourth row, we observe that our calculation, when using the non-relativistic Hamil-

tonian, matches the DALTON value (-7.3385 a.u.) precisely and this serves as a validation

of our implementation. Furthermore, based on the DALTON results, the disparity between

EOM-QRCC and QR-CC is approximately 4.5%. This deviation stems from the absence of

size extensivity in the transition moments of the EOM model. This inconsistency between

EOM and CC was previously highlighted in research on linear response properties (see Yuan

et al. 74 and references therein), and we plan to delve deeper into this topic by studying a

wider array of molecules for both linear and quadratic response properties in follow-up work.

To compare with experimental data we need to account for the fact that the available

value (-10.88±0.95 a.u.) concerns a value measured for a frequency corresponding to 0.0656

a.u. rather than to the static limit. Taking this into account increases β|| by almost 1 a.u.

to -8.79 a.u. which is still outside the experimental error bar. Beyond the limitations of the

basis set, which could still be further improved, also vibrational effects will contribute to

this observed discrepancy. These effects can amount to -1.24 a.u. as discussed by Hansen

et al. 98 who treated these with the vibrational configuration interaction method.

Comparison between the fourth, fifth, and sixth rows of the QR-CC calculations reveals

that adding more diffuse functions (from d-aug-cc-pVTZ to t-aug-cc-pVTZ) improves ac-

curacy more significantly than incorporating additional polarization functions (from d-aug-

cc-pVTZ to d-aug-cc-pVQZ). Given that the QZ calculations are notably more resource-

intensive than TZ ones, we will employ the t-aug-cc-pVTZ basis set for the subsequent

calculations on heavier elements.
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Table 2: Benchmark of basis sets and correlation virtual orbital space for QR-CC calculations of
the static β|| (a.u.) of the HF molecule

Basis NR-EOM NR-EOMa NR-QR-CCa Exp99

s-aug-ccpVDZb -9.4232
d-aug-ccpVDZb -5.5463
d-aug-ccpVTZb -7.2677
d-aug-ccpVTZc -7.3385 -7.3385 -7.6718
d-aug-ccpVQZc,d -8.5816
t-aug-ccpVTZc,d -8.7930

-10.88±0.95d

a Calculations were performed using the DALTON program
b Truncating the virtual orbital space at 5 a.u.
c Correlating all virtual orbitals
d β|| at frequency of 0.0656 a.u.

In Table 3, the static hyperpolarizability of hydrogen halides molecules (from F to At)

is displayed, in which we show the Hartree-Fock, B3LYP, and EOM-CC results for both the

non-relativistic and the X2C Hamiltonian.

At Hartree-Fock level, βzxx, βzzz, and β|| all generally exhibit an upward trend from HF

to HAt in both relativistic and non-relativistic calculations. This pattern is also discernible

in the correlated calculations, though the exact values vary slightly. Both CC and B3LYP

results indicate that electron correlation tends to decrease the value of βzxx for all species on

the series. Nevertheless, for the βzzz, CC results indicate an increase in value due to electron

correlation for all molecules except HF, whereas B3LYP shows the opposite pattern. This

divergence between CC and B3LYP leads to discrepancies in the final β|| value. For the

heavier molecules, B3LYP values deviate considerably from both the Hartree-Fock and the

CC ones.

Accounting for relativistic effects is, as expected, absolutely essential for systems contain-

ing heavier elements. For instance, both Hartree-Fock and CC models reveal that for HAt,

the non-relativistic outcomes are approximately half of their relativistic counterparts. With

the exception of HF, all three models consistently suggest that relativistic effects increase

the β|| values for all molecules. Furthermore, the effects of relativity on βzxx are much larger
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than that of βzzz.

To understand the different magnitude of relativistic correction for βzxx and βzzz, we can

look at equation 19. Through spin-orbit coupling (SOC), relativity modifies the response

function by shifting the location of the poles of the response functions and by introducing

additional transition channels. Without SOC, the ground state is in all cases of pure 1Σ+
0

symmetry. When introducing SOC, the 1Σ designation is no longer strictly valid, and al-

lowed transitions are only characterized by the remaining quantum numbers, thereby yielding

0+ → 0+, and 0+ → 1 transitions. The former is evidently connected to the z-component

of the transition dipole moment, while the latter corresponds to the x and y-components.

Specifically, the βzzz component only permits contributions from transitions to 0+ states,

originating from 3Π0+, and 3Σ0+ states. On the other hand, for the βzxx component, tran-

sitions to the 1 state, potentially emerging from 3Π1,
3Σ1 and 1Π1 states, are also allowed,

with an enhanced contribution from the singlet states 1Π.
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Table 3: Static hyperpolarizability (a.u.) of hydrogen halides HX(X=F, Cl, Br, I, At)

HFa HFb B3LYPa B3LYPb CCa CCb

βzxx

HF -0.5091 -0.5100 -1.4916 -1.5565 -1.5276 -1.5286
HCl 2.3017 2.3672 -0.1127 0.0117 -0.0858 -0.0157
HBr 5.2994 5.9155 2.8120 3.8513 2.6604 3.4213
HI 10.7728 13.6493 4.8719 10.2006 6.7316 9.8900
HAt 16.0854 38.3140 8.7719 42.5584 11.1347 32.2297

βzzz

HF -8.3950 -8.4157 -9.8253 -9.8476 -9.4973 -9.4983
HCl -11.4505 -11.4435 -13.1441 -13.0321 -10.2439 -10.1522
HBr -11.0481 -11.1427 -11.4062 -10.8785 -6.4784 -5.9790
HI -2.9448 -3.9634 -6.0444 -5.3245 5.1093 4.9752
HAt 5.3664 5.5476 1.3711 5.2236 16.9624 11.4539

β||
HF -5.6479 -5.6614 -7.6852 -7.7763 -7.5315 -7.5333
HCl -4.1082 -4.0255 -8.0218 -7.8052 -6.2493 -6.1101
HBr -0.2696 0.4130 -3.4693 -1.9055 -0.6946 0.5181
HI 11.1606 14.0011 2.2196 9.0460 11.1434 14.8531
HAt 22.5224 49.3054 11.3490 54.2043 23.5391 45.5480

a non-relativistic calculation using the Levy-Leblond Hamiltonian
b Relativistic calculation using the X2C Hamiltonian

We now turn to the frequency-dependence of the hyperpolarizability, focusing on the

impacts of relativistic and electron correlation effects. Using both CC and Hartree-Fock

methods, we assess the hyperpolarizability of the single-frequency optical processes -the sec-

ond harmonic generation (SHG) of HI, in which we have ωσ = 2ω1 = 2ω2 = 2ω. Figure 1

displays the result of frequency ranging from 0.0 to 0.115 a.u. To further interpret these

curves, we also calculate the excitation energy for the lowest five electronic states by diago-

nalizing H̄. These results are summarized in Table 4.

Overall the dispersion curves for CC and HF are qualitatively similar for both non-

relativistic and relativistic calculations, though the values for CC values are larger than the

HF ones, which is due to larger excitation energy of the lowest lying dipole allowed states,

that can be observed in Table 4.

One can clearly find singularities in the relativistic results, located at 0.0958 a.u for HF,
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and located at 0.1000 a.u. for CC. According to equation 19, in SHG, a singularity should

appear twice on the curve: the first pole corresponds to half of the excitation energy, while

the second aligns with the full excitation energy. Observing this pattern, we pinpoint the

singularities in our curves to the first pole associated with the a3Π0+ state (with excitation

energies for HF and CC being 0.1916 a.u. and 0.2001 a.u., respectively).

In the absence of SOC, the transition to a3Π0+ is spin-forbidden. This observation aligns

with the singularities appearing exclusively in the relativistic calculations. On the other

hand, the pole related to the transition to a3Π1, is not observed, despite its permissibility

with SOC. This is attributed to our focus on the βzxx and βzzz components. One can find

that in equation 19, the transition dipole moment ⟨0| µ̂z |n⟩ is zero for all |n⟩=|1⟩ states.

Figure 1: Frequency-dependent hyperpolarizability of HI (Left: βzxx, Right: βzzz). The red
and black vertical lines are half of the excitation energy of a3Π0+ state for HF(0.0958 a.u.)
and EOM-CC (0.1001 a.u.), respectively.

Table 4: Excitation energy (a.u.) of HI for the lowest five states

State X2C-EOM-CC X2C-HF NR-EOM-CC NR-HF
a3Π2 0.1773 0.1670 0.1894 0.1775
a3Π1 0.1831 0.1743 0.1894 0.1775
a3Π0− 0.1979 0.1861 0.1894 0.1775
a3Π0+ 0.2001 0.1916 0.1894 0.1775
A1Π1 0.2108 0.2120 0.2111 0.2189
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Verdet constant of Xe and Rn

In the current section, we show a calculation of the Verdet constant as an illustrative

example of the use of our implementation for a mixed electric-magnetic property. The

Verdet constant is evaluated with the following frequency-dependent quadratic response

function:27,100

V (ω) = ω
eNϵxyz

24c0ϵ0me

Im⟨⟨µ̂x; µ̂y, m̂z⟩⟩ω,0 (20)

with N the number density of the gas, e the elementary charge, me the electron mass, c0 the

speed of light in vacuo, and m̂z is magnetic dipole moment operator.

We calculate the Verdet constant at three different laser wavelengths (589 nm, 694.3

nm, and 1064 nm) for Xe and Rn and list the results in Table 5. For Xe, compared to the

experiment, the HF value shows sizeable relative errors of about 10%. The relativistic effect

increases the value and reduces the error to 5% at the HF level. It is evident that the scalar

relativistic results (with the SFDC Hamiltonian) closely align with the NR-HF values, but

deviate significantly from the DC and X2C results. One can note the scalar relativistic effects

decrease the Verdet constant value while SOC moves the results in the opposite direction, but

more strongly. This suggests that a major portion of the relativistic correction originates

from the spin-orbit coupling, and considering only scalar relativistic effects may lead to

an underestimation of results. Additionally, upon investigating the influence of the Gaunt

interaction, we determine it to further increase the value of the Verdet constant, but much

more modestly (0.5%).

The effect of electron correlation is also to increase the Verdet constant, but the higher

the degree of electron correlation recovered, the less important the increase. If we compare

the DALTON NR-CCSD results obtained with a truncated correlation in space with those

in which all occupied and virtual orbitals are included in the calculation, we observe a 2%

difference, with the latter calculation showing smaller values. On the other hand, com-
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paring CCSD and CC3101 results with the truncated correlation space, we observe a small

increase in the Verdet constant for CC3. Relative to the QR-CC results, our non-relativistic

EOM calculation seems to overestimate the correlation effect by about 1%, due to the non-

extensivity issue discussed for the hyperpolarizabilities (and in ref74). Even though this

overestimation causes the X2C-EOM value to be significantly larger than experimental re-

sults, we anticipate that, given the downward trend in the QR-CC results upon improving

the correlation space discussed above (approximately -0.08 (10−3 rad/(T m) at the 1064 nm

wavelength), the X2C-EOM value with a complete orbital space are expected to come closer

to the experimental values.

When we examine the Rn, we find the relativistic effect to be substantial for both HF

and CC. For example, at wavelength 589 nm, the non-relativistic EOM value is 18.90 (10−3

rad/(T m)), but the relativistic EOM value is 25.91 (10−3 rad/(T m)). Even in the absence of

experimental data for reference, such a pronounced correction underscores the importance of

accounting for relativistic effects. Beyond this amplified relativistic effect, other observations

for Rn align with those for Xe. This includes the dominance of the relativistic effect by spin-

orbit coupling, the marginal influence of the Gaunt interaction, and a comparable magnitude

of difference between EOM and QR-CC.

It is also worth noting, as reported in the supplementary material of Ref,40 that the

performance of B3LYP is somewhat poor. It tends to overestimate the values in both non-

relativistic and relativistic calculations, with errors approaching 18% for Xe compared to the

experiment.
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Table 5: Verdet Constant V(ω) [in 10−3 rad/(T m)] for Gaseous Xe and Rn at Different
Laser Wavelengths

Method λ(589 nm) λ(694.3 nm) λ(1064 nm)
Xe

NR-HF 11.18 7.88 3.26
SFDC-HFd 11.12 7.83 3.24
X2C-HF 11.61 8.17 3.37
DC-HFb 11.61 8.17 3.37

DCG-HFc 11.66 8.20 3.39
NR-B3LYP 13.62 9.56 3.93
X2C-B3LYP 14.60 10.21 4.18

NR-EOM 12.55 8.83 3.65
X2C-EOM 13.10 9.21 3.79
NR-CCSDa 12.39 8.72 3.60
NR-CCSDa * 12.11 8.53 3.52
NR-CC3a 12.46 8.77 3.62

Exp 12.30e 3.56±0.10f

Rn
NR-HF 16.80 11.80 4.86

SFDC-HFd 16.56 11.60 4.76
X2C-HF 23.13 16.02 6.48
DC-HFb 23.14 16.03 6.48

DCG-HFc 23.25 16.10 6.51
NR-B3LYP 20.08 14.04 5.74
X2C-B3LYP 30.38 20.83 8.31

NR-EOM 18.90 13.26 5.44
X2C-EOM 25.91 17.92 7.22
NR-CCSDa 18.65 13.08 5.37

a Calculations were performed using the DALTON program
* Include all occupied and virtual orbitals
b Dirac-Coulomb Hamiltonian102

c Dirac-Coulomb plus Gaunt interaction Hamiltonian
d Dirac-Coulomb without spin-orbit coupling Hamiltonian103

e Reference104

f Reference41

Two-photon absorption cross-sections

Finally, we consider the two-photon absorption cross-sections. As a showcase for our

implementation, we highlight the two-photon transitions for group IIIB divalent ions, namely

Ga+ and In+. Such systems have been discussed in the literature105,106 for their potential use

20



as an atomic clock. As an initial step in this exploration, we focus on spin-allowed transitions,

allowing for comparative analyses with other non-relativistic programs. We intend to address

spin-forbidden transitions in subsequent work.

In Table 6, we calculate the TPA cross-sections and the corresponding excitation energy

of the target states for Ga+, and In+ by HF and CC. Both methods indicate that relativistic

effects reduce TPA cross-sections. Notably for In+, the X2C value is roughly 60% of its

non-relativistic counterpart. When comparing HF and CC, we find that electron correlation

further diminishes the TPA cross-sections. For Ga+, the electron correlation effect is slightly

larger than that of relativity, whereas, in the case of In+, relativistic effects show larger

contributions to the final TPA cross-sections than electron correlation.

The observed trend, wherein both electron correlation and relativistic effects reduce the

TPA, can be understood by examining their effect on the excitation energies. We find that

both factors increase the excitation energy of the target state ((4s5s)1S0 for Ga+, (5s6s)1S0

for In+) and from equation 8, a higher excitation energy in the denominator usually results

in a smaller transition amplitude.

In non-relativistic calculations, our EOM results closely match the TPA results derived

from QR-CC in DALTON, with only about a 3% discrepancy, in line with the discrepancies

observed for the hyperpolarizabilties.

Table 6: Two-photon absorption cross-sections δ (a.u.) and excitation energy (a.u.) of the
target states for Ga+, and In+

Systems(transitions) NR-HF X2C-HF DC-HF NR-EOMa X2C-EOMa NR-CCb

Two-photon absorption cross-sections
Ga+(4s-5s) 3211.01 2710.27 2704.53 2535.17 2128.33 2455.97
In+(5s-6s) 7964.78 4851.59 4831.34 6203.59 3745.02 6022.11

Excitation energy
Ga+(4s-5s) 0.4382 0.4472 0.4473 0.4718 0.4812 0.4718
In+(5s-6s) 0.3760 0.3983 0.3986 0.4042 0.4269 0.4042

a Correlate both (n-1)d and (n)s shell of total 12 electrons
b Calculations were performed using the DALTON program

We test MP2FNO-based EOM-CC energy and TPA for Ga+ and display the results in
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Table 7. The relativistic MP2FNOs are generated based upon our previous implementation

in DIRAC.107 From the first three columns, it becomes apparent that when using standard

selection schemes, we cannot achieve reasonable TPA values in comparison to the original

canonical orbital results, even with a threshold of 1.0d−6 for the occupation number where

we retrieve more than 99.99% correlation energy for the ground state. We find the excitation

energy of the TPA target state (4s5s)1S0 is markedly overestimated in FNO calculations,

especially when using threshold of 1.0d−4 and 1.0d−5.

At the MP2 level, the 5s orbital has a small contribution to the correlation energy in the

ground state. As a result, when we obtain the MP2 density matrix and natural orbitals, the

occupation numbers for natural orbitals primarily influenced by 5s orbitals are exceedingly

small. These orbitals are therefore omitted by the selection scheme based purely on the

threshold of occupation numbers. But while the 5s orbital is not be particularly important

for the ground state, it plays a significant role in the excited state under consideration.

Recognizing this, we’ve adjusted the selection scheme in the MP2FNO implementation.

Besides selecting natural orbitals with occupation numbers exceeding the threshold, we also

incorporate all doubly-degenerate orbitals with occupation numbers below the threshold (in

atomic systems, that corresponds to s1/2 and p1/2 orbitals). We provide a more in-depth

discussion on this point in the supplementary information, where we include the excitation

energy for the eight lowest states and the energy of virtual orbitals.

With this expanded natural orbital space, we revisit the CC and TPA calculations, pre-

senting the outcomes in the 4th to 6th columns of Table 7. We note a marked improvement

in the excitation energy of the target state. Even at a threshold of 1.0d−4, the discrepancy

when compared to full canonical results is around 1%. For the TPA, we also see more ac-

curate results. For example, at a threshold of 1.0d−6, the error drops from 57% to 30% by

correlating only two additional doubly-degenerate orbitals. We also detect a consistent trend

of approaching the canonical orbitals results when going from 1.0d−4 to 1.0d−6.

There remains a 30% discrepancy between truncated FNOs and canonical orbital results.
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From equation 8, to achieve precise scattering amplitudes, we cannot overlook the impact

on the transition dipole moment, which is highly sensitive to diffuse orbitals. Conversely,

these diffuse orbitals will have low occupation numbers in the MP2 calculations for the

ground state and will therefore be removed from the correlating space, even with the slightly

modified procedure we used.

Table 7: Performance of MP2FNOs on Two-photon absorption cross-sections δ (a.u.) and
excitation energy (a.u.) of the target states for Ga+

FNOa FNOb FNOc FNOd FNOe FNOf Canonical Expg

Number of correlated virtual orbitals
25 35 48 29 38 50 82

CCSD ground state correlation energy
-0.2371 -0.2396 -0.2399 -0.2373 -0.2397 -0.2399 -0.2399

Excitation energy of the target state (4s5s)1S
0.5864 0.6414 0.5192 0.4861 0.4838 0.4835 0.4812 0.4860

Two-photon absorption cross-sections
0.19976 <1.0d−15 3353.67 200.06 1300.01 1491.51 2128.33
a FNOs with the threshold of occupation number 1.0d−4

b FNOs with the threshold of occupation number 1.0d−5

c FNOs with the threshold of occupation number 1.0d−6

d FNOs with the threshold of occupation number 1.0d−4 plus doubly-degenerate orbitals
e FNOs with the threshold of occupation number 1.0d−5 plus doubly-degenerate orbitals
f FNOs with the threshold of occupation number 1.0d−6 plus doubly-degenerate orbitals
g Results from NIST

Conclusion

In this work, we implement the relativistic Equation-of-Motion Coupled Cluster method

to study the molecular quadratic response properties and two-photon absorption cross-

sections. This implementation is accomplished in the GPU-accelerated coupled cluster mod-

ule of DIRAC (ExaCorr), extending our previous linear response coupled cluster code74 to

solve both left and right response equations.

We have validated the implementation by assessing the purely electric properties such

as static and frequency-dependent first hyperpolarizability of six hydrogen halide molecules
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from HF to HAt. Using a non-relativistic Hamiltonian, our code exactly reproduces the

EOM-based quadratic response properties implemented in the DALTON code. Compared

to Hartree-Fock and B3LYP response calculations, our relativistic EOM quadratic response

calculation shows the significance of both relativistic effect and electron correlation.

We have also investigated the Verdet constant, a mixed electric-magnetic property, for

Xe and Rn with different Hamiltonian and correlation models. Both correlation and spin-

orbit coupling are found to have pronounced effects. Compared to NR-QR-CC, our NR-

EOM calculation overestimated the results by roughly 1%. While the X2C-EOM calculation

deviates from the experimental value more than its non-relativistic counterpart, we find this

to be due to error cancellation in the treatment of electron correlation, and we estimate that

using larger correlating spaces should bring our X2C results more in line with experiment.

We note such calculations are currently not feasible with our single-node code due to memory

limits in computational resources at our disposal.

On the other hand, as consistent with previous works, we also observe the performance

of B3LYP on the Verdet constant is poor with an error of 18% compared to the experiment

for Xe. Such large deviations suggest it is important to investigate these properties with the

more reliable coupled cluster method.

At last, in our study of the two-photon absorption in Ga+, and In+, we find relativistic

and electron correlation effects both decrease the corresponding TPA cross-sections. We

analyzed the results by evaluating the excitation energy of the target state and found that

both effects increase the excitation energies.

It is worth noting that most calculations are limited in size since the quadratic response

properties usually require more diffuse functions, which is challenging for the memory re-

quirement in the current single-node implementation. There is an imperative to develop al-

gorithms that can lower computational costs. In the current work, we utilize the MP2FNOs

to reduce the virtual orbital space in TPA calculations and we find for the low-lying states,

MP2FNO can effectively decrease the calculation cost while maintaining accuracy.
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For higher states such as the target state in the two-photon transition considered, the

bias of MP2FNOs towards the ground state may remove diffuse orbitals which will be im-

portant for excited states. A better way to consider the influence of these diffuse orbitals

is to take account of the excited state in a more sophisticated manner, such as introducing

the corresponding natural transition orbitals.108 Exploring this further is among our future

research objectives. Another natural development is to extend the current code to use li-

braries tailored for distributed memory computing architectures, such as the ExaTENSOR

library, something which we are currently pursuing.
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Odelius, M. Ab Initio Calculations of X-ray Spectra: Atomic Multiplet and Molecu-

lar Orbital Effects in a Multiconfigurational SCF Approach to the L-Edge Spectra of

Transition Metal Complexes. J. Phys. Chem. Lett. 2012, 3, 3565–3570.

(61) Nascimento, D. R.; Biasin, E.; Poulter, B. I.; Khalil, M.; Sokaras, D.; Govind, N. Res-

onant Inelastic X-ray Scattering Calculations of Transition Metal Complexes Within a

Simplified Time-Dependent Density Functional Theory Framework. J. Chem. Theory

Comput. 2021, 17, 3031–3038.

(62) Faber, R.; Coriani, S. Resonant Inelastic X-ray Scattering and Nonesonant X-ray

Emission Spectra from Coupled-Cluster (Damped) Response Theory. J. Chem. Theory

Comput. 2019, 15, 520–528.

(63) Schnack-Petersen, A. K.; Moitra, T.; Folkestad, S. D.; Coriani, S. New Implementa-

tion of an Equation-of-Motion Coupled-Cluster Damped-Response Framework with

Illustrative Applications to Resonant Inelastic X-ray Scattering. J. Phys. Chem. A

2023, 127, 1775–1793, arXiv:2211.12215 [physics].

33



(64) Skomorowski, W.; Krylov, A. I. Feshbach–Fano approach for calculation of Auger

decay rates using equation-of-motion coupled-cluster wave functions. I. Theory and

implementation. J. Chem. Phys. 2021, 154, 084124.

(65) Skomorowski, W.; Krylov, A. I. Feshbach–Fano approach for calculation of Auger

decay rates using equation-of-motion coupled-cluster wave functions. II. Numerical

examples and benchmarks. J. Chem. Phys. 2021, 154, 084125.

(66) Skeidsvoll, A. S.; Moitra, T.; Balbi, A.; Paul, A. C.; Coriani, S.; Koch, H. Sim-

ulating weak-field attosecond processes with a Lanczos reduced basis approach to

time-dependent equation-of-motion coupled-cluster theory. Phys. Rev. A 2022, 105,

023103.

(67) Ranga, S.; Dutta, A. K. A Core–Valence Separated Similarity Transformed EOM-

CCSD Method for Core-Excitation Spectra. J. Chem. Theory Comput. 2021, 17,

7428–7446.

(68) Henriksson, J.; Norman, P.; Jensen, H. J. A. Two-photon absorption in the relativistic

four-component Hartree–Fock approximation. J. Chem. Phys. 2005, 122, 114106.

(69) Taube, A. G.; Bartlett, R. J. Frozen Natural Orbitals: Systematic Basis Set Truncation

for Coupled-Cluster Theory. Collect. Czech. Chem. Commun. 2005, 70, 837–850.

(70) Taube, A. G.; Bartlett, R. J. Frozen natural orbital coupled-cluster theory: Forces

and application to decomposition of nitroethane. J. Chem. Phys. 2008, 128, 164101.
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Chapter5
Note: Reimplementation of
Ionization Potential, and Electron
Affinity based upon Relativistic
Equation-of-Motion Coupled Cluster

In this chapter, I will briefly discuss the implementation of the equation-of-
motion (EOM) coupled cluster for evaluating the ionization potential (IP), elec-
tron affinity (EA), and excitation energy (EE).

The EOM-CC is a robust and accurate method to evaluate the energies and
properties of electronically excited states within the CC framework. In relativis-
tic quantum chemistry, the EOM-CC method serves as a good tool to simulate
spectroscopy and construct the potential energy surface of molecules contain-
ing heavy elements. Readers can refer to the review of Liu and Cheng[45] to
find the recent progress of the relativistic EOM-CC methods. In DIRAC, the
EOM-CC has been implemented and discussed for RELCCSD[103]. To extend
its ability for large systems, we reimplement the codes on ExaCorr.

Concerning the EOM-EE-related equations that have beenused anddiscussed
in Chapters 3 and 4, In this chapter, we will focus on the IP and EA implemen-
tation and show some pilot tests compared to RELCCSD.
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5.1 Theory

The excitation energies and excited states in the EOM-CC framework are defined
as the eigenvalues and eigenvectors of the similarity-transformed Hamiltonian
�̄�, respectively.

̂�̄� = 𝑒−�̂��̂�𝑒�̂� (5.1)

Due to the fact that �̄� is non-Hermitian, the righ-handed (|𝑅⟩) and left-
handed (⟨𝐿|) eigenvectors are not the same, and we have to separately solve the
corresponding eigenvalue equation for a given state 𝑛 with energy 𝐸𝑛:

̂�̄� |𝑅𝑛⟩ = 𝐸𝑛 |𝑅𝑛⟩ (5.2)

⟨𝐿𝑛| ̂�̄� = ⟨𝐿𝑛| 𝐸𝑛 (5.3)

While |𝑅𝑛⟩ and ⟨𝐿𝑛| are not simple adjoints of each other, they obey the
biorthogonality:

⟨𝐿𝑛| 𝑅𝑚⟩ = 𝛿𝑛𝑚 (5.4)

The right-hand and left-hand states are parametrized as CI-type wavefunc-
tions, where the reference state of a single-determinant wave function has been
replaced by the exponential-type wave function of the coupled cluster ground
state, so the single-reference method EOM-CC can partially consider the multi-
reference effects for excited states[43].

|𝑅𝑛⟩ = �̂�𝑛𝑒�̂� |Φ0⟩ (5.5)

⟨𝐿𝑛| = ⟨Φ0| 𝑒−�̂� ̂𝐿𝑛 (5.6)

The �̂�𝑛 and ̂𝐿𝑛 operators are defined in the following for ionization potential
(IP), and electron affinity (EA) states with truncation at single and doubles level
as the same as truncation used for the �̂� operator in the coupled cluster ground
state:
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Ionized states (IP):

�̂�𝐼𝑃 = 𝑟0 +
𝑖

𝑟𝑖𝑎𝑖 + 
𝑖>𝑗,𝑎

𝑟𝑎𝑖𝑗𝑎†𝑎𝑎𝑗𝑎𝑖 (5.7)

̂𝐿𝐼𝑃 = 𝑙0 +
𝑖

𝑙𝑖𝑎†𝑖 + 
𝑖>𝑗,𝑎

𝑙𝑖𝑗𝑎 𝑎†𝑖 𝑎†𝑗 𝑎𝑎 (5.8)

Electron-attached states (EA):

�̂�𝐸𝐴 = 𝑟0 +
𝑎

𝑟𝑎𝑎†𝑎 + 
𝑖,𝑎>𝑏

𝑟𝑎𝑏𝑖 𝑎†𝑎𝑎†𝑏𝑎𝑖 (5.9)

̂𝐿𝐸𝐴 = 𝑙0 +
𝑎

𝑙𝑎𝑎𝑎 + 
𝑖,𝑎>𝑏

𝑙𝑖𝑎𝑏𝑎†𝑖 𝑎𝑏𝑎𝑎 (5.10)

The key step for obtaining the excited state in EOM-CC is solving the equa-
tion 5.2 and 5.3, that is the diagonalization of the �̄� matrix. As discussed in
the case of solving response equations in Chapter 3 and Chapter 4, we cannot
store and diagonalize �̄� matrix in the full single and double excitation space
and have to project it into a subspace and solve the equation with an iterative
algorithm such as the Davidson method.

TheDavidson procedure[104, 105] has been extensively discussed elsewhere.
Additionally, there’s an extensive discussion of the RELCCSD code in DIRAC
in reference[103], and in Chapter 3 on ExaCorr. Therefore, here we skip the
discussion of the constructing error vectors and preconditioner and focus on
the formation of the left (𝐿𝜎) or right (𝑅𝜎) vectors:

𝑅𝜎 = ̂�̄�𝑏 (5.11)

𝐿𝜎 = 𝑏† ̂�̄� (5.12)

where b(b†) (complex conjugate) are the trial vectors. The corresponding work-
ing equations of 𝜎 vectors are outlined in section 5.5 (The related intermediates
including ̄𝐹, �̄�, 𝑊, and 𝐺 are collected in the supplementary information (SI)
of Chapter 3, so they are not repeated here.).
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5.2 Implementation

The iterative solver workflow for diagonalization of �̄� matrix is similar to the
workflow in Chapter 3, which is summarized in Figure 5.1. Variables which
have been shown in Figure 1 of Chapter 3 have the same meaning here. For
convenience to read, I repeat the corresponding definition below:

• b: trial vectors

• 𝜎 vectors: see the working equations in SI of Chapter 3, and Section 5.5 of
the current chapter.

• G′: the representation of �̄� in the subspace spanned by a set of trial vectors

• 𝛽′: the eigenvectors of 𝐺′, which are the Fortran arrays

• 𝛽: the eigenvectors of 𝐺′, which are TAL-SH tensors

• �̄�||: diagonal elements of �̄�

• 𝑔 : eigenvalues associated 𝛽′ and 𝛽.

• r: residual vectors

• 𝜖: correction vectors

There are still some differences between the scheme of solving linear sys-
tems in Chapter 3 and the diagonalization procedure used in the current work-
flow. First, for the diagonalization, we normally solve several roots at the same
time, which requires to selection of multiple trial vectors at the beginning of the
Davidson procedure.

Second, in Chapter 3, to avoid obtaining zero solution in the linear system,
we select the initial trial vectors, which are associated with nonzero elements of
property gradient vectors, but in the current workflow, we construct the initial
vectors based on the large diagonal elements of �̄� matrix.

In addition, the formula of precondition used in the current workflow is dif-
ferent, where we replace the frequency 𝜔 in Chapter 3 with the eigenvalue 𝑔 .
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Figure 5.1: Workflow of the Davidson scheme for diagonalization of �̄� matrix.
The operations performed within the black boxes are independent from the
Davidson loop. The tasks in the blue boxes are implemented using TAL-SH
tensors. The Evaluation of eigenvectors of the �̄� in the subspace, indicated by
the red box, employs Fortran arrays.

5.3 Pilot tests

We calculate the IP and EA for the low-lying states of selected systems: noble gas
atoms (Ar, Kr, Xe, Rn), and water molecules with ExaCorr and RELCCSD.While
this implementation allows us to evaluate both left and right hand equations,
here we only compute the right equations since both left and right equations
give the same eigenvalues.

In the current calculations, we employed the X2C Hamiltonian and double
zeta basis sets (cc-pVDZ for H, O, Ar, Kr, and dyall.v2z for Xe, and Rn). For the
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sake of completeness, we also provide the results of the excitation energy (EOM-
EE), an EOM flavor that has been discussed and validated in the linear response
calculation of Chapter 3. The results are listed in Table 5.1, 5.2, and 5.3. The cc-
pVDZ basis set is unsuitable for obtaining accurate results particularly, for the
electron affinity as it should be zero for all noble gases and water molecules. To
achieve accurate electron affinity values, it is necessary to incorporate more dif-
fuse functions (see Table 5.4 for electron affinity of Ar using different basis sets).
However, in this chapter, we focus on checking the correctness of the new im-
plementation and observe ExaCorr reproduces the RELCCSD results very well,
with errors smaller than 1.0d−8. This agreement validates the correctness of our
implementation for EOM-IP, EA, and EE.

Table 5.1: Comparison of ionization potential (a.u.) obtained with the ExaCorr
and RELCCSD codes for selected systems

System State ExaCorr RELCCSD
Ar 1 0.561506896 0.561506902
Kr 1 0.496662989 0.496662988
Xe 1 0.429982648 0.429982648
Rn 1 0.380111009 0.380111008
H2O 1 0.427987553 0.427987555

2 0.503417732 0.503417729
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Table 5.2: Comparison of electron affinity (a.u.) obtained with the ExaCorr and
RELCCSD codes for selected systems

System State ExaCorr RELCCSD
Ar 1 0.706922719 0.706922716

2 0.711475587 0.711475588
Kr 1 0.637684818 0.637684819

2 0.693815292 0.693815294
Xe 1 0.491917812 0.491917814

2 0.567921598 0.567921598
Rn 1 0.460641679 0.460641680

2 0.465545332 0.465545340
H2O 1 0.161140032 0.161140035

2 0.233359689 0.233359692

Table 5.3: Comparison of excitation energies (a.u.) obtained with the ExaCorr
and RELCCSD codes for selected systems

System State ExaCorr RELCCSD
Ar 1 0.834364752 0.834364766

2 0.898702008 0.898701993
Kr 1 0.780823595 0.780823596
Xe 1 0.616406736 0.616406747
Rn 1 0.561813836 0.561813854
H2O 1 0.264890174 0.264890177

2 0.264890301 0.264890304
3 0.264890679 0.264890683
4 0.290344237 0.290344239
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Table 5.4: Electron affinity (a.u.) of Ar obtained with different basis sets

Basis set Energy
cc-PVDZ 0.7069
cc-PVTZ 0.5182

s-aug-cc-PVTZ 0.1230
d-aug-cc-PVTZ 0.0351
t-aug-cc-PVTZ 0.0110
q-aug-cc-PVTZ 0.0035
5-aug-cc-PVTZ 0.0011
6-aug-cc-PVTZ 0.0003

5.4 Perspectives

As already mentioned in Chapters 3 and 4, the current implementation of EOM-
CC energy is also based on the single-node tensor operation library TAL-SH,
which has limitations on the capacity of a single node, particularly for memory.
It seems for small systems with high symmetry tested above such as atoms and
small molecules, the advantage of using ExaCorr instead of RELCCSD may not
be evident. Here one should keep in mind first that if ExaCorr has been de-
signed with the goal of treating significantly larger systems that are beyond the
reach of RELCCSD, even for small systems it is sometimes necessary to carry
out calculations in lower symmetry (or without any symmetry), such as when
considering the effects of the environment. In this case, even the current single-
node implementation in ExaCorr can become competitive with RELCCSD, with
the advantage of efficiency, that it requires next to no disk space, which can save
time in Input/output (I/O).

In any case, it is clear that once we complete the extension of the current
code to use the ExaTENSOR library, which is suited for distributed memory
computing architectures, we will significantly widen the range of applications
both EOM and response theory codes can handle. For example, prior work in
our group evaluated the effect of the environment (solvent, etc) on the ioniza-
tion energy of valence[106] and core electrons[107] of the halide ions by comb-
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ing the relativistic EOM-IP and frozen density embedding (FDE) methods[108–
110]. While such simulations were still doable with RELCCSD, for slightlymore
complex systems, such as IO−

3 , and UO2Cl2−4 [111], this is no longer the case and
our new implementation will be the way forward.

Apart from the utilization of the ExaTENSOR library, for the single-node
version code, another strategy to enable larger calculations involves the imple-
mentation of reduced-scaling methods before performing CC calculations, to
reduce thememory requirements. One strategy is to replace the normal Hartree-
Fock orbitals with more compacted orbitals such as MP2 frozen natural orbitals
(FNOs). For instance, Surjuse et al.[112] demonstrated using MP2FNO can gain
on reducing the virtual orbital space in the EOM ionization energy.

The relativistic MP2FNO method will be discussed for implementation de-
tails and the corresponding performance on the CC ground state energy and
property in Chapter 6. Also, we have employed the MP2FNOs to reduce the
costs of evaluation of EOM excitation energy and two-photon absorption (TPA)
cross-sections in Chapter 4 and find that the MP2FNO scheme is reliable for
the low-lying excited states but has challenges for higher states, and TPA. To
solve this issue, we are working on incorporating the natural transition orbitals,
which is potentially a more reliable, generally applicable approach.

5.5 EOM-CCSD IP and EA sigma vectors were not
given in SI of Chapter 3

EOM-CCSD-IP 𝜎-VECTOR RIGHT EQUATIONS:

𝜎𝑖 = − ̄𝐹𝑚
𝑖 𝑟𝑚 + ̄𝐹𝑚

𝑒 𝑟𝑒𝑖𝑚 − 1
2𝑊

𝑚𝑛
𝑖𝑒 𝑟𝑒𝑚𝑛 (5.13)

𝜎𝑎
𝑖𝑗 = −𝑊𝑚𝑎

𝑖𝑗 𝑟𝑚 − 𝑃−𝑖𝑗 ̄𝐹𝑚
𝑖 𝑟𝑎𝑚𝑗 +

1
2𝑊

𝑚𝑛
𝑖𝑗 𝑟𝑎𝑚𝑛 − 𝑃−𝑖𝑗𝑊𝑚𝑎

𝑖𝑒 𝑟𝑒𝑚𝑗 + ̄𝐹𝑎
𝑒 𝑟𝑒𝑖𝑗 +

1
2(𝑉

𝑚𝑛
𝑒𝑓 𝑟𝑓𝑚𝑛)𝑡𝑒𝑎𝑖𝑗

(5.14)
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EOM-CCSD-EA 𝜎-VECTOR RIGHT EQUATIONS:

𝑅𝜎𝑎 = ̄𝐹𝑎
𝑒 𝑟𝑒 + ̄𝐹𝑚

𝑒 𝑟𝑒𝑎𝑚 + 1
2𝑊

𝑎𝑚
𝑓𝑒 𝑟

𝑒𝑓
𝑚 (5.15)

𝑅𝜎𝑎𝑏
𝑖 = −𝑊𝑎𝑏

𝑒𝑖 𝑟𝑒 +𝑃−𝑎𝑏 ̄𝐹𝑎
𝑒 𝑟𝑒𝑏𝑖 + 1

2𝑊
𝑎𝑏
𝑒𝑓 𝑟

𝑒𝑓
𝑖 −𝑃−𝑎𝑏𝑊𝑎𝑚

𝑒𝑖 𝑟𝑒𝑏𝑚 − ̄𝐹𝑚
𝑖 𝑟𝑎𝑏𝑚 − 1

2(𝑉
𝑚𝑛
𝑒𝑓 𝑟𝑒𝑓𝑛 )𝑡𝑎𝑏𝑚𝑖 (5.16)
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ABSTRACT
The high computational scaling with the basis set size and the number of correlated electrons is a bottleneck limiting applications of coupled
cluster algorithms, in particular for calculations based on two- or four-component relativistic Hamiltonians, which often employ uncontracted
basis sets. This problem may be alleviated by replacing canonical Hartree–Fock virtual orbitals by natural orbitals (NOs). In this paper, we
describe the implementation of a module for generating NOs for correlated wavefunctions and, in particular, second order Møller–Plesset
perturbation frozen natural orbitals (MP2FNOs) as a component of our novel implementation of relativistic coupled cluster theory for mas-
sively parallel architectures [Pototschnig et al. J. Chem. Theory Comput. 17, 5509, (2021)]. Our implementation can manipulate complex or
quaternion density matrices, thus allowing for the generation of both Kramers-restricted and Kramers-unrestricted MP2FNOs. Furthermore,
NOs are re-expressed in the parent atomic orbital (AO) basis, allowing for generating coupled cluster singles and doubles NOs in the AO basis
for further analysis. By investigating the truncation errors of MP2FNOs for both the correlation energy and molecular properties—electric
field gradients at the nuclei, electric dipole and quadrupole moments for hydrogen halides HX (X = F–Ts), and parity-violating energy dif-
ferences for H2Z2 (Z = O–Se)—we find MP2FNOs accelerate the convergence of the correlation energy in a roughly uniform manner across
the Periodic Table. It is possible to obtain reliable estimates for both energies and the molecular properties considered with virtual molecular
orbital spaces truncated to about half the size of the full spaces.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087243

I. INTRODUCTION

Understanding the electronic structure of large molecules
or complexes containing heavy elements, such as lanthanides
or actinides, is a problem of relevance for many technological
applications. Examples are the nuclear fuel cycle, such as in the
development of new extractants for separation processes,1–6 and
the use of lanthanides as exceptionally strong single molecule mag-
nets.7 To model such materials, Density Functional Theory (DFT)
has become the most widely used correlated electronic structure
theory approach8 even though it is difficult to systematically
approach exact results with the currently available density functional

approximations.8,9 In the particular case of relativistic electronic
structure calculations, DFT energies may even for closed-shell
species strongly deviate from experimental or accurate theoretical
results.10–12

This also holds for molecular properties; recently, Sunaga and
Saue13 reported that the performance of DFT for parity violation
energy shift (PV) calculations—a property requiring a very accu-
rate description of the electronic wave function near the nuclei—is
somewhat disappointing with deviations to coupled cluster singles
and doubles (CCSD) being as large as 10%. These uncertainties in
the performance of DFT for heavy elements, especially for cases in
which experimental values are absent or difficult to generate, call for

J. Chem. Phys. 156, 224108 (2022); doi: 10.1063/5.0087243 156, 224108-1

Published under an exclusive license by AIP Publishing
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the use of state-of-the-art wavefunction methods to either provide
accurate reference data or be applied directly if the model sizes are
small enough.

Among currently available approaches, CC theory serves as a
“gold standard”14,15 for its ability to give results approaching chem-
ical accuracy for both correlation energies and properties. However,
the main difficulty in employing CC theory in large-scale applica-
tions (such as molecules containing several hundred electrons) is
its high computational scaling with respect to the size of the system
(N). For example, without approximations, CCSD and CCSD with
perturbative triples corrections [CCSD(T)] approaches scale with
O(N6

) and O(N7
), respectively, and also with approximations such

as Laplace transforms,16 distance screening,17 and density fitting,18,19

the scaling and prefactors are still significantly higher than in a
mean-field approach, such as DFT.

Another key ingredient in modeling heavy element species
is the treatment of relativistic effects.20–22 For cases in which a
given molecular property is not particularly sensitive to effects such
as spin–orbit coupling (SOC) (which is often so for molecular
structural parameters, such as bond lengths and angles) or to
contributions from electrons other than those in the valence (e.g.,
dipole moments), approximate treatments of relativity can be
employed through pseudopotential approaches23,24 or by including
only scalar relativistic effects. For more challenging applications or
higher precision, a more general framework can be based on the
solution of the four-component (4C) molecular Dirac equation.25–28

At the present time, this approach is often made more tractable
by solving the exact two-component (X2C) equation that can be
derived from the Dirac equation after a basis set discretization.29–39

Both the original 4C approach and its X2C approximation can
deliver accurate molecular properties across the Periodic Table and
also for properties involving core electrons.10,13,40–45

The one-electron functions (molecular spinors, for simplicity,
also referred to in the following as molecular orbitals) obtained
from solving the 4C or X2C matrix equations serve then as a basis
for a correlation treatment in the so-called no-pair approximation
in which contributions to the correlation energy due to admixture
of states with explicit electron–positron pairs are neglected.46 As
the computational cost of 2C approaches is lower than 4C ones,
the choice between which treatment to use prior to the corre-
lated treatment will depend on a case-by-case analysis of whether
the additional cost of the latter will be offset by improvements in
accuracy over the former.

Recently, Pototschnig et al.47 described a new, efficient
relativistic coupled cluster implementation based on ExaTEN-
SOR,48 a distributed numerical tensor algebra library for graphical
processing unit (GPU)-accelerated high-performance computing
(HPC) platforms. This code enabled the calculation of molec-
ular properties with CCSD wave functions for systems such as
[(UO2) (NO3)3]− for which 200 electrons and around 1000 vir-
tual molecular orbitals (VMOs) were included in the correlated
treatment. Compared to nonrelativistic implementations, it is, in
particular, the introduction of SOC that increases the computational
cost (although not altering the overall scaling).49 Not only does this
necessitates the use of complex algebra, it also makes use of con-
tracted basis sets more difficult as one needs to be able to describe
the differences in radial extent of spin–orbit split orbitals. This effec-
tively doubles the number of functions that is needed to describe

the p-, d-, and f -type core orbitals50 in the case of implementa-
tions based on expressing spinors in scalar basis sets.26,28,50 In this
framework, another complication arises in how to define contrac-
tions for the small component part of the spinors that would respect
the kinetic balance condition. We note that these problems do not
arise in implementations capable of directly evaluating two-electron
integrals over 2C spinor basis functions.27,51

The lack of efficient contraction schemes for scalar basis-
derived implementations combined with the fact that in many
potential applications it may be required that all or a significant part
of core electrons (e.g., in core spectroscopies45) are treated explic-
itly, including the deep core orbitals that require many Gaussian
type functions to be described correctly, leading to calculations hav-
ing large virtual spaces. This directly affects the performance of
CC-based approaches as these scale with the fourth power of the
number of virtuals (O(V4

)). In practice, one therefore often alle-
viates the computational effort to some extent by leaving out high
energy virtuals that are mostly localized in the core, but convergence
with respect to such an energy cut-off threshold is slow, especially
when semi-core or core correlation needs to be described as well.

In non-relativistic electronic structure theory, it has long been
recognized that in contrast to canonical Hartree–Fock molecular
orbitals (CMOs), natural orbitals (NOs)—the eigenvectors of the
one-body reduced density matrix (1RDM)52,53—provide a more
compact and quickly converging orbital representation for describ-
ing post Hartree–Fock wavefunctions. Based on this observation, the
idea of replacing the CMOs by NOs to reduce the size of the virtual
space and thereby computational cost was introduced.54

Rather than using an energy threshold as is performed by
CMOs, one may instead omit NOs, which are likely to not
strongly contribute to the total correlation energy from the virtual
space. This is performed by considering the magnitude of natural
occupation numbers of approximate NOs, obtained from a method
that quickly gives access to a reasonable approximation of the 1RDM
of the correlated wave function. For this purpose, second order
Møller–Plesset perturbation theory (MP2) is a particularly appeal-
ing approach to obtain the 1RDM and the approximate NOs because
of its low scaling, non-iterative O(N5

), and the ability to recover
most of correlation effects. Within the natural orbital family of
methods, the virtual frozen natural orbital (FNO) approach54–56

has therefore become popular because of its clear concept and
simple implementation. FNO theory has been thoroughly discussed
for non-relativistic models, such as configuration interaction (CI),54

multi-configuration self-consistent field (MCSCF),57,58 and coupled
cluster.56,59 Recently, Verma et al.60 furthermore extended the FNOs
algorithm to quantum computers.

The ability of virtual FNOs to reduce computational cost com-
pared to CMOs is even more appealing in relativistic electronic
structure calculations, in particular in the case of contracted basis
sets or when correlating sub-valence electrons. The main goal of
this paper is therefore to describe and showcase the implementa-
tion of MP2-based FNOs (MP2FNOs) within the framework of the
new relativistic coupled cluster implementation for massively paral-
lel, GPU-accelerated platforms.47 While our code primarily aims at
describing cases in which spin–orbit coupling is taken into account,
we also demonstrate its use with a non-relativistic Hamiltonian.

Our second aim is to discuss the performance of MP2FNOs
across the Periodic Table by treating model systems containing
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elements ranging from first-row such as fluorine to superheavy
elements such as tennessine. Here, we shall focus in how well trun-
cated FNO spaces describe both correlation energies and first-order
properties, such as the electric field gradient at the nuclei (EFGs),
parity-violation energy shifts, and electric multipoles (dipole and
quadrupole). The first two properties are chosen as representatives
of properties for which a good description of wavefunctions in the
region close to the nuclei is important (even if only valence electrons
are correlated), while the electric dipole and quadrupole moments
are an example of properties for which the major contributions arise
from valence electrons.

Besides being able to improve the efficiency of a calculation,
natural orbitals are also interesting as tools for analysis, such as in
estimating the multi-reference character of a system.61 Their visual-
ization in real space can furthermore provide insight into correlation
effects since by their one-particle nature they are easier to interpret
than the wavefunction itself. Thus, another aim of our implemen-
tation was to provide a tool for obtaining natural orbitals for any
correlated wavefunction from a 1RDM. In this paper, we shall make
use of the analysis of the CCSD natural orbitals, and in subse-
quent work, we plan to further explore the use of natural orbitals
in visualization.

This article is organized as follows: In Sec. II, the background of
MP2FNO theory is summarized. In Sec. III, we described the details
of the implementation. All the sample calculations are presented and
discussed in Secs. IV and V. In addition, finally, a brief summary is
given in Sec. VI.

We note that upon completing this paper, we have become
aware of another implementation of the MP2FNO approach for rel-
ativistic correlated methods in the BAGH code.62 While the main
features of the MP2FNOs method are the same in both imple-
mentations, we first note that our implementation fully exploits
ExaTENSOR’s single-node or distributed memory (multi-node)
and GPU acceleration capabilities and as such can be efficiently
employed in systems ranging from local clusters to latest-generation
supercomputers. Second, as it will be outlined in the following,
our implementation is capable of manipulating both complex and
quaternion density matrices, thus allowing for the generation of both
Kramers-restricted and Kramers-unrestricted MP2FNOs. Finally, it
allows for re-expressing NOs in the atomic orbital (AO) basis for
further analysis.

II. THEORY
As the MP2FNO approach is well-known in a non-relatistic

context and requires essentially no modification for application in a
no-pair relativistic context, we will only provide a brief description.
We apply the orbital-unrelaxed MP2 approximation (for working
equations for the orbital-relaxed formalism in a relativistic context,
see Ref. 63). The second-order contribution to the occupied-virtual
block of the density matrix from single excitations is zero for
canonical orbitals53 while the relaxation contributions to this block
are ignored in orbital-unrelaxed MP2. This approximation thus
decouples the occupied and virtual spaces and allows us to focus only
on obtaining the virtual–virtual block of the density matrix. We want
to keep occupied orbitals in their canonical form and therefore will
not determine the occupied–occupied part of the density matrix for

which we simply retain the diagonal Hartree–Fock form D(0)oo = 1oo.
With these approximations, the second-order FNO density matrix is
given as

DFNO
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1oo 0ov

0ov D(2)vv

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (1)

with the relevant matrix elements given as

D(2)AB =
1
2∑C,I,J

⟨AC∣∣IJ⟩⟨IJ∣∣BC⟩
ϵAC

IJ ϵBC
IJ

. (2)

Here, following usual conventions, I and J denote the occupied
spinors, A and B denote the virtual spinors, and ϵAB

IJ = ϵI + ϵJ − ϵA
− ϵB is the energy difference between the canonical Hartree–Fock
spinors. In our implementation, these matrices are obtained with-
out imposing any time-reversal symmetry on the spinor set and
are thus valid for both Kramers-restricted and Kramers-unrestricted
Hartree–Fock procedures. If time-reversal64 and spatial symmetry65

are not present, these matrices are, in general, to be represented in
complex algebra.

The simplest procedure to obtain natural spinors is to apply
a diagonalization in complex algebra after D(2)vv is formed. How-
ever, for closed shell systems in which time-reversal symmetry is
enforced for the orbitals at the mean-field level as is the case in the
DIRAC code, one would like to retain such Kramers pairing also for
the natural spinors. This requires careful attention when degenera-
cies beyond the twofold Kramers degeneracy are present as complex
diagonalization will arbitrarily mix the degenerate solutions such
that Kramers pairing is not guaranteed.

In such cases, Kramers pairing of the natural spinors can be
enforced by first transforming D(2)vv from complex to quaternion
algebra D(Q)vv ,

D(Q)vv = U†D(2)vv U , (3)

where the transformation matrix U is given by66

U =
⎛

⎜

⎝

I ǰI

ǰI I

⎞

⎟

⎠

(4)

and I is a unit matrix of dimension n × n, with n being the num-
ber of Kramers pairs. This transformation will block diagonalize
D(2)vv , leading to two decoupled matrix problems of half the original
dimension in quaternion algebra,

D(Q)vv V = OV. (5)

Diagonalization of one of the two blocks provides a unique set
(V) of quaternion FNOs in the MO basis and their respective occu-
pation numbers (O) from which the solutions for the other block can
be generated via Kramers symmetry.

At this stage, we can employ the information from the occupa-
tion numbers to reduce the original virtual space V to V̄ by removing
from V orbitals with occupation numbers lower than a user-defined
threshold. The larger the threshold the smaller the remaining set. In
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the numerical examples presented in the following, we will try to find
the optimal balance between efficiency (smaller sets) and accuracy
(recovering more of the correlation energy and better reproducing
first order properties).

After the basis is truncated, it is convenient to recanonize the
remaining orbitals. To this end, we perform two operations: first,
we transform the virtual–virtual block of the Fock matrix (Fvv)

into the truncated FNO basis (F̄vv) and then do a (quaternion
re)diagonalization to obtain a new set of canonical orbitals W̄ and
orbital energies ϵ̄,

F̄ = V̄ †FV̄ , (6)

F̄W̄ = W̄ ϵ̄. (7)

The product V̄W̄ of these two transformation matrices gives
the transformation that expresses the recanonized truncated natural
orbital set in the atomic orbital (AO) basis. These orbitals can then
be used in any subsequent correlated calculation as replacement to
the original Hartree–Fock orbitals. In summary, the transformation
of the original Hartree–Fock orbitals U to the new set Ū is thus given
by

Unew = [Uocc, Ūvir], (8)

where

Ūvir = Uvir(V̄W̄), (9)

Ūocc = Uocc, (10)

and the dimension of the rectangular matrix V̄ and that of the square
matrix Ū depend on the truncation threshold.

III. IMPLEMENTATION
The aforementioned algorithm has been implemented in

the relativistic quantum chemistry package DIRAC,26 as part of
the ExaCorr code.47 Our implementation allows for calculations
to be carried out either using a single-node configuration (for
which ExaTENSOR provides OpenMP parallelization on top of
GPU offloading) or employing distributed memory in the case of
multi-node runs.

Our implementation is structured following its three main
tasks: one module deals with the construction of density matrices in
the MO basis, another carries out the complex or quaternion diago-
nalization of density matrices, and the final module takes care of the
construction of the recanonized MP2FNOs. The final step should
be repeated if the truncation threshold is changed; the first two are
independent of this threshold.

A. Density matrix construction
In ExaCorr, all computationally expensive operations, such as

the tensor contractions used in the determination of amplitudes or
the construction of density matrices, are offloaded to ExaTENSOR
library.

In the case of MP2FNOs, we have created a dedicated driver
for MP2 calculations in which we (i) calculate and store in
memory two electron repulsion integrals (ERIs) in the AO basis

with the aid of the InteRest library67 and (ii) employ the stan-
dard Yoshimine scheme68 [which scales as (O(N5

)] to transform
the AO integrals to the MO basis. Only the direct and exchange
contributions to the ⟨ij∣∣ab⟩ (OOVV-type) integrals are calculated,
which makes the integral transformation step much faster than the
generation of a complete set of MO integrals as is normally per-
formed in ExaCorr. After antisymmetrization, the ⟨ij∣∣ab⟩ integrals
are stored (in memory) as ExaTENSOR tensors, which may reside
on a single node or be distributed over several nodes. Finally, (iii)
the MP2 amplitude tensor and the MP2 energy are determined, and
the density matrix D(2)vv is constructed according to Eq. (2).

B. Complex-quaternion transformation
and diagonalization

The density matrix computed in ExaCorr is generated in com-
plex algebra. The complex-quaternion transformation is carried out
following Eq. (27) in Ref. 69,

Qγpq = Re(γpq) + ǐ Im(γpq) + ǰ Re(γpq̄) + ǩ Im(γpq̄), (11)

in which lowercase symbols with (without) bars indicate the Kamers
pairing of the original MO basis and the one-particle reduced
density matrix (1RDM) is now indicated by γ for consistency of
the notation with that of Ref. 69. This quaternion form can be
diagonalized using the quaternion diagonalization routine provided
by DIRAC and be back-transformed to the complex representa-
tion by the routines provided in this module. If the original basis
did not possess Kramers symmetry, the diagonalization is directly
carried out in complex algebra. The resulting full set of FNOs is
then stored on a file for analysis and processing by the module (C)
described in the following. The module responsible for the quater-
nion transformation and diagonalization is constructed in such a
way that it can also be used with wave function models other
than MP2.

C. Selection and recanonization
The third module retrieves FNOs that have occupation num-

bers above threshold and transforms the original Fock matrix to the
truncated virtual space. After recanonization [Eq. (7)] and transfor-
mation to AO-basis [Eq. (10)], the final reduced set of FNOs is stored
on file. As this step takes virtually no time compared to the other
steps in the procedure, this may be easily repeated to test out the
effect of varying the threshold value on the generated recanonized
orbitals and their energies.

D. Summary of the MP2FNO algorithm
The MP2FNO workflow is schematically represented in Fig. 1

and consists of the following steps:

1. A calculation in the full basis set is performed to get a set of
occupied and virtual molecular orbitals.

2. The virtual–virtual block of MP2 density matrix is generated.
We note that in this step, it is possible to either consider the
full virtual set or already employ a preliminary screening in
which, for instance, very high-energy virtuals are neglected.

3. Optional, only for restricted starting orbitals: Transform the
complex D(2)vv into the quaternion representation, D(Q)vv .
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FIG. 1. Work flow of a MP2 frozen natural orbital calculation.

4. Diagonalize Dvv or D(Q)vv to determine FNOs and occupation
numbers.

5. For a given threshold, truncate the FNO space and transform
the Fock matrix to recanonize and write the orbitals out in the
AO basis.

6. Use the recanonized FNOs in higher level wave-function
models, such as coupled cluster.

IV. COMPUTATIONAL DETAILS
All MP2 and CC calculations are carried out with devel-

opment versions (revisions 2e659d7, 0f8e9f2, 9e10bc667,
8b81f8a, e7d2d4d, ec415a5, 0ff0d6f, and d70bbe2) of
the DIRAC code26,70,71 and of the ExaTENSOR48,72 library (revision
d304c03b7), employing Dyall basis sets of triple-zeta quality
(dyall.av3z)73–75 for the heavy elements (Br, I, At, Ts, and Se), and
Dunning aug-cc-pVTZ sets76–78 for (H, F, Cl, O, and S), all of which
are left uncontracted unless otherwise noted. The aug-cc-pCVTZ
basis set was also employed in the HCl case79,80 for investigating
how the additional core correlating functions in aug-cc-pCVTZ
affect the results. Finally, for investigating the convergence of expec-
tation values for HI, we employed double-zeta quality Dyall73,74

(dyall.av2z) and Dunning76–78 (aug-cc-pVDZ) basis sets for I and
H, respectively.

Here, we make use in all calculations of the exact two com-
ponent Hamiltonian (X2C)32 in which we include two-electron
spin–orbit contributions to the untransformed two-electron poten-
tial via atomic mean-field contributions calculated with the AMFI
code.81–83 In our calculations, we have made use of Kramers
symmetry in the generation of the molecular spinors.26 As part of

the supplementary material, we provide in Table S2 results with
different Hamiltonians (Dirac–Coulomb, X2C, spinfree X2C, and
non-relativistic) for expectation values for the HTs molecule. We
note the code is equally capable of handling orbitals obtained with
the so-called molecular-mean-field approach in which the trans-
formation to 2C is carried out after a 4C mean-field calculation.39

In the case of the HCl molecule, we have also employed the non-
relativistic Hamiltonian (as specified by the .NONREL keyword), both
with contracted and uncontracted bases sets.

The molecular structures employed in all calculations
have been taken from the literature: In the case of hydro-
gen halides, from Huber84 for HF to HI, from Gomes and
Visscher41 for HAt, and from Thierfelder et al.42 for HTs, the
internuclear distances employed are thus H–F(0.9168 Å),
H–Cl(1.274 55 Å), H–Br(1.414 43 Å), H–I(1.609 Å), H–At(1.722 Å),
and H–Ts(1.941 Å). For the chiral molecules H2Z2, the Z–Z bond
length, H–Z bond length, and H–Z–Z bond angle are taken from
Table I of Laerdahl and Schwerdtfeger,85 and the dihedral angle is
fixed at 45○ throughout the computation. All calculations have been
carried out with a point charge nucleus model.

Besides calculating MP2, CCSD, and CCSD(T) energies, we
have obtained electric dipole moment (EDM), electric quadrupole
moment (EQM), and electric field gradient (EFG) for the HX
systems and parity violation energy differences (PV) for H2Z2 sys-
tems. These properties have been obtained analytically for CCSD
wavefunctions using the implementation described in Ref. 69.

In the calculations, the size of the complete virtual spinor spaces
is 156 (HF), 182 (HCl), 310 (HBr), 382 (HI), 544 (HAt) and 588
(HTs), 314 (H2O2), 366 (H2S2), and 622 (H2Se2). Unless other-
wise noted, all electrons were correlated in the calculations. For the
smaller systems HF, HCl, HBr, H2O2, and H2S2 we were able to per-
form calculations on a single node of the laboratory compute cluster
in Lille. For HI, HAt, H2Se2, and HTs we employed, respectively, 32,
32, 49, and 64 nodes of the Summit supercomputer. For HI calcu-
lations with double-zeta quality basis sets, we were able to perform
single-node calculations on the Jean Zay supercomputer.

The data presented in this paper are available at the Zenodo
repository of Ref. 86.

V. RESULTS AND DISCUSSION
In this section, we discuss the performance of the MP2FNO

approach for the CCSD correlation energy and molecular properties
and the impact of employing different occupation number thresh-
olds on the results. In order to minimize computational cost on our
systematic studies, we carried out CCSD(T) calculations only when
discussing the effect of FNO and CMO truncation on HCl bond
lengths.

For minimizing the bias in the CMO and FNO comparison,
we report results in which we employ the closest possible number
of CMO to that of FNO such that for CMO we avoid truncations
that would remove close-lying orbitals, such as those belonging to
the same atomic shell. In practice, this means CMO calculations
generally contain a few more orbitals than FNO ones.

In Fig. S1 in the supplementary material, we present for the
EFG of HI the difference between the approach taken here for CMO
and that of strictly considering the same number of CMO and FNO.
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We can see that arbitrarily truncating the virtual space for CMO can
lead to large oscillations in the expectation values, a point that will
be addressed in detail in the following. Additionally, from the com-
parison of Hamiltonians for HTs in Table S2 in the supplementary
material, we see that our choice of the X2C Hamiltonian is a suit-
able one for our purposes; while total energies obviously are very
different between Hamiltonians, we see that for those taking into
account SOC, relative energies (HOMO–LUMO gap) and expecta-
tion values are very close to each other. This is in stark contrast with
scalar relativistic and non-relativistic calculations, which still show
fairly good agreement with 2C/4C approaches for the quadrupole
moment and even the HOMO–LUMO gap but are completely off
the mark for the EFG and dipole moment. This is due to the very
strong spin–orbit splitting in the valence p-shell of the superheavy
tennessine.

A. Correlation energy
CCSD correlation energies obtained with CMO and FNOs are

displayed in Fig. 2 for the hydrogen halides. In these, we show
values computed for four values of natural occupation number

threshold (1.0 × 10−3, 1.0 × 10−4, 1.0 × 10−5, 1.0 × 10−6
) as well as

the two extrema: a point without any virtual orbitals (corresponding
to the Hartree–Fock solution) and another without any truncation
of the virtual space. Since the number of virtuals varies for each sys-
tem, we provide relative measures in terms of the percentage of the
virtual space included in the calculations for each point and likewise
for the amount of correlation energy recovered at each point.

From the plots, it is clearly the case that FNOs show a more
rapid convergence than CMO across the Periodic Table, as could
be expected from the non-relativistic literature.56,59,87 For example,
to recover only 50% correlation energy, already 40%–50% of the
virtual CMO space is required while only 20% of the FNO space
suffices. In addition, for the more realistic goal of attaining at least
90% of the correlation energy, the use of FNOs can reduce the
required space by 10 s of %, thereby introducing significant sav-
ings in (memory) storage of tensors with virtual indices as well as
in operation counts for contractions involving virtual indices in the
CCSD equations.

An interesting finding is that the area enclosed by two lines
slightly decreases as we go down the Periodic Table from F to Ts.
This means that the FNO approach recovers less correlation for a

FIG. 2. Convergence of the CCSD correlation energy with respect to the size of the virtual orbital space for the X2C Hamiltonian. The X axis indicates the fraction of the
virtual space retained, while the Y axis gives the fraction of the correlation energy recovered with respect to the value obtained with the untruncated virtual space.
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given truncation as the number of electrons increases. For exam-
ple, a threshold of 1.0 × 10−5 (the fourth point in Fig. 2) means, for
HF and HCl, that more than 60% of the virtual space is included in
the calculation, whereas for HTs, the same threshold only includes
43%; this means that for HTs, virtual orbitals with low occupation
numbers are still important for the correlation treatment.

Apart from testing the performance for a single point at the
potential energy surface, it is also important to verify the perfor-
mance of FNOs at different geometric structures. To this end, in
Fig. 3, we present the potential energy curves around equilibrium for
HCl at the CCSD(T) level, comparing sets of FNOs and CMO virtu-
als that are truncated to the same number of virtuals (corresponding
to about 50% of the complete virtual space). We see that except for
a global energy shift, the FNOs follow the curvature of the full vir-
tual space potential energy curve more closely than the CMO curve
does.

The better agreement of FNOs relative to CMOs can be quanti-
fied by a comparison of spectroscopic constants for the three curves,
shown in Table I. There, we report the equilibrium distance (Re)

and vibrational constant (ωe) calculated with the LEVEL program.88

Taking the full valence space result as a reference, the truncated
orbitals overestimate Re but underestimate ωe. However, the error
of truncated FNOs is 0.0037 Å (Re) and 17 cm−1

(ωe), which is only
half that of truncated CMOs.

FIG. 3. Potential energy curves of HCl at the CCSD(T) level using untruncated
orbitals (red) as the reference, truncated FNO (black), and truncated CMO (blue).
The X axis is the internuclear distance, and the Y axis is the total energy in
hartrees.

TABLE I. Spectroscopic constants of the ground state of HCl.

Re (Å) ωe (cm−1)

Exp 1.2746 2991
Untruncated orbitals 1.2756 2986
Truncated CMO 1.2859 2942
Truncated FNO 1.2793 2969

As we correlated all electrons but employed basis sets with-
out specific core correlating functions, one may ask what would
be the effect of including such functions. In Table S1 of the
supplementary material, we provide a comparison of correlation
energies and expectation vales between the uncontracted aug-pVTZ
and aug-pCVTZ basis sets for the HCl molecule without using vir-
tual space truncation. These results clearly indicate that although
the additional high angular momentum core correlating functions
are quite important for increasing the amount of correlation energy
for the core and core–valence interactions, the two types of uncon-
tracted basis sets agree well for the computed property values.
Another interesting point to note is that as can be seen from Table S3
of the supplementary material, the percentage of correlation energy
recovered at each virtual space truncation point is nearly the same
for MP2 and CCSD. This indicates that the information obtained
from the full virtual space MP2 calculation preceding the truncation
can potentially be used to correct the CCSD correlation energy for
the effect of truncation. While going beyond the scope of this paper,
this point merits further investigation in which also correction for
truncation errors in higher order methods, such as CCSD(T), could
be investigated.

B. Molecular properties
1. Electric dipole and quadrupole moments

To assess performance of FNOs for molecular properties, we
first considered the molecular EDM and EQM because these do
well characterize the overall electronic charge distribution within
molecules. These properties sample the regions away from the
nuclei as is clear from their operator forms in Eqs. (12) and (13),
respectively,

Dμ = e∑
i
(r⃗i)μ, (12)

Qμν = e∑
i
((r⃗i)μ(r⃗i)ν − r2δμν). (13)

Figure 4 shows how the EDM and EQM correlation correction
varies with the truncation of the virtual orbital spaces with dotted
and solid lines representing EDM and EQM, respectively. As before,
FNO results are plotted with square markers. For these properties,
the convergence is non-monotonic, unlike energy that we consid-
ered before. For both CMO and FNO truncation, the use of a high
truncation value and consequently small virtual space (less than
30% virtual orbitals) may lead to a strong overestimation or even
a wrong sign of the correlation correction to the molecular property.
Especially, for CMO truncation, it is almost impossible to estimate
the truncation error from a sequence of results for small virtual
spaces. For FNO truncation, oscillations are much less pronounced
than for CMO, which indicates that also for these properties it is
advantageous to use FNO truncation rather than CMO truncation.
The similar performance for the correlation energy could thereby
be used as a guideline. Taking the HF molecule as an example, we
note that with a threshold of 1.0 × 10−4, the FNOs recover 72% of
the correlation contribution to EDM while recovering 85% of the
correlation energy. This indicates that the simplification of using
a common cutoff for both properties could be a suitable strategy.
In addition, we note that the performance of FNOs in EDM also
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FIG. 4. Convergence of the CCSD electric dipole and quadrupole moments with respect to the size of the virtual orbital space for the X2C Hamiltonian. The X axis indicates
the fraction of the virtual space retained, while the Y axis gives the fraction of the expectation values recovered with respect to the value obtained with the untruncated
virtual space.

applies to the heavier elements in the studied series. Even for HTs,
setting the truncation threshold to 1.0 × 10−4 (using only 23% of the
orbital space) already recovers 91% of the correlation contribution to
the EDM.

The EQM shows a similar behavior as the EDM, albeit with
stronger oscillations. The largest oscillations for the EQM occur at
the same position as for the EDM, but the amplitude thereof is much
larger. This is again most pronounced in the CMO case. Taking HI
as an example, retaining 12% of the CMO virtual space overesti-
mates the correlation contribution to EDM by 150%, while the EQM
contribution is even seven times too large. As for the EDMs, the
oscillations resulting from FNO truncation are smaller and conver-
gence is more smooth, which should make it possible to use a more
aggressive cut-off strategy than is possible with CMOs.

2. Electric field gradient
To also consider the effect of truncation on properties that

probe the regions close to atomic nuclei, we now turn to the
electric field gradients (EFGs) at the halogen nuclei. EFGs couple
with nuclear quadrupole moments89 for nuclei with spin greater or
equal to one and are important in the analysis of nuclear magnetic

resonance (NMR) experiments.90 For EFGs, both (semicore) corre-
lation and SOC effects are known to be of importance,91 and they
form therefore a good second test for the applicability of FNO trun-
cation in relativistic calculations. The EFG is defined as the second
derivative of the electric potential V(R) with respect to the nuclear
position vector, taken at the nuclear position RN ,

qμν(RN) = −
∂V(R)
∂Rμ∂Rν

∣R=RN . (14)

By introducing the EFG tensor operator,92

q̂e
μν =

3(r⃗ − R⃗N)μ(r⃗ − R⃗N)ν − ∣r⃗ − R⃗N ∣
2δμν

∣r⃗ − R⃗N ∣5
, (15)

the EFG can be expressed as the expectation value of a one-body
operator, which makes evaluating its value similar to computing the
EDM and EQM.

For linear molecules, it suffices to compute only the
zz-component (with the z axis chosen along the molecular bond)
as the other non-zero parts of the tensor can then be determined
by symmetry. Figure 5 plots this zz component of the EFG and
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FIG. 5. Convergence of the CCSD electric field gradient at the halogen nucleus with respect to the size of the virtual orbital space for the X2C Hamiltonian. The X axis
indicates the fraction of the virtual space retained, while the Y axis gives the fraction of the expectation value recovered with respect to the value obtained with the
untruncated virtual space.

shows for both FNO and CMO oscillations upon truncating the
orbital spaces. In the case of correlating all electrons, we see that
FNO truncation leads to worse performance than CMO trunca-
tion due to even more rapid oscillations. Recalling that the only
difference between computing the EFG and EDM properties is in
the operators used, it is of interest to consider their differences.
The EFG tensor operator scales as r−3 in contrast to the r1 and r2

scaling of the EDM and EQM operators. Density changes in the
core region due to correlation are thus magnified by the EFG oper-
ator while they are hardly of influence for the EDM and EQM.
Such changes may both come from core correlation as well as from
correlating the valence electrons (through the tails of the valence
orbitals in the core region). As core correlation may be harder to
converge than valence correlation, we will separate the two effects
by comparing all-electron and valence-only electron calculations in
Subsec. V B 3.

3. Convergence analysis for HCl and HI
The issue of oscillating convergence can be conveniently ana-

lyzed for the HCl molecule as chlorine is large enough to investigate

the effect of core correlation yet small enough to allow for quick cal-
culations. Rather than taking only a few truncation values, we now
systematically extend the size of the virtual space by adding individ-
ual FNOs and show the effect thereof on the EDM, EQM, and EFG
of HCl in Fig. 6 for both all-electron and valence-only correlation
calculations.

For the all-electron case, we see in the EDM and EQM plots
for CMO truncation peaks when 13 and 23 orbitals are used.
This is probably due to quasi-degeneracies as the orbital ener-
gies of the 12th, 13th, and 14th orbital are 0.424 18, 0.436 57,
and 0.436 73 hartree, respectively. This set of virtual orbitals is pri-
marily a diffuse chlorine p-type orbital shell that is split due to
the formation of the hydrogen–chlorine bond as well as due to
spin–orbit coupling. Taking only one of the two almost degenerate
π-type orbitals in the correlation space gives an unbalanced descrip-
tion and impacts these valence properties significantly. For the EFG,
this particular set of three CMOs is less important because diffuse
orbitals only contribute indirectly to this property. For the EFG,
one may notice (Fig. 6, lower left panel, blue line) a large oscilla-
tion around virtual orbital number 70 in the all-electron calculation.
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FIG. 6. Effect of virtual space truncation on the expectation values (top panel: EDM, middle panel: EQM, bottom panel: EFG) of HCl for the X2C Hamiltonian. The X axis
gives the number of correlated virtual Kramers pairs up to and including the full virtual space (the rightmost points in the graphs correspond to calculations with the full virtual
space). Figures to the left correspond to calculations correlating all electrons and to the right correlating valence electrons only.
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This is due to the more core-like p-orbitals 70, 71, and 72 with
energies of, respectively, 35.63, 35.73, and 36.10 hartree, which are
impacting the correlation of core electrons. Restricting the correla-
tion treatment to valence electrons only strongly reduces the effect
of these virtuals (Fig. 6, lower right panel).

The FNO curves for the EDM and EQM show only an initial
oscillation that is followed by rather smooth convergence. This ini-
tial oscillation can also be traced to quasi-degenerate orbitals (but
now in terms of occupation numbers). For the FNOs, the occupation
numbers of the 2nd, 3rd, 4th, and 5th orbital are 0.008 692, 0.008 676,
0.008 508, and 0.008 491, respectively, and like with near-degenerate
CMOs, it appears recommendable to either include all or none of
a degenerate set. For the EFG, the situation is unfortunately more
complicated, also with FNOs.

In the all-electron calculation, values only stabilize after inclu-
sion of about 50 orbitals, while in the valence-only calculation,
stable convergence is reached after addition of about 20 FNOs.
Compared to the CMO truncation scheme, the advantage of FNO
truncation appears to be the absence of “late” oscillations (at low
threshold values) that could cause artifacts in the CMO trunca-
tion schemes. Such oscillations are typical for EFGs for which
an individual orbital may provide a significant contribution but
where the contribution of full, spherically symmetric shells of
orbitals adds up to zero due to symmetry. This is well-known
for CMOs but also holds for FNOs. An example is the EFG
integrals of the 13th, 14th, and 15th FNOs, which evaluate to
−78, 44, and 26 a.u. These large values get multiplied by very sim-
ilar occupation numbers (respectively, 7.9 × 10−4, 7.0 × 10−4, and
7.0 × 10−4) so that their contributions to the total EFG nearly
cancel.

A similar argument can be used to rationalize the difference
between the valence and all-electron calculations. In the correlation
of core orbitals, one effectively changes the relative occupation of the
three 2p orbitals in the chlorine core by making their occupations
slightly smaller than two. Imbalances in the correlation get thereby
for the EFG multiplied by large integral values (about 80 au for the
2p3/2 orbitals), which creates the large oscillation seen in these cal-
culations. For EDMs and EQMs, the integral values are much more
alike and smaller in the magnitude, leading to the observed smoother
convergence.

To check if such oscillation problems are particular for the
relativistic domain or can also be found in the non-relativistic
case, we have carried out the same analysis as above by employ-
ing a non-relativistic Hamiltonian, employing both contracted and
uncontracted (valence) basis sets and correlating both valence and
all electrons. The results are shown in Fig. 7.

From these, it can be seen that for the electric dipole and
quadrupole moments, the non-relativistic calculations basically
show the same oscillations as for X2C, and results for contracted
and uncontracted basis sets are nearly indistinguishable from each
other. For the EFG, there is also no noticeable difference for the
convergence patterns between X2C and non-relativistic results for
uncontracted basis sets.

On the other hand, we observe significant differences between
EFG calculations employing contracted and uncontracted basis sets.
The first one is that already at the Hartree–Fock level, there is a sig-
nificant difference (nearly 10%) on the absolute value of the EFG
with contracted values underestimating uncontracted ones. Second,

we note that with contracted basis sets, there are very few oscil-
lations in FNO EFG values (even when correlating all electrons),
and FNO results are already quite stable for a much lower num-
ber of virtuals than CMO results (CMO EFG values are still not
completely converged at nearly full virtual spaces for the contracted
sets).

This can be understood as a manifestation of the degree of
atomic symmetry that is imposed by the contraction for the differ-
ent orbital shells, particularly for the occupied core orbitals. In the
contracted sets, these are forced to maintain their atomic-like nature
during the molecular calculation because electron correlation can-
not as easily deform the orbitals as is possible when the basis set is
uncontracted. This is underscored by the nearly identical behavior
of the contracted all electron and valence calculations as in the latter
core orbitals are kept frozen.

To check if the convergence behavior mentioned above is also
found for a heavier system, we carried out similar calculations for
HI but using an uncontracted double zeta basis set. It can be seen
from Fig. 8 that although HI has many more electrons, it still shows
a very similar convergence as observed for HCl. For instance, to get
a converged EFG value of HI, in the valence only computation, one
just needs to correlate 20 FNOs.

Looking at these tests, we may conclude that for properties such
as EDM and EQM, which are dominated by valence electron con-
tributions, one can safely use FNOs and their occupation numbers
to cut off the orbital space, both in valence-only and all-electron
correlation calculations. For sensitive properties for which core elec-
trons may give large and nearly canceling contributions, it is also
with FNOs numerically more stable to correlate only the valence
electrons.

C. Parity violation
Detection of parity violation (PV) effects associated with weak

force in atoms and molecules is an active field of research.13,93,94

While this property can also be computed with perturbation theory
starting from nonrelativistic theory,95 it is advantageous to use a rel-
ativistic quantum chemistry framework because the PV energy can
then be formulated as an expectation value of an effective one-body
operator,85

EPV =∑
A
⟨Ψ∣ĤA

PV∣Ψ⟩, (16)

with

ĤA
PV =

GF

2
√

2
QA

W∑
i

γ5
i ρA
(ri) (17)

and GF = 1.166 37 ×10−11 MeV−2 being the Fermi coupling constant.
The A and i label nuclei and electrons, respectively. The weak charge
QA

W = −NA + ZA(1 − 4 sin2 θω), where NA and ZA is the number of
neutrons and protons in each nucleus, respectively. θω is Wein-
berg mixing angle, which is set to 0.2319 for sin2 θω. ρA and γ5

i are
normalized nucleon density and 4-dimensional chirality operator,
respectively,

γ5
=

⎛

⎜

⎝

O I

I O

⎞

⎟

⎠

. (18)
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FIG. 7. Effect of virtual space truncation on the expectation values (top panel: EDM, middle panel: EQM, bottom panel: EFG) of HCl for the non-relativistic Hamiltonian and
employing contracted and uncontracted Dunning basis sets. The X axis gives the number of correlated virtual Kramers pairs up to and including the full virtual space (the
rightmost points in the graphs correspond to calculations with the full virtual space). Figures to the left correspond to calculations correlating all electrons and to the right
correlating valence electrons only.
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FIG. 8. Effect of virtual space truncation on the expectation values (top panel: EDM, middle panel: EQM, bottom panel: EFG) of HI for the X2C Hamiltonian. The X axis
gives the number of correlated virtual Kramers pairs up to and including the full virtual space (the rightmost points in the graphs correspond to calculations with the full virtual
space). Figures to the left correspond to calculations correlating all electrons and to the right correlating valence electrons only.
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FIG. 9. Convergence of the CCSD PV energy with respect to the size of the virtual orbital space for the X2C Hamiltonian. The X axis indicates the fraction of the virtual
space retained, while the Y axis gives the fraction of the expectation value recovered with respect to the value obtained with the untruncated virtual space.

Sunaga and Saue13 already investigated the use of CMO trun-
cation at the CCSD level with two different threshold values and
showed that truncation is well possible for this property. In current
work, we also employ FNO truncation and test more thresholds for
CMO truncation and its effect on the PV value.

The results of the two truncation schemes for the H2Z2 (Z
= O, S, Se) molecules are displayed in Fig. 9. We find that both
FNO and CMO truncation lead to strong oscillations such as those
observed in the EFG case. Again, these are most pronounced for
aggressive truncation in which more than 50% of the virtual orbital
space is removed. Looking more closely at these systems, we find that
orbital energies (for CMO) or occupation numbers (for FNO) show
a number of near-degeneracies. These orbitals give individually
large but partially canceling contributions. We have not investigated
valence-only correlation explicitly for this property as core contribu-
tions are probably more important than for the EFG, and it is more
difficult to define a representative small test case. For our current
tests, we note that the convergence behavior is consistent with results
of Ref. 13 in which rather conservative CMO truncation thresh-
olds of 100 and 500 Hartree were used for H2Se2. With both CMO

and FNO truncation, a 50% reduction appears realistic, leading to a
significant reduction in the computational effort. For instance, in the
current test, the H2Se2 calculation on 49 nodes of Summit with the
full orbital space took 100 min while the 50% reduced calculation
took only 20 min.

Nevertheless, for the particular case of PV energy evaluation,
FNO truncation does not appear to give a significant advantage
over the simpler CMO truncation scheme. Apart from the sensitiv-
ity of the PV operator on core correlation already observed in the
EFG evaluation, another possible reason is our use of the unrelaxed
MP2 density matrix. Shee et al.69 found for H2S2 that the contribu-
tion of orbital relaxation to the density matrix is significant when
used to evaluate this property. It would be interesting to investigate
how these contributions impact the generated FNOs are thereby the
convergence of the FNO truncation scheme.

VI. CONCLUSIONS
In this work, we describe the formulation and implementation

of the MP2 frozen natural orbital (MP2FNO) method for relativistic
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electronic structure calculations, which is an appealing approach for
truncating the large virtual orbital spaces typically associated with
relativistic calculations while retaining the high accuracy expected
of wavefunction-based approaches, such as coupled cluster.

This implementation was carried out in the massively parallel
coupled cluster module of the DIRAC program with the help of a
framework to manipulate 1RDMs obtained from correlated wave-
function calculations. A particularity of our code is its ability to
generate a set of canonical occupied and truncated virtual orbitals
as well as natural orbitals in the atomic basis so that these can be
conveniently employed in post-Hartree–Fock calculations and also
used for analysis.

We employed our code to investigate the performance of
MP2FNOs for the calculation of correlation energies and ground-
state first-order properties, such as dipole and quadrupole moments,
electric field gradient at the nuclei, and parity violation energy shifts.
As model systems, we considered species containing elements from
the first row up to and including the superheavy element tennessine.

We have found that although MP2FNOs are always capable of
recovering more correlation energy than their canonical counter-
parts for a given truncation, this advantage is slightly diminished for
the heaviest systems considered, containing astatine and tennessine.
Despite that, it is generally found that MP2FNOs can reduce virtual
spaces to about 50% of their original size without significant errors
in the energy.

Among the properties considered, a truncation of about 50%
of the original virtual space has also been shown to provide val-
ues that are nearly converged to the results without truncation.
That said, different properties exhibit very different convergence
behavior; for valence properties, such as the electric dipole moment,
MP2FNOs show a fairly smooth convergence to the reference val-
ues, whereas for the electric field gradient and, in particular, the
parity violation energy shifts for which regions close to the nuclei
are important (and thus, higher-lying virtuals are more important
in the correlation treatment), significant variations on the calculated
values are found for virtual spaces smaller than 50% of the original
virtual space.

We have found that for EFGs, correlating only valence electrons
provides a pragmatic solution that recovers the smooth convergence
seen for valence properties by removing difficult to converge, indi-
vidually large but in total nearly canceling, contributions from the
core electrons. Whether such a strategy can also work for the PV
energy shifts remains to be investigated.

As a final point and perspective, we note that improvement of
the efficiency of the current scheme is well possible by implementing
efficient approximate schemes, such as Cholesky decomposition and
Laplace transforms, to generate the MP2 1RDM. Work along these
lines is in progress and should enable treatment of larger systems in
the future.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details on the com-
parison of Hamiltonians for the HTs molecule, the influence of
core correlation functions on the correlation energies and expec-
tation values for the HCl molecule, the convergence of EFG for
iodine in HI, and the fraction of MP2 and CCSD correlation energies

recovered with different FNO truncations for the hydrogen halide
series.
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40K. Fægri and T. Saue, J. Chem. Phys. 115, 2456 (2001).
41A. S. Pereira Gomes and L. Visscher, Chem. Phys. Lett. 399, 1 (2004).
42C. Thierfelder, P. Schwerdtfeger, A. Koers, A. Borschevsky, and B. Fricke, Phys.
Rev. A 80, 022501 (2009).
43V. Pershina, Challenges and Advances in Computational Chemistry and Physics
(Springer, The Netherlands, 2010), pp. 451–520.
44J. Autschbach, N. Govind, R. Atta-Fynn, E. J. Bylaska, J. W. Weare, and W. A. de
Jong, Computational Methods in Lanthanide and Actinide Chemistry (John Wiley
& Sons, 2015), pp. 299–342.
45L. Halbert, M. L. Vidal, A. Shee, S. Coriani, and A. Severo Pereira Gomes,
J. Chem. Theory Comput. 17, 3583 (2021).
46J. Sucher, Phys. Rev. A 22, 348 (1980).

47J. V. Pototschnig, A. Papadopoulos, D. I. Lyakh, M. Repisky, L. Halbert,
A. Severo Pereira Gomes, H. J. Aa. Jensen, and L. Visscher, J. Chem. Theory
Comput. 17, 5509 (2021).
48D. I. Lyakh, Int. J. Quantum Chem. 119, e25926 (2019).
49B. Helmich-Paris, M. Repisky, and L. Visscher, J. Chem. Phys. 145, 014107
(2016); arXiv:1606.06498.
50L. Visscher, P. J. C. Aerts, and O. Visser, The Effects of Relativity in Atoms,
Molecules, and the Solid State (Springer, 1991), pp. 197–205.
51L. Belpassi, F. Tarantelli, A. Sgamellotti, and H. M. Quiney, J. Chem. Phys. 122,
184109 (2005).
52P.-O. Löwdin, Phys. Rev. 97, 1474 (1955).
53E. R. Davidson, Rev. Mod. Phys. 44, 451 (1972).
54T. L. Barr and E. R. Davidson, Phys. Rev. A 1, 644 (1970).
55C. Sosa, J. Geertsen, G. W. Trucks, R. J. Bartlett, and J. A. Franz, Chem. Phys.
Lett. 159, 148 (1989).
56A. G. Taube and R. J. Bartlett, Collect. Czech. Chem. Commun. 70, 837 (2005).
57H. J. Aa. Jensen, P. Jørgensen, H. Ågren, and J. Olsen, J. Chem. Phys. 88, 3834
(1988).
58H. J. Aa. Jensen, P. Jørgensen, H. Ågren, and J. Olsen, J. Chem. Phys. 89, 5354
(1988).
59A. G. Taube and R. J. Bartlett, J. Chem. Phys. 128, 164101 (2008).
60P. Verma, L. Huntington, M. P. Coons, Y. Kawashima, T. Yamazaki, and
A. Zaribafiyan, J. Chem. Phys. 155, 034110 (2021).
61M. S. Gordon, M. W. Schmidt, G. M. Chaban, K. R. Glaesemann, W. J. Stevens,
and C. Gonzalez, J. Chem. Phys. 110, 4199 (1999).
62S. Chamoli, K. Surjuse, M. K. Nayak, and A. K. Dutta, J. Chem. Phys. 156,
204120 (2022).
63J. N. P. van Stralen, L. Visscher, C. V. Larsen, and H. J. Aa. Jensen, Chem. Phys.
311, 81 (2005).
64H. A. Kramers, Proc. R. Acad. Sci. Amsterdam 33, 959 (1930).
65L. Visscher, Chem. Phys. Lett. 253, 20 (1996).
66T. Saue and H. J. Aa. Jensen, J. Chem. Phys. 111, 6211 (1999).
67ReSpect, a relativistic DFT program; see http://www.respectprogram.org.
68M. Yoshimine, J. Comput. Phys. 11, 449 (1973).
69A. Shee, L. Visscher, and T. Saue, J. Chem. Phys. 145, 184107 (2016).
70H. J. Aa. Jensen, R. Bast, A. S. P. Gomes, T. Saue, L. Visscher, I. A. Aucar,
V. Bakken, C. Chibueze, J. Creutzberg, K. G. Dyall, S. Dubillard, U. Ekström,
E. Eliav, T. Enevoldsen, E. Faßhauer, T. Fleig, O. Fossgaard, L. Halbert, E. D.
Hedegård, T. Helgaker, B. Helmich-Paris, J. Henriksson, M. van Horn, M. Iliaš,
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ABSTRACT
Following the interest in the experimental realization of laser cooling for thallium fluoride (TlF), determining the potential of thallium chloride
(TlCl) as a candidate for laser cooling experiments has recently received attention from a theoretical perspective [Yuan et al., J. Chem. Phys.
149, 094306 (2018)]. From these ab initio electronic structure calculations, it appeared that the cooling process, which would proceed from
transitions between a3Π+0 and X1Σ+0 states, had as a potential bottleneck the long lifetime (6.04 μs) of the excited state a3Π+0 , that would
make it very difficult to experimentally control the slowing zone. In this work, we revisit the electronic structure of TlCl by employing
four-component Multireference Configuration Interaction (MRCI) and Polarization Propagator (PP) calculations and investigate the effect
of such approaches on the computed transition dipole moments between a3Π+0 and a3Π1 excited states of TlCl and TlF (the latter serving
as a benchmark between theory and experiment). Whenever possible, MRCI and PP results have been cross-validated by four-component
equation of motion coupled-cluster calculations. We find from these different correlated approaches that a coherent picture emerges in
which the results of TlF are extremely close to the experimental values, whereas for TlCl the four-component calculations now predict a
significantly shorter lifetime (between 109 and 175 ns) for the a3Π+0 than prior estimates. As a consequence, TlCl would exhibit rather different,
more favorable cooling dynamics. By numerically calculating the rate equation, we provide evidence that TlCl may have similar cooling
capabilities to TlF. Our analysis also indicates the potential advantages of boosting stimulated radiation in optical cycles to improve cooling
efficiency.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0092620

I. INTRODUCTION

The realization of high-precision measurements on atoms and
molecules to verify violation of time-reversal symmetry, for instance,
the appearance of an electron electric dipole moment (eEDM), has
become a valuable tool in the search for new physics outside the stan-
dard model. This is an alternative method to directly look for new
particles in collider experiments, which are currently predicted to
require energies on the TeV scale.

To enable such fundamental physics research on atoms and
molecules, unprecedented levels of precision in high-precision
experiments are essential. Laser cooling technology provides an

effective means of reducing noise in atomic and molecular spec-
troscopy, but while widespread for atoms, the cooling of molecules
is more challenging. Rosa1 had outlined the three conditions for
molecular candidates in laser cooling: (1) strong one-photon tran-
sition, (2) highly diagonal Franck–Condon factors (FCFs), and (3)
no intervening electronic state.

Since Shuman, Barry, and DeMille2 first reported the cool-
ing of the SrF molecule, three diatomic molecules (CaF,3 YO,4 and
YbF5) have been successfully cooled. It is interesting to note that,
out of these four successfully cooled systems, three contain atoms
for which relativistic effects, such as spin–orbit coupling, play an
important role in the resulting molecular electronic structure. By

J. Chem. Phys. 157, 074313 (2022); doi: 10.1063/5.0092620 157, 074313-1

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

lifting degeneracies and relaxing selection rules, relativity affects
both the energies of electronic states and the associated transition
moments. These changes, in turn, provide additional challenges to
the design of cooling schemes in comparison to species in the upper
rows of the periodic table. Therefore, in this context, simulations
based upon relativistic correlated electronic structure calculations,
which can achieve rather high accuracy for small, symmetric sys-
tems, are particularly interesting as a way to pre-screen candidates
for experiments.

Among the species containing heavy elements, thallium halides
(TlX) make up an interesting class of systems. TlF is an ideal can-
didate for the measurement of P- and T-violating interactions6–8

because of its high mass and polarizability. Hunter et al.9 proposed
the use of spin-forbidden transition a3Π1-X1Σ+0 to set up cool-
ing optical cycling for TlF, leading different groups to investigate
its spectroscopic properties experimentally.10,11 More recently, the
CeNTREX collaboration12 has been conducting experiments with
205TlF molecular beams.

The transition used for optical cycling in TlF occurs at
271.7 nm, reflecting the fact that the target a3Π1 excited state is
rather high in energy compared to the ground state, potentially mak-
ing this species less advantageous from an experimental perspective
than species in which the target excited states are lower, such as in
heavier TlX species. However, the calculations of Zou and Liu13 on
TlBr, TlI, and TlAt have shown that the potential wells of the target
a3Π excited states are not sufficiently aligned with that of the ground
state to satisfy condition (2). This leaves TlCl as the only remaining
candidate in this series.

In a recent investigation of the electronic structure of TlCl,
Yuan et al.14 arrived at the conclusion that the a3Π+0 -X1Σ+0 transi-
tion would meet the aforementioned conditions for optical cycling.
However, their calculated radiative lifetime for the a3Π+0 state was of
about 6 μs, which not only is too long for current experimental con-
ditions but also at odds with the prior theoretical work by Li et al.,15

which found the a3Π+0 lifetime to be of about 800 ns. Interestingly,
in these two investigations, the final spin–orbit coupled electronic
states had been obtained from scalar relativistic correlated calcula-
tions, whose spin-free states are subsequently coupled via spin–orbit
configuration interaction (SOCI) calculations.

Thus, the first objective of this work is to revisit the TlCl system
by employing more sophisticated relativistic correlated electronic
structure methods, in order to resolve the discrepancies in radiative
lifetimes described in the literature. With that, our second goal is to
address whether or not TlCl can be a system of interest for laser cool-
ing experiments. Given the lack of experimental data on radiative
lifetimes for TlCl, we shall also verify the performance of our theo-
retical approaches with respect to the experimental results of the TlF
system.

As it is known in the literature,16–20 SOCI calculations can be
very sensitive to the number of electronic spin-free states entering
the SOCI calculation and whether a contracted or uncontracted CI
is employed. Because of that, we consider it of interest to attack
this problem from a different perspective, with spin–orbit coupling
(SOC) interactions being accounted for at the mean-field level by
using a four-component-based Hamiltonian. That is to be followed
by a treatment of electronic correlation on a spinor basis, employing
the multireference configuration interaction (MRCI) method as well
as benchmark calculations with the relativistic Equation of Motion

Coupled-Cluster singles doubles (EOM-CCSD)21 and the Polariza-
tion Propagator (PP)22 approaches, in order to cross-validate the
MRCI calculations for ground, excited, and transition properties.

This paper is organized as follows: The details of the ab initio
calculations are described in Sec. II. The computational results and
the corresponding cooling scheme are presented and discussed in
Sec. III. Finally, a brief summary is presented in Sec. IV.

II. COMPUTATIONAL DETAILS
The ab initio calculations on the electronic states of TlF and

TlCl have been performed with the DIRAC1923 and DIRAC2224

releases as well as with a publicly available development snapshot
(commit hash e0617189) of the DIRAC relativistic electronic struc-
ture package.25 In all calculations, we employed the four-component
Dirac-Coulomb (DC) Hamiltonian with the usual approximation
of the (SS∣SS) integrals by a Coulombic correction.26 The uncon-
tracted Dyall basis sets aaenZ27 were employed for Tl atom, and
the correlation-consistent basis set aug-cc-pVnZ28,29 was employed
for the halogens. In both cases, n is the basis sets cardinal number
(n = 2, 3, and 4 for double-, triple-, and quadruple-zeta, respec-
tively). As a shorthand notation, in the following, we shall refer to
the different basis sets as nZ.

The molecular axis is placed along the z-axis with the center of
mass at the origin, with the positive direction being from Tl to X.
For permanent dipole moments (PDM), we used the following bond
lengths (in Å) corresponding to the experimental equilibrium dis-
tances: 2.0844 (X1Σ+0 , TlF), 2.049 (a3Π+0 , TlF), 2.0745 (a3Π1, TlF),
2.485 (X1Σ+0 , TlCl), 2.472 (a3Π+0 , TlCl), and 2.485 (a3Π1, TlCl). Since
the PDM of a linear molecule is the first derivative of the energy with
respect to the electric field along the molecular z-axis, in the com-
plete basis set (CBS) limit, the ground state PDMs are obtained via
an expression analogous to that for the total energy,30 that is,

μCBS = μn − α exp−(n−1)
− β exp−(n−1)2

(1)

for which results from 2Z, 3Z, and 4Z basis sets calculations
are needed. We note that for excited states, the CBS results are
extrapolated based on 3Z and 4Z results with the formula20,31

ECBS(R) =
43E4(R) − 33E3(R)

43 − 33 . (2)

In this study, we focused on the transitions of a3Π1-X1Σ+0 and
a3Π+0 -X1Σ+0 (Ω = 0 states) of TlF and TlCl. The PDMs and the
transition dipole moments (TDMs) were obtained with the MRCI
method as implemented in the KRCI module32,33 (we note the KRCI
module employed in our calculations does not support the use of
two-component Hamiltonians). In the MRCI calculations, the base
configuration space is defined as (8,8) corresponding to the 6s, 6p,
and 7s orbital of Tl and 2(3)p orbitals of halogen. The detailed
Generalized Active Spaces (GAS) used in these KRCI calculations,
including the number of configurations—as well as the GAS setups
for additional calculations aiming to verify the robustness of transi-
tion moment values with respect to active space—are presented in
the supplementary material.
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We have also carried out calculations of excitation energies,
PDMs, and TDMs with the four-component CCSD,34,35 EOM-
CCSD,36 and PP37,38 methods. The analytic calculation of excited
state expectation values is currently not possible for both methods in
their implementations in DIRAC. Due to that, we obtained excited
state dipole moments through finite field calculations. In these, the
component of the dipole moment operator is individually taken as
the perturbations (with strengths of ±0.0005 a.u.) and is included at
the Hartree–Fock step corresponding to an orbital-relaxed picture.
We note that for the EOM-CCSD implementation, the transition
dipole moments are also not currently available. In contrast, for
PP, these are available and will be compared to those obtained with
MRCI. For EOM-CCSD and PP, we explored different correlation

spaces, in order to verify the effect of truncation: we consider occu-
pied orbitals with energies higher than −10 or −20 a.u. and virtual
orbitals with energies up to and including 20 or 100 a.u.

The data, figures, and scripts associated with this paper all can
be obtained as supplementary material in the Zenodo repository.39

III. RESULT AND DISCUSSION
A. Permanent dipole moment

We present in Table I the PDMs and vertical excitation ener-
gies (Tv) for MRCI, EOM-CCSD, and PP, alongside the SOCI
calculations from the literature14,40 and the experimental results.10

TABLE I. Computed permanent dipole moments (in Debye) and vertical excitation energies (Tv , in cm−1) for the different states under consideration for TlF and TlCl.

2Z 3Z 4Z CBS SOCI14,40 Expt.

Molecule State Method PDM Tv PDM Tv PDM Tv PDM Tv PDM Tv PDM Te
a

TlF X1Σ+0 MRCI −4.16 0 −3.88 0 −3.79 0 −3.74 0 −3.67 0
CCSDb

−4.37 0 −4.32 0
CCSDc

−4.33 0 −4.29 0
CCSDc,d 0 −4.30 0

a3Π+0 MRCI −3.15 36 825 −2.81 34 695 −2.76 33 708 −2.74 32 990 −1.46 37 025 35 164
EOMb

−2.67 34 790 −2.69 3 082
EOMd 35 148

PP 31 592 32 414
PPe 32 185 32 524

a3Π1 MRCI −2.90 40 070 −2.47 37 921 −2.46 36 507 −2.47 35 474 −1.26 38 535 −2.28 3 664
EOMb

−2.45 36 475 −2.47 36 782
EOMd 36 851

PP 32 920 33 719
PPe 33 513 33 820

TlCl

X1Σ+0 MRCI −4.60 0 −4.46 0 −4.42 0 −4.4 0 −4.32 0
CCSDb

−4.66 0 −4.65 0
CCSDc

−4.63 0 −4.64 0
CCSDc,d

−4.66 0 −4.64 0

a3Π+0 MRCI −2.43 31 130 −2.19 31 630 −2.13 31 813 −2.1 31 947 −2.08 31 438 31 054
EOMb

−1.78 31 095 −1.80 31 182
EOMd 31 246 31 232

PP 30 801 31 338
PPd 31 072 31 380

a3Π1
f MRCI −1.83 33 366 −1.51 34 594 −1.48 34 711 −1.47 34 797 −1.74 32 526

EOMb
−1.45 32 369 −1.29 32 426

EOMd 32 500 32 467
aExperimental adiabatic excitation energy value.
bFinite-field calculations, equivalent to an orbital-relaxed formulation.
cAnalytic gradient calculation, employing an orbital-unrelaxed formulation.35

dCorrelation space: −10 a.u. to 100 a.u.
eCorrelation space: −20 a.u. to 100 a.u.
fa3Π1 state of TlCl is not a bound state.
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We find that EOM-CCSD results are rather insensitive to the
increase in the correlating space (from −10 to 20 a.u. to −20 to
100 a.u.) for both the 2Z and 3Z (changes are less than 100 cm−1),
whereas, for PP, there are more significant changes for the 2Z set
(1000 cm−1), but these fall largely in line with the EOM-CCSD
results for the 3Z basis sets. With that, by considering the 3Z basis
set results in the following discussion, the same semi-quantitative
trends apply for both correlating spaces, and for convenience (and
unless otherwise noted), we shall refer to the smaller orbital space
(−10 to 20 a.u.) results.

For the MRCI PDMs, our results indicate an asymptotic con-
vergence as a function of the basis set level for all states under
consideration. This translates into a decrease in the magnitude of
dipole moments for all states of TlF and TlCl at the CBS level
compared to the results obtained with the smaller basis sets. Further-
more, the magnitudes of the dipole moments of the excited states are
smaller than those of the ground states, and the magnitudes of the
PDMs for TlF are all smaller than those for TlCl. In all of our results,
the PDMs possess a negative sign, meaning that a decrease in mag-
nitude correlates with a build-up in electronic density surrounding
the Tl atom as the quality of the basis set is enhanced.

The MRCI results are consistent with the coupled-cluster
results (due to computational resource limitations, we were unable
to perform EOM calculations with 4Z bases, and thus only present
results for 2Z and 3Z bases); the differences in PDMs between
the two approaches are typically, in absolute value, between
0.3 and 0.5 D for all states considered. It is interesting to note
that variations across approaches tend to be lower for 3Z bases
than for 2Z bases, with the coupled-cluster findings deviating less
than MRCI ones when shifting from 2Z to 3Z; hence, we expect
that our 3Z results can serve as a semiquantitative comparison, and
give us with confidence that our 4Z and CBS MRCI results are
reliable.

For the coupled-cluster ground states for which we can also cal-
culate PDMs analytically, we observe that the finite-field and analytic
derivative results are very close (differences around 0.03–0.04 D),
indicating that (a) orbital relaxation is not particularly important
for such species and (b) the finite-field results for the various elec-
tronic states are reliable. We furthermore reuse the results from the
finite-field calculations to evaluate the αzz components of the polar-
izability, which are listed in Table S3 in the supplementary material
and find that the value of TlCl (191 a.u.) is almost twice as large as
that of TlF (110 a.u.). These results suggest that, in comparison to
TlF, TlCl is more easily polarized by the external electric field, which
in turn provides more favorable conditions for experiments testing
P-T violation.

Finally, we see that for the ground state, the SOCI results of
Yuan et al.14 and our MRCI results compare rather well. For excited
states, the situation is different, particularly for the a3Π1 state, as we
observe significant differences between methods for both TlF and
TlCl.

In comparison to the experiment, the PDM measurements of
the a3Π1 state of TlF by Clayburn et al.,10 which yielded a value of
−2.28(7) D, are in very good agreement with our MRCI 4Z (−2.46 D)
or CBS (−2.47 D) results, as well as our EOM-CCSD 3Z results
(−2.47 D). From that, and the very similar MRCI and CCSD results
for TlCl, we expect that our calculations do provide a good estimate
of the experimental value. We believe future high-resolution PDM

measurements for more states would be highly desirable as a test,
and possible confirmation, of our results.

Concerning the vertical excitation energies (Tv) for TlF, we
observe significant variations with the basis set size for MRCI, which
result in decreasing excitation energies as the basis set quality is
improved (roughly a 2000 cm−1 decrease when passing from 2Z to
3Z for both 3Π states, and nearly 1000 cm−1 when passing from
3Z to 4Z, and another 1000 cm−1 when passing from 4Z to CBS).
This tendency is qualitatively the same in the EOM-CCSD calcula-
tions, although the changes are somewhat smaller (about 300–400
cm−1 from 2Z to 3Z).

On the other hand, for MRCI results on TlCl, we see sig-
nificantly smaller fluctuations with changing basis sets (less than
1000 cm−1 between 2Z and CBS values), with increasing excitation
energies as basis sets are improved. As for TlF, EOM-CCSD trends
mirror those of MRCI, and energy changes with respect to basis sets
are again less significant than those for MRCI.

In contrast to MRCI and EOM-CCSD, PP results for all excited
states demonstrate an increase in excitation energies with improving
basis set size, with changes between 2Z and 3Z of around 1000 cm−1

for the smaller correlating space, but around 300 cm−1 for the larger
correlating space. It is interesting to observe that the 3Z PP excita-
tion energy for both molecules is generally lower but not dissimilar
to the MRCI CBS values, though this may be due to fortuitous error
cancellations.

However, for TlCl, it appears that all three correlated tech-
niques exhibit much more similar performance, and, in particular,
PP results are much closer to EOM and MRCI ones.

We see that for both species, the Tv EOM-CCSD results are
very much in line with the experimental Te values (given the nature
of the excited states, the calculated Tv values should in effect be quite
close to the Te ones), and since MRCI energies tend to closely follow
the EOM-CCSD ones, we consider MRCI energies to reliably reflect
the experimental excitation energies.

The difference between SOCI and the current four-component
derived excitation energies for TlF is striking, with SOCI over-
estimating the four-component results by 2000 to 3000 cm−1,
depending on the excited state. Taken together (a) the strongly
underestimated magnitude of the excited state dipole moment
with respect to the experiment and (b) the rather good agree-
ment for calculated ground-state dipole moments, it would appear
that the SOCI calculations of Liu et al.40 are somewhat unbal-
anced in their descriptions of the excited states, with respect
to the ground state. Interestingly, for TlCl, the four-component
excited state energies, as well as the ground and excited state
dipole moments, agree pretty well with the SOCI estimates. This
shows that any problems with SOCI calculations are not so much
in the description of the different electronic states of TlCl, but
rather in the transition properties, to which we will now shift our
attention.

B. Transition properties
Our results for TDMs, obtained at bond lengths corresponding

to the experimental excited states’ equilibrium distances, are found
in Table II. Unlike excited state properties, CBS values cannot be
estimated for TDMs; hence, we chose to focus on MRCI TDM data
obtained with 4Z basis sets.
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TABLE II. Computed transition dipole moments at Re and the corresponding lifetimes.

TlF Transition TDM(D) lifetime(ns) Reference

a3Π1-X1Σ+0 0.837 91 MRCI
a3Π1-X1Σ+0 0.673 153 PPa

a3Π1-X1Σ+0 0.634 172 PPb

a3Π1-X1Σ+0 99(9) Exp9

a3Π1-a3Π+0 0.114 MRCI
a3Π1-a3Π−0 0.072 MRCI

a3Π0+ -X1Σ+0 0.518 278 MRCI
a3Π0+ -X1Σ+0 0.651 176 PPa

TlCl

a3Π0+ -X1Σ+0 0.767 175 MRCI
a3Π0+ -X1Σ+0 0.896 128 PPa

a3Π0+ -X1Σ+0 0.928 119 PPb

a3Π0+ -X1Σ+0 0.130 6040 Reference 14
a3Π0+ -X1Σ+0 808 Reference 15
a3Π1-X1Σ+0 0.946 MRCI
a3Π1-X1Σ+0 0.800 Reference 14

aCorrelation space: −10 to 20 a.u.
bCorrelation space: −20 to 100 a.u.

Before discussing these results, we have carried out a num-
ber of MRCI calculations with different GAS definitions (employing
3Z basis sets due to constraints on computational resources). Our
aim with these was to investigate whether or not TDM values vary
significantly upon including configurations correlating outer core
electrons (the 5d orbitals of Tl) and increasing the virtual space
to include higher-lying virtuals (i.e., those with energies up to and
including 30 a.u.), than those we were able to consider in the 4Z
calculations.

From our results, found in the supplementary information
(Tables S4 and S5 and Fig. S1), we first observe that core-correlating
configurations tend to increase the TDMs, but not so drastically.
This decrease is more significant (around −0.13 D) for calculations
employing the larger virtual space than for those employing the
smaller virtual space (around −0.07 D). Consequently, the outer-
core correlation has an impact on the calculated lifetimes: these
change from 163 to 137 ns for the calculations with smaller virtual
space and from 145 to 109 ns for the calculations with larger virtual
space.

At the same time, we observe that core-correlating configu-
rations tend to increase excitation energies, making them move
away from the experimental value. As was the case for the TDMs,
this effect is more pronounced for the calculations with the larger
virtual space (+2333 cm−1) than with the smaller virtual space
(+862 cm−1). By inspecting Fig. S1, we observe that the presence of
core-correlating configurations tends to preferentially stabilize the
ground state with respect to the excited state.

We note the 3Z results are in agreement with the trend observed
for the comparable 4Z calculations. With this and the effect of core
correlating configurations in mind, we consider our valence 4Z cal-
culations can provide, respectively, a lower bound for the TDMs and
an upper bound for the lifetimes in TlCl.

As EOM TDMs are not yet accessible, we present TDMs values
derived from 4Z PP calculations; based on their similarity to EOM
and MRCI results for TlCl, we anticipate that PP calculations pro-
vide sufficiently accurate results to serve as cross-validation of MRCI
results, though somewhat less so for TlF. As for the case of transi-
tion energies, we have also assessed the effect of the correlation space
truncation on the PP TDMs between the ground and a3Π1 state of
TlF, and the ground and a3Π+0 excited state of TlCl. We find that the
results do not vary substantially, which we take as a further indica-
tion that, for these systems, the TDM values are not very sensitive to
the truncation of the orbital space.

We find that for different transitions in TlF, the MRCI and PP
results are indeed quite close to each other, differing by less than
0.1 D for the transitions from the ground to each of the Ω compo-
nents of the Π states. We note that, for the transition to the a3Π+0
state, the PP TDM is larger than the MRCI one, whereas the reverse
is true for the transition to the a3Π1 state.

As for TlF, for TlCl the difference between MRCI and PP is
slightly larger than 0.1 D for the transition from the ground state to
the a3Π+0 state, and the PP value is again larger than the MRCI one.
We note here that the PP results are, on the other hand, quite similar
to the largest 3Z MRCI calculations, including core-correlating con-
figuration. This could be a further indication that the actual lifetimes
could indeed be somewhat lower than the 175 ns obtained from the
valence 4Z MRCI calculations since, in the PP calculations, the 5d Tl
electrons are also correlated.

The good agreement between these two four-component tech-
niques for both molecules, with results differing by no more than
25%, makes us confident in the capability of MRCI to generate suf-
ficiently accurate TDMs for a reliable assessment of lifetimes, as
discussed below.

Comparing our current results for TlCl to those in the litera-
ture, we observe first that for the transition from ground to the a3Π1
state, our results differ slightly more than 0.1 D from those of Yuan
et al.14 Second, we see that the SOCI TDMs of a3Π+0 are strongly
underestimated, differing from ours by nearly 0.7 D.

The TDMs of a3Π+0 and a3Π1 of TlCl are slightly larger than
the corresponding MRCI and PP ones for TlF, something which
is consistent with our understanding that TlCl should have some-
what stronger spin–orbit coupling effects than TlF, whereby further
weakening the selection rules making the spin forbidden transition
a3Π-X1Σ+ in comparison to TlF.

As the differences in computed TDMs are already illuminat-
ing, a more direct comparison to the experiment is provided by the
lifetimes presented in Table II. From the TDMs, we evaluate the
Einstein coefficients from14

Av′v′′ = 2.142 × 1010
× TDM2

× qv′v′′ × ΔE3 (3)

(where the energy difference ΔE and the TDMs are given in a.u. and
Av′v′′ in s−1), while the radiative lifetimes are obtained using

τv′ =
1

∑v′′Av′v′′
. (4)

The vibrational energy levels and the corresponding
Franck–Condon factors (qv′v′′) are taken from available
experiments9,41 (a3Π1 state of TlF) and prior calculations14,40

(a3Π+0 state of both TlF and TlCl). The detailed Einstein coefficients
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Av′v′′ and vibrational branching Rv′v′′ of transitions are listed in
the supplementary material.

Given that SOCI PDMs and four-component PDMs for the
ground states of TlF and TlCl match quite well, we consider this
method (combining ground-state vibrational wavefunctions derived
from SOCI potential energy curves and four-component TDMs at
the MRCI or PP level) to be reliable.

For TlF, the computed lifetime of the a3Π1 state is 91 and 153 ns
for MRCI and PP, respectively, and the former is closer to the experi-
mental value 99(9) ns. For TlCl, the 6.04 μs lifetime of the a3Π+0 state
calculated by Yuan et al.14 would correspond to a huge challenge
under current cooling experimental condition. However, we see that
on the basis of the current four-component calculations without
including outer-core correlation, lifetimes for the a3Π+0 state would
correspond to 175 ns (MRCI) and 128 ns (PP), respectively, which
are both much shorter than the previous value, and as discussed
above with the inclusion of outer-core correlation, the tendency is
for lifetimes to further decrease. From these results, we, therefore,
conclude that TlCl should be a much more favorable system for the
experimental realization of laser cooling than previously thought.

Given the small deviation between the theoretical and experi-
mental lifetimes for the MRCI a3Π1 state of TlF and the systematic
agreement between four-component approaches for TDMs, we thus
consider the lifetime of a3Π+0 state of TlCl 175 ns to be a more accu-
rate (upper bound) estimate than the previous estimation by Yuan
et al.14 and shall use this new calculated lifetime in the following
assessment of a proposed cooling scheme.

C. Simulation of laser cooling
As the cooling efficiency and the corresponding length of the

slowing region are dependent on the lifetimes, compared to the
results of Yuan et al,.14 the new lifetime value for the a3Π+0 state
of TlCl will translate into a different cooling dynamics and, as a
result, will alleviate the technical difficulties associated with setting
up the experiment. Despite the changes in TDMs, the optical cycling
scheme for TlF and TlCl, shown in Fig. 1, will still closely follow

FIG. 1. The proposed cooling scheme for TlF and TlCl. The excited states are a3Π1
and a3Π+0 for TlF and TlCl, respectively. The dashed gray lines are spontaneous
decays and the solid red lines are laser-driven transitions.

TABLE III. The wavelength (nm) of lasers used in the cooling process is represented
by Fig. 1.

Laser TlF TlCl

1st: λ0′0′′ 272 319
2nd: λ1′1′′ 273 320
3rd: λ0′2′′ 279 325
4th: λ1′3′′ 280 326
5th: λ2′4′′ 281 327

the one originally proposed by Yuan et al.,14 which, for the sake of
completeness, is outlined below.

The main pump laser is set at the a3Π(v′ = 0)-X1Σ+0 (v′′ = 0)
transition, with a wavelength λ0′0′′ : 272 nm (TlF) and 319 nm (TlCl).
Four additional lasers are used to repump the population of vibra-
tionally excited states. For clarity, we refer to these lasers as follows:
λ0′0′′ is the first laser, λ1′1′′ is the second laser, λ0′2′′ is the third laser,
λ1′3′′ is the fourth laser, and λ2′4′′ is the fifth laser. All the wavelengths
of the lasers are listed in Table III:

To discuss the cooling process in more detail, we solve a rate
equation to count the number of photons scattered during the
cooling process,42

dP
dt
=MP, (5)

where P is a vector holding N vibrational levels in ascending order
of energy and M is an N × N matrix containing various Einstein
coefficients.

Before simulating the population dynamics, it is necessary to
determine the effect of the vibrational decay process on the X1Σ+0
ground state. Here, we compute the ratio A0′0′′

A1′′0′′
of the Einstein

coefficient between electronic [A0′0′′ (v′ = 0) → (v′′ = 0)] and vibra-
tional [A1′′0′′ (v′′ = 1) → (v′′ = 0)] relaxation. The vibrational
transition dipole moment (vTDM) matrix elements over vibrational
wave functions of X1Σ+0 state had been computed with the Molcas31

vibrot module,

vTDM1′′0′′ = ∫ ϕ(v′′=1)Rϕ(v′′=0)dR. (6)

The ratios for TlF and TlCl are 1.8 × 107 and 3.0 × 107, respectively.
These are similar to the value of 2.5 × 107 for SrF.42 Such a large ratio
indicates that the vibrational relaxation is very weak; thus, we chose
to exclude it in the subsequent simulation model.

Explicitly, the rate equation has the form

dPi

dt
= −

j=i−1

∑
j=1

AijPi −

j=i−1

∑
j=1

Bijρ(ωij)Pi

−

j=N

∑
j=i+1

Bijρ(ωij)Pi +

j=N

∑
j=i+1

AjiPj

+

j=i−1

∑
j=1

Bjiρ(ωji)Pj +

j=N

∑
j=i+1

Bjiρ(ωji)Pj. (7)

Here, Amn, Bij, and Bji are spontaneous emission, stimulated emis-
sion, and absorption coefficients, respectively. ρ(ωij) is the spectral
energy density at frequency ωij.
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After numerically solving Eq. (7), the average number of scat-
tered photons is evaluated by multiplying the obtained population in
the excited state of the optical cycle by its total radiation rate Aij + Bij.
The stimulated coefficients B are proportional to A, with

Bij = Bji =
π2c3

hω3
ij

Aij, (8)

where h is the Planck constant and c is the speed of light.
In these simulations, we use three different laser configurations:

Case (a-1) includes three lasers: λ0′0′′ , λ1′1′′ , and λ0′2′′ ; case (a-2) has
an additional laser λ1′3′′ ; and case (a-3) includes each of the five
lasers. The simulation results are plotted in Fig. 2. The population
is initially in X1Σ+0 (v′′ = 0) state.

FIG. 2. The number of scattered photons for TlF and TlCl with different laser con-
figurations. Case (a-1) has first three laser: λ0′0′′ , λ1′1′′ , and λ0′2′′ . Case (a-2)
includes case (a-1) plus the fourth laser λ1′3′′ . Case (a-3) includes case (a-2) plus
the fifth laser λ2′4′′ .

The two molecules show similar dynamics: TlF reaches the limit
faster than TlCl, as the rate of its spontaneous radiation is nearly
double that of TlCl, while TlCl scatters more photons than TlF does
throughout the cooling process. In this model, TlF absorbs roughly
7300 photons when five lasers are utilized, whereas TlCl absorbs
25 000 photons.

A simple equation

Ntot =
1

1 −∑i=4
i=0R0′i′′

(9)

could be used to qualitatively estimate the total photon absorp-
tion/emission cycles.43 It is straightforward to see Ntot is sensitive
to the vibrational branching, particularly on the non-diagonal ele-
ment of Franck–Condon factors, such as (v′ = 0) → (v′′ = 1,2,3, . . .
etc.). Such sensitivity is also evident in the large difference between
the configurations of five and four lasers.

From the above discussion, we have that a smaller number of
scattered photons implies the need for a larger number of cooling
lasers. This number is, in turn, dependent on the magnitude of non-
diagonal FCFs. It would, therefore, be of interest, in order to provide
the best theoretical estimates for the number of scattered photons, to
calculate non-diagonal FCFs at a high level of theory, for instance, by
including triple and higher excitations to the CI or coupled cluster
wavefunctions, considering non-adiabatic corrections, or both.

Due to limitations in both computational resources and the
availability of computer implementations, it is outside the scope
of this work to investigate such aspects. Before attempting to do
so, however, it would be useful to have reliable experimental data
on vibrational branching measurements in order to determine how
much computations must be improved to bridge the gap between
theory and experiment for TlCl.

In addition, as reported by Norcia et al.,44 introducing stim-
ulated emission is a potentially efficient method for laser cooling.
Consequently, we also examine the effect of stimulated radiation
by varying the spectral energy density ρ(ωij) of the simulation that
employs five lasers. The ρ(ωij) in case (b-1) and case (b-2) are
10−12 J/(m3 s Hz) and 10−13 J/(m3 s Hz), respectively. In case
(b-3), we remove the stimulated radiation terms in the equation and
keep the same ρ(ωij) as for case (b-1). The results are displayed in
Fig. 3. The large difference in both photon numbers and scattering
rates between case (b-1) and case (b-3) shows that the simulations
are significantly affected by stimulated radiation.

By comparing case (b-1) and case (b-2), we find that increasing
the higher spectral energy density results in absorbing more pho-
tons. For instance, TlCl could scatter 25 000 photons in 0.04 s under
ρ(ωij) = 10−12 J/(m3 s Hz), but only 10 000 in 0.08 s under ρ(ωij)

= 10−13 J/(m3 s Hz). In conclusion, enhancing stimulated radia-
tion is an effective strategy for strengthening the cooling dynamics,
including the total number of scattered photons and the scattering
rate.

IV. CONCLUSION
Through four-component multi-reference configuration inter-

action (MRCI), equation of motion coupled-cluster (EOM-CC),
and polarization propagator (PP) calculations, we investigated the
permanent dipole moments (PDMs) of the ground and low-lying
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FIG. 3. The cooling simulation at different levels of stimulated radiation. Case
(b-1): spectral energy density ρ(ωij) is 10−12 J/(m3 s Hz); case (b-2): ρ(ωij) is
10−13 J/(m3 s Hz); case (b-3): ρ(ωij) is 10−12 J/(m3 s Hz) but the stimulated
radiation coefficients Bij is set as 0.

excited states of TlF and TlCl molecules as well as the transi-
tion dipole moments (TDMs) between these electronic states. Our
primary objective is to extract, from the TDMs, the excited state life-
times that will allow us to determine whether or not the TlCl species
is a suitable choice for laser cooling experiments.

After cross-validating the four-component MRCI results with
the other two methods, we applied it to derive a PDM of −2.47 D and
a lifetime of 91 ns for the a3Π1 state of TlF, which are comparable to
the experimental results of −2.28(7) D and 99(9) ns, respectively.

For TlCl, we obtained from our four-component MRCI calcu-
lations a lifetime of 175 ns for the a3Π+0 state. This value is much
shorter than a recent theoretical estimation of 6.04 μs by Yuan et al.14

from SOCI calculations. Our results point to the strong underesti-
mation by the SOCI method of the TDMs as the main factor behind
such a discrepancy, as the SOCI ground and excited state energies
and PDMs for TlCl closely match the four-component values.

We have done a comprehensive population simulation with the
new lifetime by solving the rate equation, and we find that TlCl
exhibits comparable cooling dynamics to TlF. Moreover, our simula-
tions reveal that the vibrational branching of weak transitions driven
by non-diagonal elements of Franck–Condon factors may play a sig-
nificant role in cooling efficiency. We believe that a highly precise
experiment measuring the Franck–Condon factors of a3Π+0 -X1Σ+0
transition of TlCl could provide useful information for pinpointing
the deficiencies of current theoretical models.

Finally, we investigate the effect of stimulated radiation on the
cooling process. We show that stimulated radiation is significant and
that raising the spectral energy density is one approach to enhance
the cooling efficiency.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details on the
Generalized Active Spaces (GAS) setup and tests using different
MRCI models, the Einstein coefficients and the vibrational branch-
ing used in the cooling simulation, and the ZZ component of the
polarizability of TlF and TlCl evaluated with finite-field methods.
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We have studied the mutual neutralization reaction of atomic iodine ions (i.e., I+ + I− → I + I) in a cryogenic
double electrostatic ion-beam storage-ring apparatus. Our results show that the reaction forms iodine atoms
either in the ground-state configuration (I(5p5 2P◦), ∼40%) or with one atom in an electronically excited state
(I(6s 2[2]), ∼60%), with no significant variation over the branching ratios in the studied collision-energy range
(0.1–0.8 eV). We estimate the total charge-transfer cross section to be of the order of 10−13 cm2 at 0.1 eV collision
energy. Ab initio relativistic electronic structure calculations of the potential-energy curves of I2 suggest that the
reaction takes place at short internuclear distances. The results are discussed in view of their importance for
applications in electric thrusters.

DOI: 10.1103/PhysRevA.106.012812

I. INTRODUCTION

Electric thrusters for space vehicles have been used across
the world since the 1960s. Since then, they have been
deployed on hundreds of satellites and space exploration
probes [1,2]. Thanks to the recent increase in available power
on spacecraft [1], the full potential of electric propulsion is
now achievable. This is demonstrated by the emergence of all-
electric communication satellites and projects requiring the
deployment of large constellations of small electric-powered
satellites [1–3] (see also [4] and references therein).

The basic physical principles of electric thrusters are the
following: a plasma is formed by ionizing the propellant, and
the ions created are accelerated by electromagnetic fields.
The ejection of the accelerated ions produces a thrust to the
spacecraft through the conservation of momentum. The ef-
ficiency of these systems depends strongly on the total ion
density formed in the plasma. An efficient propellant should
therefore have high atomic mass and be easy to ionize in
order to yield high ion fluxes and exert a large force on the
spacecraft. Xenon is currently the propellant of choice (see,
e.g., [5] and references therein), owing to its high atomic mass
and fairly low ionization potential. However, xenon is rare, is
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nicolas.sisourat@sorbonne-universite.fr

Published by the American Physical Society under the terms of the
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expensive, and must be stored either in high-pressure tanks or
at cryogenic temperatures, significantly impacting the usable
volume in satellites.

The iodine molecule is an interesting candidate to replace
xenon [6–9] since it also has high atomic mass and low ioniza-
tion potential. In contrast to xenon, iodine is cheap and exists
in the solid state at standard pressure and temperature. These
properties result in a storage density of iodine that is 3 times
higher than that of xenon under equivalent conditions. In an
iodine plasma thruster, the electric energy is used to ionize
the iodine molecules to form the plasma. In addition to this
ionization, some energy is also inevitably dissipated in other
processes, leading to various atomic and molecular iodine
species, both neutral and charged. Only ions can be accel-
erated electrically to participate in the propulsion. However,
various reactions taking place in the volume of the plasma
can lead to the neutralization of the species, thus causing
substantial power loss. Currently, no data are available on
these processes, thus impeding the description and modeling
of such thrusters.

As a first step to address these issues, we have studied a
key reaction in iodine plasmas [10], the mutual-neutralization
(MN) reaction of atomic iodine ions:

I+ + I− → I + I + EK , (1)

where EK is the kinetic energy released in the process. Recent
modeling suggested that this reaction is important to the per-
formance of thrusters [10]. However, the model relies on input
from experimental studies that are associated with large un-
certainties regarding the actual MN collision partners and the
related rates in iodine plasmas [11]. Furthermore, the atoms
formed in MN collisions can undergo further reactions [6],
whose rates may depend strongly on the final states of the
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reaction products. The present study is therefore needed to
improve the modeling of iodine plasma.

In MN reactions, the kinetic energy released EK is related
to the initial- and final-state distributions of the atoms. By
measuring EK , the branching ratios of the different channels
in this reaction were determined at collision energies of ∼0.1
and ∼0.8 eV. Our results show that (i) the reaction leads to
two different sets of product pairs, either a pair of atoms in
the ground-state configuration or a pair in which one atom is
in its ground state while the other is in the 6s 2[2] excited state;
(ii) these pairs have a population of roughly 40%/60% with no
significant dependence on the collision energy in the studied
range; and (iii) the total charge-transfer cross section is of the
order of 10−13 cm2 at 0.1-eV collision energy. Furthermore,
insights into the electron dynamics taking place during the
collision are provided by potential-energy curves for I2, which
we have calculated by means of multireference ab initio rel-
ativistic electronic structure methods. These suggest that the
relevant curve crossings leading to the observed final states
occur at short internuclear distances.

The outline of this article is as follows: in Sec. II, we briefly
describe the theoretical and experimental methods employed
to study the mutual neutralization reactions of iodine ions. In
Sec. III, the ab initio potential-energy curves of I2 are dis-
cussed, and the experimental branching ratios for the different
channels in this reaction are reported. The article ends with a
summary of this work (Sec. IV).

II. METHODS

A. Theory

The ab initio calculations of the electronic states of I2

were performed with the DIRAC19 release [12] and with
a development version (hash 1E798E5) of the DIRAC rela-
tivistic electronic structure package [13]. In all calculations
we employed the four-component Dirac-Coulomb Hamilto-
nian, which accounts for scalar and spin-orbit effects at the
mean-field level. We employed an uncontracted triple-zeta
quality basis set, including three diffuse functions (t-aug-
dyall.v3z [14]), in order to accurately compute the Rydberg
and ion-pair (IP) states.

The ground and electronically excited states considered
here were obtained with the multireference configuration
interaction (MRCI) method, as implemented in the KRCI

module [15] of DIRAC. In the reference configuration for
MRCI we employed 10 electrons distributed over 12 spinors.
It includes the valence σ1/2, π1/2, π3/2, π

∗
1/2, π

∗
3/2, and σ ∗

1/2

molecular spinors arising from the p5 manifold of each atom
and ensures a qualitatively correct dissociation behavior for
large internuclear distances. We calculated 109 single-point
energies within the range of 1.9–10 Å for the potential-energy
curves (PECs) and 63 molecular states in total for the � =
0g, 0u, 1g, 1u, 2g, and 2u symmetries. Spectroscopic constants
for the different (bound) electronic states have been derived
from the calculated PECs with the LEVEL [16] program.

Our electronic structure calculations account for spin-orbit
coupling from the outset, with systems possessing linear
symmetry. Thus, instead of employing the commonly used
LS-coupling notation to characterize the symmetry of the

FIG. 1. Schematic of the double electrostatic ion-beam storage
ring DESIREE. I+ and I− ion beams are created from two different
ion sources (see text) and injected into the two rings. In the merged
section (drift tubes), the ions interact, and the resulting neutrals are
detected by means of a three-dimensional imaging detector con-
sisting of a microchannel plate and phosphor screen based detector
(MCP), a CMOS camera, and a PMT.

molecular electronic states, we label them by the value of
the projection of the total electronic angular momentum along
the internuclear axis �. For example, the first � = 0+

g state
corresponds to the 1�+

g ground state (for further details on
how the DIRAC code handles the attribution of such quantities
see Ref. [13]).

B. Experimental details

The experiments were carried out at the double elec-
trostatic ion-beam storage-ring facility Double ElectroStatic
Ion Ring ExpEriment (DESIREE) (Stockholm University,
Sweden), an ultrahigh-vacuum device operated at cryogenic
temperatures of about 13 K. This experimental setup was de-
scribed previously by Thomas et al. [17] (design and technical
description), Schmidt et al. [18] (first commissioning), and
Eklund et al. [19] (first mutual neutralization experiment) and
is only briefly discussed here.

Positive iodine ions were produced from pure iodine in an
electron cyclotron resonance (ECR) ion source, and negative
iodine ions were produced from magnesium iodide com-
pounds in a cesium sputtering source. Bending magnets at the
exit of the sources were employed to select the ions of interest,
after which the two oppositely charged ion beams of 127I were
accelerated and injected into the two storage rings.

As shown in Fig. 1, the two rings share a common sec-
tion in which interactions between the two species may occur.
Pickup electrodes, located at the entrance and exit of this
merged section, measure the beam positions and were used
to optimize the overlap of the two ion beams. The collision
energy Ec.m. of the reaction was then fine-tuned through the
biasing of drift tubes. This applied voltage decelerates (ac-
celerates) the negative (positive) ions to the desired velocities
in a small section of this merged region (the biased region),
allowing us to constrain the region of low-collision-energy
interactions (here chosen to be approximately 16 cm long).

A microchannel-plate (MCP) detector [20] located 1.5 m
from this biased region was used to detect the neutralized
particles arising from mutual neutralization events and resid-
ual gas collisions. Each of these events produced light spots
on a phosphor screen located behind the MCP. The resulting
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TABLE I. Experimental parameters used during the data acquisi-
tions. They include the energies Ei and currents Ii of the positive (A)
and negative (B) ion beams, the potentials applied to the interaction
region U , and the center-of-mass collision energy obtained Ec.m..

EA EB IA IB U Ec.m.

Data set (keV) (keV) (nA) (nA) (V) (eV)

1 13 12 3 8 500 0.07 ± 0.01
2 35 30 15 30 1275 0.10 ± 0.02
3 35 30 15 30 1060 0.80 ± 0.10

photons are guided via optics to a complementary metal oxide
semiconductor (CMOS) camera and a multianode photomul-
tiplier tube (PMT), which record the positions and relative
arrival times of the particles. The PMT signal-processing
system can detect events with an arrival-time difference up
to 200 ns. In the unbiased region of the merged section, the
relative velocity of the two ions is such that the arrival-time
differences are well outside this time window. Thus, these
events do not interfere with the data from reactions occurring
in the biased region.

C. Branching-ratio calculations

For an MN event occurring at a distance L from the detec-
tor, the separation between two neutral particles formed in the
reaction, as recorded by the detection system, is given by

r =
√

r2
‖ + r2

⊥ ≈
√

2(EK + Ec.m.)

μ

L

v
, (2)

where r‖ is the projected transverse distance, recorded by the
camera, r⊥ ≈ v�t is an approximation of the third dimen-
sional component (v is the average velocity of the reactants),
and μ is the reduced mass of the ions. Here, Ec.m. is the
center-of-mass kinetic energy before the interaction, and EK

is the kinetic energy released in the specific reaction channel.
This particular three-dimensional imaging technique of

two particles was first introduced by Amitay and Zajf-
man [21] for the study of the dissociative recombination
reaction [22–24] but has since been employed for a number
of MN systems, such as Li+/D− [19,25], Mg+/D− [26], and
O+/O− [27,28]. The resulting spectrum represents a distri-
bution of the final-state center-of-mass kinetic energy over
the longitudinal extension of the interaction region and the
collision-energy spread. By simulating these distributions us-
ing the Monte Carlo method and fitting them to the data, the
branching ratios can be extracted [19,29]. They are corrected
for the energy-dependent efficiency related to the angular
acceptance of the detectors (for more details see Ref. [28]).

Table I shows the experimental parameters used during the
three experimental runs: In the first run, data were acquired
using slower ion beams in order to investigate the low kinetic-
energy release EK channels in detail; in the other two runs,
data were acquired with the aim of measuring the final-state
distributions of all energetically open channels at two different
collision energies.

In order to maximize the range of product kinetic energies
that could be detected and obtain satisfying rates, higher beam
energies and currents were used in the two later data sets,
resulting in larger background contributions. These mainly
arise from collisions between stored ions and residual-gas

FIG. 2. MRCI PECs of 51 electronic states (including Rydberg and IP) of I2, classified in terms of the projection of the total electronic
angular momentum �. Twelve (� = 0)−g and (� = 0)−u states are not shown here since there is no I+(3P2) + I−(1S0) state with this symmetry.
The energies (in eV) have been scaled so that the zero corresponds to twice the energy of the 2P3/2 ground state of the isolated iodine atom.
See Table III for the energies of the different asymptotes. Detailed views of the PECs at short internuclear distances are shown in Fig. 5 in the
Appendix.
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FIG. 3. Yields of neutral pairs as a function of the separation r between the products at center-of-mass collision energies of (a) 0.07 eV,
(b) 0.1 eV, and (c) 0.8 eV. The top scale shows the corresponding center-of-mass kinetic energy after the reaction [Eq. (2)]. The solid curve
results from a fit of the simulated distributions of ground-state–excited-state pairs [blue line; Eq. (3)] and ground-state-configuration pairs
[red line; Eq. (4)]. The asterisks indicate contributions from metastable cations (not included in the fit). The background has been subtracted
(see Fig. 6 in the Appendix for original spectra).

molecules as well as false coincidences. The majority of the
background could be filtered out by excluding events for
which the center-of-mass position of the two products on
the imaging detector was outside a 5-mm range. However, a
non-negligible number of events remained after this selection,
in particular for measurements with low signal to background
ratio. The filtered-out events were then used as a model for
this remaining background and were subsequently subtracted
from the spectra. For more details see the Appendix.

D. Reaction cross-section estimate

In order to extract MN reaction cross sections, it is neces-
sary to determine the spatial distributions of the interacting
particle beams. Currently, a method to derive this overlap
(form factor) with high precision is not available at DESIREE.
Additionally, it may vary between different experiments since
the storing of merged beams requires adjusting the ion optics
based on the mass ratio and energies of the two ions. The cross
section may therefore be only roughly estimated based on
the observed rates relative to other previously studied systems
with known cross sections and is subject to large uncertainties.
However, given the absence of any experimental or theoretical
estimate for this particular collision system, we have made
such an evaluation, which is presented in the results section.

III. RESULTS AND DISCUSSION

A. Theoretical results

In order to get insights into the MN dynamics, we re-
port the potential-energy curves of I2 in Fig. 2 (a detailed
discussion of these curves is given in the Appendix). At
the collision energies investigated in this work, electronic
processes take place mainly around the avoided crossings.
Assuming the system starts in the lowest ion-pair state [i.e.,
I+(3P2) + I−(1S0); blue curve in Fig. 2], one can, in principle,
study the paths to a given final state for each symmetry. Since
the asymptotic energy of the ion-pair state lies above the neu-
tral excited-state–ground-state pair, the reaction may result in

the formation of an electronically excited iodine atom, i.e.,

I+ + I− →
{

I(6s 2[2]3/2) + I(5p5 2P◦
3/2) + 0.44 eV,

I(6s 2[2]5/2) + I(5p5 2P◦
3/2) + 0.62 eV.

(3)

As there are too many avoided crossings between the
states, an appropriate simulation of the collision dynamics is
necessary to study the pathway to these channels. However,
the path to the lowest states of I2 is fairly simple: For all
symmetries the lowest ion-pair state exhibits first an avoided
crossing with the curves corresponding to I(2P◦

3/2) + I(6s)
(here shown in red) at an internuclear distance between 2.5
and 3 Å. At shorter internuclear distances, these curves can
cross the ground-state-configuration curves, resulting in the
following channels:

I+ + I− →
⎧⎨
⎩

I(5p5 2P◦
1/2) + I(5p5 2P◦

1/2) + 5.51 eV,

I(5p5 2P◦
1/2) + I(5p5 2P◦

3/2) + 6.45 eV,

I(5p5 2P◦
3/2) + I(5p5 2P◦

3/2) + 7.39 eV.

(4)

Therefore, the simplest path to the lowest states of I2 is
through a highly excited state followed by a deexcitation of
the excited iodine atom at closer distances between the colli-
sion partners.

We note that avoided crossings between the lowest ion-pair
state and these excited-state–ground-state pair states also oc-
cur at larger internuclear distances (∼23 Å). However, using
a Landau-Zener approach and the Olson semiempirical model
(see [30], Eq. (13)), we estimate that the electronic couplings
at these avoided crossings are negligible. The dynamics of the
reaction are therefore expected to take place at the avoided
crossings presented in Fig. 2, for which more advanced
modeling is necessary, as the current approach is not appli-
cable to nonisolated crossings occurring at short internuclear
distances.

B. Experimental results

The yields of neutral pairs as a function of the separation
r between the products for the three acquired data sets (see
Table I) are shown in Figs. 3(a), 3(b), and 3(c). As different
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FIG. 4. Branching ratios of the mutual neutralization of I+ with
I− at the two measured collision energies.

beam energies and collision energies were used for the dif-
ferent data sets, the measured separations then correspond to
different final kinetic energies [see Eq. (2)], as highlighted
in the top scales of Fig. 3, and hence different final states
[Eqs. (3) and (4)]

For the first spectrum [Fig. 3(a)], at (0.07 ± 0.01)-eV col-
lision energy, slower ion beams were used in order to resolve
the channels resulting in iodine in the 6s 2[2] excited state.
Thus, the separations correspond to kinetic energies only up
to 3 eV. The two channels [Eq. (3)], corresponding to the
spin-orbit splitting of this excited state, can be clearly dis-
tinguished in the spectrum, with the J = 5/2 state found to
dominate. In the second data set [Fig. 3(b)], a similar collision
energy was achieved, namely, 0.10 ± 0.02 eV. The same two
peaks [from Fig. 3(a)] are then located at lower separations
(around 1 cm) due to the higher beam energies used but are
no longer resolved. However, an additional peak appears at
larger separations, corresponding to pairs of iodine atoms in
the ground-state configuration [Eq. (4)]. Since the broadening
of the distributions scales with kinetic energy, the individual
J-state pairs are not resolved, but the width of the peak indi-
cates that contributions from all three channels are present.

The observed rate for this measurement was found to be
commensurate with the O+/O− collision system previously
studied at DESIREE [28], for which the cross section is well
known [27]. We therefore estimate the cross section to be
in the range of 10−13 cm2 (±1 order of magnitude) at this
collision energy (∼0.1 eV).

In the third measurement [Fig. 3(c)], the same beam ener-
gies as in Fig. 3(b) were used, but the drift tubes were biased to
yield a slightly higher collision energy, i.e., 0.80 ± 0.10 eV.
This results in a lower count rate due to the expected 1/Ec.m.

cross section dependence on the collision energy, as well as
additional broadening and a shift in the separations. However,
the two main peaks are still fully resolved and within the
detectable range.

For the three spectra, the results from the fits of the
simulated distributions are shown as solid black lines, with
the individual distributions shown by colored lines: blue for
the excited-state–ground-state pairs and red for the different
ground-state-configuration pairs. While the peaks are found to
become broader as the collision energy increases, the relative

TABLE II. Experimental branching ratios of the different chan-
nels at collision energies of 0.1 and 0.8 eV.

Product channel EK (eV) Expt., 0.1 eV Expt., 0.8 eV

2[2]3/2 + 2Po
3/2 0.44 21% ± 3% 16% ± 6%

2[2]5/2 + 2Po
3/2 0.62 44% ± 3% 45% ± 8%

2Po
1/2 + 2Po

1/2 5.51 4% ± 2% 8% ± 4%
2Po

1/2 + 2Po
3/2 6.45 20% ± 5% 20% ± 6%

2Po
3/2 + 2Po

3/2 7.39 11% ± 4% 11% ± 5%
2[2] + 2Po ∼0.5 eV 65% ± 1% 61% ± 3%
2Po + 2Po ∼6.5 eV 35% ± 1% 39% ± 3%

intensities appear to be mostly unchanged. In addition, two
small features appear to not correspond to any of the channels:
One at short separations, below the lower energetic channels,
is believed to be an artifact of the background model used. The
second one, around 1.5 eV, is likely to be a contribution from
the first fine-structure state of the cation, namely, I+(3P0).
Since the state is about 0.8 eV above the ground state, it can
be expected to be populated to some degree when produced in
an ECR source. The observed peak positions (marked with an
asterisk in the spectra) are found to correspond to the channels
of Eq. (3) with this additional energy. In the higher-collision-
energy measurement [Fig. 3(c)], the peak is not observed as it
cannot be resolved from the main peak. Storage of up to 20 s
did not reveal any change in the signal, suggesting that the
metastable level lives for a longer time. This can be explained
by the necessity of a quadrupole transition (�J = 2) for decay
to the ground state.

Based on the fits, the branching ratios were extracted, with
the lower-collision-energy measurement (Ec.m. ∼ 0.07 eV)
used to determine the relative intensity of the two excited
channels at 0.1-eV collision energy. This is motivated as the
branching ratios are not expected to change drastically over
such a small range of collision energies. The results are pre-
sented in Fig. 4, with the full details presented in Table II.

All energetically open channels are found to be populated
to some extent, with the 2[2]5/2 + 2Po

3/2 channel found to
dominate at the measured collision energies. For the ground-
state-configuration pairs, 2P◦

1/2 + 2P◦
3/2 is favored, while a

lower population is observed for the J = 1/2 pair compared to
the J = 3/2 pair. As the individual channels are not fully re-
solved, the branching ratios have rather large uncertainties, as
indicated by the error bars. The two main peaks are, however,
clearly separated, and thus, their total branching ratios can be
determined directly by evaluating the area under the respec-
tive peaks. The uncertainties are then given by the counting
statistics and the error in the background. These smaller errors
are shown in the last two rows of Table II. The results show
that the branching ratios do not differ significantly for the two
energies considered.

IV. SUMMARY

In this work, we have studied the mutual neutralization
of I+ with I−, using ab initio relativistic electronic structure
calculations and merged beam techniques at the double elec-
trostatic ion-beam storage ring DESIREE. We have measured
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TABLE III. Dissociation relationships of I2. The molecular state is identified by the projection of total electronic angular momentum �.
The number of states for each symmetry of the � state is given in parentheses.

Energy level (eV)

Dissociation limits Molecular states MRCI (this work) Expt. [35]

2P◦
3/2 + 2P◦

3/2 2g(1), 1g(1), 0g(2), 2u(1), 1u(2), 0u(2) 0 0
2P◦

1/2 + 2P◦
3/2 2g(1), 1g(2), 0g(2), 2u(1), 1u(2), 0u(2) 1.04 0.943

2P◦
1/2 + 2P◦

1/2 0g(1), 1u(1), 0u(1) 1.99 1.885
2[2]5/2 + 2P◦

3/2 2g(3), 1g(4), 0g(4), 2u(3), 1u(4), 0u(4) 6.629 6.774
2[2]3/2 + 2P◦

3/2 2g(2), 1g(3), 0g(4), 2u(2), 1u(3), 0u(4) 7.248 6.954

the branching ratios of the different channels using product-
imaging methods combining position and timing information.
Our results show that the reaction forms either high-kinetic-
energy iodine neutral pairs in the ground-state configuration
or slow neutral pairs with one iodine atom in the 6s 2[2]
excited state, through avoided crossings at short internuclear
distances. Experimentally, these two channels were found to
have a population of about 40%/60%, with no significant
dependence on the collision energy in the studied range (0.1–
0.8 eV) and with an observed rate commensurate with a
previously studied system [28] (cross section of ∼10−13 cm2

at 0.1-eV collision energy). These results are relevant to the
modeling and diagnostics of low-temperature iodine plas-
mas [31], which are promising candidates as propellants for
electric space propulsion. Data on recombination processes
are essential to model these plasmas, as these reactions can
have substantial effects on the efficiency and ignition time of
engines [32]. Furthermore, the atoms formed after MN can
undergo further reactions. For example, in [6,10] the authors
consider atomic iodine excitation and ionization by electron
impact as well as surface recombination. However, they used
data that were obtained for iodine in the ground electronic
state. The cross sections of these reactions are expected to
be different for electronic excited states of iodine. Knowledge
of the final-state distribution of the MN reaction, as provided
in the present study, is therefore essential to obtain a more
accurate description of iodine plasmas. The results discussed
here will be combined with theoretical calculations in order to

TABLE IV. Spectroscopic constants of the lowest four bound �

states of I2.

State Te (cm−1) Re (Å) ωe (cm−1) Method

X 0+
g 0 2.717 236.4 MRCI (this work)

0 2.651 215.9 CASPT2 [34]
0 2.666 214.5 Exp. [36]

A 2u 10119 3.124 117.7 MRCI (this work)
3.014 124.0 CASPT2 [34]

10042 3.073 108.3 Expt. [36]

A 1u 11162 3.173 92.0 MRCI (this work)
3.040 114.6 CASPT2 [34]

10907 3.114 93.0 Exp. [36]

B 0+
u 15915 3.089 112.6 MRCI (this work)

2.991 135.3 CASPT2 [34]
15769 3.025 125.7 Expt. [36]

develop and improve the accuracy in modeling mutual neu-
tralization reactions involving iodine species, efforts which
will be extended to include more complex reactions involving
molecular ions.

ACKNOWLEDGMENTS

X.Y. and A.S.P.G. acknowledge funding from projects
Labex CaPPA (Grant No. ANR-11-LABX-0005-01) and
CompRIXS (Grants No. ANR-19-CE29-0019 and No.
DFG JA 2329/6-1), the I-SITE ULNE project OVER-
SEE, and MESONM International Associated Laboratory
(LAI; Grant No. ANR-16-IDEX-0004) and support from the
French national supercomputing facilities (Grant No. DARI
A0090801859). This work was performed at the Swedish
National Infrastructure, DESIREE (Swedish Research Coun-
cil Contracts No. 2017-00621 and No. 2021-00155), and the
authors thank the staff of DESIREE for their crucial contri-
butions. This work is part of the project “Probing charge-
and mass- transfer reactions on the atomic level,” supported
by the Knut and Alice Wallenberg Foundation (Grant No.
2018.0028), and is based upon work from COST Action
(CA18212)-Molecular Dynamics in the GAS phase (MD-
GAS), supported by COST (European Cooperation in Science
and Technology). H.T.S. and H.Z. acknowledge funding from

TABLE V. Spectroscopic constants of the ion-pair states of I2.
Experimental values (taken from [36] and references therein) are
given in parentheses.

State Te (cm−1) Re (Å) Dissociation limits

D′ 2g 40764 (40388) 3.712 (3.594) 3P2 + 1S0

β 1g 41438 (40821) 3.721 (3.607) 3P2 + 1S0

D 0+
u 42314 (41026) 3.737 (3.584) 3P2 + 1S0

E 0+
g 42499 (41411) 3.773 (3.647) 3P2 + 1S0

γ 1u 42315 (41621) 3.814 (3.683) 3P2 + 1S0

δ 2u 42162 (41787) 3.900 (3.787) 3P2 + 1S0

f 0+
g 47971 (47026) 3.692 (3.574) 3P0 + 1S0

g 0−
g 48717 (47086) 3.672 (3.572) 3P1 + 1S0

F 0+
u 48961 (47217) 3.712 (3.600) 3P0 + 1S0

G 1g 48694 (47559) 3.654 (3.549) 3P1 + 1S0

H 1u 49327 (48280) 3.749 (3.653) 3P1 + 1S0

h 0−
u 49467 (48646) 3.899 (3.780) 3P1 + 1S0

F ′ 0+
u 54363 (51706) 3.557 (3.479) 1D2 + 1S0

1g 55934 (53216) 3.623 (3.522) 1D2 + 1S0

f ′ 0+
g 58306 (55409) 3.963 (3.825) 1D2 + 1S0

012812-6



FINAL-STATE-RESOLVED MUTUAL NEUTRALIZATION IN … PHYSICAL REVIEW A 106, 012812 (2022)

the Swedish Research Council (Contracts No. 2018-04092
and No. 2020-03437). This material is based upon work sup-
ported by the Air Force Office of Scientific Research under
Award No. FA9550-19-1-7012 (R.D.T.). The authors thank A.
Schmidt-May for analysis code development. N.S. thanks A.
Bourdon and J.-P. Booth for fruitful discussions and Plas@par
for financial support.

APPENDIX

Table III lists the five lowest dissociation limits of I2.
When considering spin-orbital coupling, there are three va-
lence channels for I(5p5) + I(5p5), 2P◦

3/2 + 2P◦
3/2, 2P◦

1/2 +
2P◦

3/2, and 2P◦
1/2 + 2P◦

1/2, as well as two Rydberg channels
for I(5p46s1) + I(5p5), 2[2]5/2 +2P◦

3/2 and 2[2]3/2 +2P◦
3/2. The

corresponding energy gaps of 2P◦
3/2 − 2P◦

1/2 and 2[2]5/2 −2P◦
3/2

are 1.0 and 6.63 eV, which are in reasonable agreement with
experimental values of 0.94 and 6.77 eV, respectively. On
the other hand, for the separation of the 6s Rydberg state
2[2]3/2 − 2[2]5/2, the computed value of 0.62 eV is higher than
the available experimental value of 0.18 eV.

1. Valence states

There are a total of 22 valence states corresponding to
the lowest three dissociation limits, and as can be seen from
Fig. 2 (see Fig. 5 for detailed views of the MRCI PECs),
most of the molecular states are either repulsive states or
quasibound states except for four states: X 0+

g , A 2u, A 1u,
and B 0+

u , which are consistent with experimental results.
The spectroscopic constants of these four states, including
equilibrium distance Re, adiabatic excitation energy Te, and
vibrational constant ωe, are compared to experimental data

and recent complete active space with second-order pertur-
bation theory correction (CASPT2) results in Table IV. It
can be seen from Table IV that our calculations predict Te

rather well, showing average errors no larger than 200 cm−1.
For the equilibrium distance, the difference between MRCI
and the experimental value is nearly identical to those of
CASPT2.

Apart from these valence excited states, we also observe
several Rydberg states at energies around 56 000, 61 000, and
67 000 cm−1. We note Re of such Rydberg states are around
2.66 Å, which is close to Re of ground-state X 2�3/2g of
I+2 [33]. So they may belong to a Rydberg series, which
converges on the ionization energy threshold associated with
the ground state of I+2 .

2. Ion-pair states

The ion-pair states exhibit dominantly a repulsive Coulomb
character. We also fit the corresponding spectroscopic con-
stants of the bound states by LEVEL according to the PECs.
The result for Te and Re are collected in Table V for compari-
son.

The total of 18 IP states correspond to four different atomic
states of I+: 3P2, 3P1, 3P0, and 1D2. There is a systematic
difference for Re. The computed Re values are larger than the
experimental ones by about 0.1 Å. For the adiabatic excitation
energy, the deviations show a pattern indicated in the CASPT2
calculation [34]; that is, the difference in Re between gerade
states is smaller than that of the ungerade states.

3. Background subtraction

The experimental distributions prior to background sub-
traction are shown in Fig. 6. This signal corresponds to

FIG. 5. Detailed views of the MRCI PECs of the electronic states of I2 at short internuclear distances. Note that the energy for the highest
state of symmetry 0+

g could not be computed below 2.9 A within the implementation of our method, as seen in the bottom left panel.
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FIG. 6. Spectra from Fig. 3 prior to background subtraction. The background model, which is based on the excluded events in the data
analysis, as described in Sec. A3, was fitted to the data and is shown here as a solid gray line.

the data for which the center-of-mass of the two particles
is within a 5-mm radius and contains both MN events and
background. Outside this radius, the signal should contain
only background. Assuming the center-of-mass distribution
of the background is random, this signal may be used as a
model for the background. An initial fit was first made with

this model based on the data ranges in which no signal is
expected to be present [i.e., where r deviates from the sim-
ulated distributions of Eqs. (3) and (4)] and is shown as a
gray line in Fig. 6. This background model was then sub-
tracted to yield the background-corrected spectra presented in
Fig. 3.
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We have computed the cross sections of the mutual neutralization reaction between I+ and I− for a collision
energy varying from 0.001 eV to 50 eV. These cross sections were obtained using the adiabatic potential energy
curves of the I2 system computed with a direct relativistic multireference configuration interaction method and a
semiclassical approach (i.e., Landau-Zener surface hopping). We report the cross sections towards the following
neutral states: I(2P3/2) + I(2P3/2), I(2P3/2) + I(2P1/2), I(2P1/2) + I(2P1/2), and I(5p46s) + I(2P3/2). We also dis-
cuss the cross sections towards the following two excited ionic states: I−(1S0 ) + I+(3P0 ) and I−(1S0 ) + I+(3D2).
The results of these calculations are in qualitative accordance with recent experimental measurements conducted
in the Double ElectroStatic Ion Ring ExpEriment (DESIREE) in Stockholm. These results can be used to model
iodine plasma kinetics and thus to improve our understanding of the latter.

DOI: 10.1103/PhysRevA.107.022808

I. INTRODUCTION

The mutual neutralization (MN) of two oppositely charged
ions is a central reaction taking place in electronegative plas-
mas. The latter are found in, e.g., the lower ionosphere [1],
flames [2], interstellar medium [3,4], and in excimer lasers
[5]. As such, MN reactions have been investigated in various
systems (see, e.g., Ref. [6] and references therein).

Iodine plasma is one example of an electronegative plasma.
Interest in iodine plasma has been renewed recently since it
is a promising candidate to be used in electric propulsion
systems, notably for satellites (see, e.g., Refs. [7,8] and ref-
erences therein).

Very recently, the MN reaction between I+ and I− ions has
been studied experimentally by Poline et al. [9] at the Double
ElectroStatic Ion Ring ExpEriment (DESIREE) facility: the
branching ratios for the different channels were measured at
two collision energies, 0.1 eV and 0.8 eV. This work showed
that the MN reaction forms iodine atoms either in their ground
state or with one atom in an electronically excited state. These
two classes of states were found to be populated with nearly
equal proportions with no dependence on the collision energy.
The total cross sections at these collision energies were esti-
mated, but with fairly large uncertainties.

There are currently no accurate absolute cross sec-
tions published for the MN reaction between I+ and I− ions,
which impedes the modeling of iodine plasma. Investigating
such a collision system is a difficult task since iodine has a
strong spin-orbit coupling, and moreover, the potential en-
ergy curves of I2 exhibit multiple and overlapping avoided
crossings, where the MN reaction can take place. The aim of

*Nicolas.sisourat@sorbonne-universite.fr

the present work is to provide estimates of these cross sec-
tions in a broad range of collision energies. For that, we have
employed a combination of ab initio relativistic electronic
structure calculations and the Landau-Zener surface hopping
(LZSH) method to compute the relevant cross sections. Our
calculations are then compared to the recent experiments of
Poline et al. [9].

This paper is organized as follows. In the next section we
briefly outline the methods used in the present work. Sec-
tion III is devoted to the discussion of the theoretical results of
this work and their comparison with the experimental results
obtained recently by Poline et al. [9] at the DESIREE double
ion ring. The conclusions are reported in Sec. IV. Atomic units
are used throughout, unless explicitly indicated otherwise.

II. METHODS

A. Potential energy curves

The potential energy curves used in this work, shown in
Fig. 1, were already presented in Poline et al. [9]. They
have been obtained with the multireference configuration in-
teraction (MRCI) method, as implemented in the Kramers
restricted configuration interaction (KRCI) module [10] of the
DIRAC relativistic electronic structure package [11]. Such cal-
culations have been carried out with the DIRAC19 [12] release
as well as with the development version identified by hash
1e798e5. We employed triple-zeta quality basis sets [13] sup-
plemented by diffuse functions so that Rydberg and ion-pair
(IPr) states could be accurately represented. The exponents
for the diffuse functions (listed in Table III of the Appendix)
were automatically generated by DIRAC as even-tempered se-
quences based on the most diffuse exponents of the dyall.v3z
basis. The reference wave function consisted of the set of

2469-9926/2023/107(2)/022808(9) 022808-1 ©2023 American Physical Society
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FIG. 1. Potential energy curves of 51 electronic states of I2 computed with relativistic MRCI (reconstructed from the data from Poline
et al. [9]). Only the states of the symmetries that correlate with the I−(1S0 ) + I+(3P2) reactants state are displayed here.

determinants spanned by the p5 manifold of each of the io-
dine atoms (thus representing 10 electrons in 12 spinors). For
further information, readers can consult the computational
details section of Poline et al. [9].

It should be noted that we computed the potential energy
curves for states with projection of total electronic angular
momentum � = 0, 1, 2 but not for states with � > 2 since
the I−(1S0) + I+(3P2) reactant state does not correlate with
such states. Indeed, the I−(1S0) + I+(3P2) state correlates with
states having the following angular momenta [14]: the double
degenerate (� = 1)g, (� = 1)u, (� = 2)g, and (� = 2)u, and
the singly degenerate (� = 0)+g and (� = 0)+u .

Furthermore, for implementation reasons the KRCI mod-
ule does not take into account the +/- symmetry and thus is
not able to differentiate directly the + and the - states. In order
to do that, we also computed the dipole transition moments
between the (� = 0)g and the (� = 0)u states. Knowing that
the lowest (� = 0)g state is of + symmetry and that the lowest
(� = 0)u state is of - symmetry [14], we were able to rebuild
the potential energy curves of the (� = 0)+g and (� = 0)+u
states using the selection rule stating that the dipole transition
between a + and a - state is forbidden [15]. The list of the
computed states and their asymptotic energies are reported in
Table I.

B. Landau-Zener surface hopping

An accurate description of MN reactions at low collision
energies requires, in principle, a fully quantum mechanical
approach for the nuclear dynamics. However, in the current
system, such a sophisticated approach is out of reach from
a computational point of view: nonadiabatic couplings are
not implemented in the KRCI module of the DIRAC package.
Moreover, the potential energy curves of I2 exhibit multiple
and overlapping avoided crossings such that a diabatization

procedure would be a tedious and challenging task. To over-
come this difficulty, in this work we employ the LZSH method
[17] to obtain the cross sections of the I+ + I− mutual neutral-
ization reaction.

LZSH is a probabilistic, semiclassical method in which
the system is moving classically along the potential energy
curves. The nonadiabatic interactions are considered only
at the vicinity of avoided crossings [18,19]. The list of
the avoided crossings considered in this work is given in
Table IV of the Appendix. Note that, as previously mentioned
in Poline et al. [9], we estimated the electronic couplings at
large-distance (R > 7 Å) crossings between the ion-pair states
and the I(5p46s) + I(2P1/2) states. These couplings have been
shown to be negligible (see below).

The LZSH method can be described as follows: The system
starts at a distance R0 on the curve corresponding to the
reactants [i.e., the curves which correlate with the I−(1S0) +
I+(3P2) ion pair state], R0 being larger than the internuclear
distances of all avoided crossings [in this work, R0 = 12
atomic units (a.u.)]. The system then moves along this curve
while it has sufficient kinetic energy and until it reaches an
avoided crossing. At this point there is a probability pLZ

α→β

[given by the Landau-Zener formula [20–22], Eq. (1)] that
the system hops from its starting state (named α) to the other
state involved in the avoided crossing (named β), if its kinetic
energy is sufficient. We have

pLZ
α→β = exp

⎛
⎜⎝− π

2v

√√√√ �V 3
αβ

d2

dR2 (�Vαβ )

⎞
⎟⎠, (1)

where v is the relative radial velocity of the two nuclei at the
crossing and �Vαβ is the energy difference between the two
adiabatic potential energy curves at the avoided crossing. v is
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TABLE I. Asymptotic energies of the I2 states employed in this work. The molecular states are identified by the projection of the total
electronic angular momentum (�). The number of states for each � symmetry are given in parentheses. The last four states of this table
correspond to ion-pair states.

Dissociation limits Molecular states Asymptotic energy (eV)

MRCI (this work) Exp [16]
2P3/2 + 2P3/2 2g(1), 1g(1), 0+

g (2), 2u(1), 1u(2), 0−
u (2) 0 0

2P1/2 + 2P3/2 2g(1), 1g(2), 0+
g (1), 0−

g (1), 2u(1), 1u(2), 0+
u (1), 0−

u (1), 1.04 0.943
2P1/2 + 2P1/2 0+

g (1), 1u(1), 0−
u (1) 1.99 1.885

2[2]5/2 + 2P3/2 2g(3), 1g(4), 0+
g (2), 0−

g (2), 2u(3), 1u(4), 0+
u (2), 0−

u (2) 7.23 6.774
2[2]3/2 + 2P3/2 2g(2), 1g(3), 0+

g (2), 0−
g (2), 2u(2), 1u(3), 0+

u (2), 0−
u (2) 7.41 6.954

1S0 + 3P2 2g(1), 1g(1), 0+
g (1), 2u(1), 1u(1), 0+

u (1) 7.24 7.392
1S0 + 3P1 1g(1), 0−

g (1), 1u(1), 0−
u (1) 8.13 8.191

1S0 + 3P0 0+
g (1), 0+

u (1) 8.22 8.271
1S0 + 1D2 2g(1), 1g(1), 0+

g (1), 2u(1), 1u(1), 0+
u (1) 9.00 9.094

simply obtained by energy conservation,

v =
√

2[Em − Veff,α (R)]

μ
, (2)

with μ being the reduced mass of the system (for I2, μ =
115666 a.u.). Veff,α (R) is the effective adiabatic potential en-
ergy of the state α at the internuclear distance R,

Veff,α (l, R) = Vα (R) + l (l + 1)

2μR2
. (3)

Em is the mechanical energy of the system,

Em = Ecoll + Vasymp (4)

where Ecoll is the collision energy in the center of mass frame
and Vasymp is the energy of the I−(1S0) + I+(3P2) reactant state
at R → +∞.

When the kinetic energy of the system reaches 0, the sys-
tem turns back, and when it reaches R0 again, the trajectory
ends. By computing a sufficiently high number of trajectories,
we can compute a reaction probability Pf towards each of the
possible product states f :

Pf = Nf

Ntot
, (5)

where Nf is the number of trajectories which ended in the
product state f and Ntot is the total number of trajectories. In
this work we used Ntot = 400. We found that using a higher
value of Ntot has no significant impact on the results.

The cross sections towards each product state are then
obtained by integrating the Pf over the angular momentum
l [23],

σ X
f (Ecoll ) = π

2μEcoll

l=+∞∑
l=0

(2l + 1)Pf (Ecoll, l ), (6)

where X denotes a given symmetry state of the I2 potential
energy curves.

Practically, the sum in Eq. (6) stops (at a value l = lmax)
when the rotational barrier becomes too important for the
system to reach the farthest avoided crossing involving the

reactant state. We have

lmax = −1

2
+

√
1

4
− μR2

c

2
(4V (Rc) − Vasymp − Ecoll ), (7)

where Rc and V (Rc) are the internuclear distance and the
adiabatic energy of the reactant state at this avoided crossing.

This approach is used for each of the symmetries con-
sidered in this work (see Sec. II A), and the reaction cross
sections towards each state are then obtained by averaging
over all symmetries, taking into account their multiplicity,
hence

σ f (Ecoll ) =
∑

X∈symmetries mX σ X
f (Ecoll )∑

X∈symmetries mX
, (8)

with mX being the multiplicity of the symmetry X and σ X
α the

reaction cross section towards the state α for the symmetry X
obtained with Eq. (6).

At large distance (R > 7 Å), the avoided crossings between
the ion-pair states and the I(5p46s) + I(2P1/2) states are not
described by the MRCI calculations presented in Sec. II A. For
the avoided crossings between the ion pair states I−(1S0) +
I+(3P2), I−(1S0) + I+(3P1) and the I(5p46s) + I(2P1/2) states
we used a semiempirical model to estimate the electronic
couplings (see Olson et al. [24], Eq. (13), using γ 2

2 =
3.059 eV [25]). We obtained coupling values that are less than
8.10−5 a.u.. These avoided crossings take place at suffi-
ciently large distances for the semiempirical model to be
valid. However, the avoided crossings between the ion pair
states I−(1S0) + I+(1D2) and the I(5p46s) + I(2P1/2) states
take place at shorter distances and thus were described by
computing the potential energy curves of the system (using
the same method as the one described in Sec. II A), with 21
points with an internuclear distance varying from 7 to 8 Å. We
obtained coupling values that are less than 6 × 10−5 a.u.. In-
cluding these avoided crossings in our calculation was shown
to have no significant effect on the results (less than 0.2%
difference on the cross sections).

C. Empirical correction to the asymptotic energies

When comparing the asymptotic energies obtained with
the MRCI method and the experimental values (see Table I),
we noticed that the MRCI asymptotic energies of the neutral

022808-3



SYLVAIN BADIN et al. PHYSICAL REVIEW A 107, 022808 (2023)

FIG. 2. Cross sections for the reactions between I+ and I− for the six symmetries correlating with the I−(1S0 ) + I+(3P2) reactants state.

states are overestimated while the MRCI asymptotic energy
of the ion pair states is underestimated. For the three lowest
neutral product states and the excited ion pair products, the
difference between the asymptotic energies of the reactant
and product states are satisfactory within the MRCI method
(between 3% and 12% of error). However, the differences of
asymptotic energy between the reactant and the 5p46s states
[I(2[2]3/2) + I(2P5/2) and I(2[2]3/2) + I(2P3/2) states] are not
well reproduced. The path towards the I(2[2]3/2) + I(2P5/2)
state is open only by 0.01 eV in the MRCI calculation while
it should be open with an asymptotic energy difference of
0.62 eV, and the path towards the I(2[2]3/2) + I(2P3/2) state
is closed while it should be open with an asymptotic en-
ergy difference of 0.44 eV. To correct for this qualitative and
quantitative failure, we decided to increase artificially the
asymptotic energy of the ion pair states by a quantity ε in order
to reproduce the experimental asymptotic energy difference
between the I(2[2]3/2) + I(2P5/2) and the I−(1S0) + I+(3P2).
The value of ε is 0.61 eV. This is the only departure from the
underlying ab initio energy curves in our work.

III. RESULTS AND DISCUSSION

Using the potential energy curves presented in Sec. II A,
we applied the LZSH method for each of the symme-
tries considered here (see Sec. II A). We thus obtained the
reaction cross sections towards the following neutral prod-
uct states: I(2P3/2) + I(2P3/2), I(2P3/2) + I(2P1/2), I(2P1/2) +
I(2P1/2), and I(5p46s) + I(2P1/2).

Here, we did not try to differentiate the different sub-
states constituting the I(5p46s) configuration obtained with
the MRCI method, since the energy difference between some
of these substates is below 0.2 eV [16]. We lack extensive
benchmark studies between MRCI and other approaches such
as those based on coupled cluster wave functions for the io-
dine systems. However, from recent examples in the literature

[26–28] in which a comparison of methods has been made
on an equal footing (same basis set and Hamiltonian), we see
that among different correlated approaches, the corresponding
electronic state energies can differ by values which are similar
to, or higher than, the differences among substates seen here.

We also obtained the reaction cross sections towards the
two lowest-energy excited ion-pair states I−(1S0) + I+(3P1)
and I−(1S0) + I+(1D2). The evolution of these reaction cross
sections with respect to the collision energy is shown in Fig. 2
and the total symmetrized reaction cross sections, obtained
with Eq. (8), are shown in Fig. 3.

At collision energies lower than 0.1 eV the cross sec-
tions towards the neutral product states follow an asymptotic
behavior proportional to the inverse of the collision energy. At
these energies, for all symmetries, the most abundant prod-
uct is the neutral I(5p46s) + I(2P1/2) product, followed by

FIG. 3. Total (symmetry averaged) cross sections for the I+ +
I− → 2I and I+ + I− → (I+)∗ + I− reactions.

022808-4



THEORETICAL STUDY OF THE I+ + I− MUTUAL … PHYSICAL REVIEW A 107, 022808 (2023)

FIG. 4. Total (symmetry averaged) cross section for mutual neu-
tralization cross section between I+ and I−.

the three lowest-energy neutral products I(2P3/2) + I(2P3/2),
I(2P3/2) + I(2P1/2), and I(2P1/2) + I(2P1/2), in this order.

At collision energies higher than 0.3 eV the cross sec-
tions towards the I(2P3/2) + I(2P3/2) state increase up to the
collision energy of 10 eV, while the cross sections towards the

I(2P1/2) + I(2P3/2) and I(5p46s) + I(2P1/2) states decrease at
a slower rate than for the collision energies below 0.1 eV. At
collision energies higher than 0.1 eV the cross sections to-
wards the I(2P1/2) + I(2P1/2) state continue to decrease as
the inverse of the collision energy, so it becomes negligible
compared to the other cross sections.

The reaction cross sections towards the I−(1S0) + I+(3P1)
and I−(1S0) + I+(1D2) ion pair states have energy thresholds
of, respectively, 0.26 eV and 1.1 eV. The values of these
cross sections after their threshold are of the same order of
magnitude as the one of the I(2P1/2) + I(2P3/2) state.

The total of the neutralization cross sections (sum of the
cross sections toward all neutral states) is shown in Fig. 4. It
decreases as the inverse of the collision energy up to 0.1 eV
and then decreases at a slower rate. The two discontinuities at
0.26 eV and 1.1 eV correspond to the energy thresholds of the
reactions producing the two excited ion pairs.

In 2021, Poline et al. [9] conducted an experiment at
the double ion storage ring DESIREE in Stockholm. They
were able to measure the branching ratios towards each of the
neutral product states—more specifically, they obtained the
ratio (denoted by Rσ ) between the I(5p46s) + I(2P1/2) states
and the I(2P3/2) + I(2P3/2), I(2P3/2) + I(2P1/2), and I(2P1/2) +
I(2P1/2) states, for collision energy of 0.1 and 0.8 eV. We
therefore have Rσ as

Rσ = σ [I (2P3/2) + I (2P3/2)] + σ [I (2P3/2) + I (2P1/2)] + σ [I (2P1/2) + I (2P1/2)]

σ [I (5p46s) + I (2P1/2)] + σ [I (2P3/2) + I (2P3/2)] + σ [I (2P3/2) + I (2P1/2)] + σ [I (2P1/2) + I (2P1/2)]
(9)

We can directly obtain this ratio from our calculations. The
comparison between the theoretical ratio and the measure-
ments is shown in Fig. 5. Our results show that this branching
ratio does not vary significantly with respect to the collision
energy, with values between 22% and 27%. The measured and
computed ratio are of the same order of magnitude. However,
the LZSH-based model underestimates this ratio by a factor
of 1.5.

FIG. 5. Comparison of the Rσ ratios, computed with the LZSH
method and measured by Poline et al. [9] .

Moreover, our model gives a semiquantitative agreement
for the prediction of the ratios between the cross sections of
the I(2P3/2) + I(2P3/2), I(2P3/2) + I(2P1/2), and I(2P1/2) +
I(2P1/2) states. These ratios, in comparison with those ob-
tained by Poline et al. [9], are displayed in Table II.

Poline et al. [9] were also able to estimate the absolute
neutralization cross section, at a collision energy of 0.1 eV,
to be in the range of 103±1 Å2. Our results displayed in Fig. 4
(165 Å2 at 0.1 eV) agree with this estimation.

The disagreement between the experiments at DESIREE
and our results may be attributed to the semiclassical ap-
proach employed in this work. However, given the complexity
of the studied collisional system and the lack of data on
the considered MN reaction, such semiquantitative estimates
represent a significant step toward a better modeling, and thus
understanding, of iodine plasma.

TABLE II. Ratios of the cross sections between the three lowest
neutral product states, obtained with the LZSH method and experi-
mentally by Poline et al. [9] at collision energy of 0.1 and 0.8 eV.

0.1 eV 0.8 eV

Product channel LZSH exp. LZSH exp.
I(2P3/2) + I(2P3/2) 5% 31% 12% 28%
I(2P3/2) + I(2P1/2) 76% 57% 76% 51%
I(2P1/2) + I(2P1/2) 19% 11% 13% 21%
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FIG. 6. Effective potential energy curves of the first eight states of the (� = 2)g symmetry for three different values of angular momentum.
The population n←

α (R) [n→
α (R)] is displayed with a color scheme in the left (right) panel. At t = 0, the population is 1 in the lowest ion-pair

state (the third state in energy order) and 0 in all the other states

In order to gain more insight into the dynamics of the MN
reaction, we investigate which avoided crossings contribute
the most to the reactivity. We computed statistically the popu-
lation on each state as a function of time [nα (t )],

nα (t ) = Nα (t )

Ntraj
, (10)

where Nα (t ) is the number of trajectories on the state α at
the time t . Since the time does not appear explicitly in the
method described in Sec. II B, we computed it a posteriori by
integrating Newton’s law of motion [see Eq. (11), with ri, r j

being two adjacent points of the potential energy surface and
v being the speed of the system]. The time is set arbitrarily
at 0 when a trajectory starts at R0. Ntraj is the total number of

computed trajectories.

�t ji =
√

2μ

B (
√

Em − V (r j ) − √
Em − V (ri )) if R decreases

�ti j =
√

2μ

B (
√

Em − V (ri ) − √
Em − V (r j )) if R increases,

(11)
with �tlk = t (rl ) − t (rk ) and B = [V (r j ) − V (ri)]/(r j − ri ).

For each of the symmetries considered in this work we
computed Ntraj = 10 000 trajectories, for a collision energy of
0.9 eV and three different values of the angular momentum l
(l = 0, l = 350, and l = 700). The populations obtained with
these trajectories are then computed using Eq. (10) for each of
the electronic states considered in this work. The population
on each of the first eight electronic states of the (� = 2)g

symmetry are displayed in Fig. 6. For clarity we choose to
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TABLE III. Diffuse exponents used in the electronic structure
calculations for the iodine atom. These were added to the dyall.v3z
basis set.

Primitive type Exponents

s 0.0395300
0.0175618
0.0078021

p 0.0285513
0.0112589
0.0044398

d 0.0773620
0.0321000
0.0133193

f 0.1159934
0.0331410
0.0094689

represent separately the population n←
α (R) coming from the

part of the trajectories with decreasing values of R (before
reaching the closest approach distance) and the population
n→

α (R) coming from the part of the trajectories with increasing
values of R (after reaching the closest approach distance),
which are given by

n←
α (R) = N←

α (R)

Ntot
and n→

α (R) = N→
α (R)

Ntot
, (12)

withN←
α (R) [N→

α (R)] being the number of trajectories cross-
ing the internuclear distance R before (after) reaching the
closest approach distance. In Fig. 6, n←

α (R)[n→
α (R)] is shown

in the left (right) panel of the figure using a color scheme
traced on the effective potential energy curves [see Eq. (3)]
of the (� = 2)g symmetry.

At the first avoided crossing reached by the system (at
2.8 Å), it mainly has a diabatic behavior with approximately
90% of the population transferred to the higher energy state.
This behavior is observed for the majority of the avoided
crossings of the system, with the important exception of the
crossing between the fourth and fifth states (in increasing
energy order) at 2.7 Å (marked with a star in Fig. 6). For this
crossing we mainly observe an adiabatic behavior, but still
with an important percentage of the population (about 30%)
transferred to the higher energy state. This intermediate be-
havior is directly responsible for the reactivity towards the I∗

states, and indirectly responsible for the reactivity towards the
lowest energy states through the avoided crossings between
the third and fourth states at 2.5 Å and between the second
and third states at 2.3 Å. The path towards the lowest energy
states is the first to be screened by the rotational barrier. A
chemical reaction towards those states is thus only possible
for collisions with a low impact parameter (the link between
the impact parameter b and the angular momentum l is given
by l = √

2μEcoll × b [23]).
The reactions towards the I(5p46s) + I(2P3/2) states are

still possible at higher values of l , which explains the
higher reactivity towards those states (see Fig. 5). The
populations were also computed for the other symmetries.
We did not find any major difference in the behavior of the

TABLE IV. List of the avoided crossings considered in this work.
For each avoided crossing we give its internuclear distance and the
index of the two electronic states concerned by this crossing. The
electronic states indexes are given by their energetic order (starting
from zero for the lowest energy state of each symmetry)

Symmetry Lower state Higher state R (Å)

(� = 0)+g 3 4 2,30
2 3 2,36
5 6 2,36
4 5 2,39
1 2 2,42
3 4 2,42
2 3 2,46
5 6 2,48
4 5 2,51
3 4 2,54
2 3 2,66
5 6 2,74
6 7 2,78
4 5 2,82
5 6 2,86
7 8 2,96
7 8 3,15
6 7 3,18
7 8 3,28

(� = 0)+u 4 5 2,42
3 4 2,48
1 2 2,48
2 3 2,54
1 2 2,58
4 5 2,62
3 4 2,64
2 3 2,68
4 5 2,76
3 4 2,86
4 5 2,90
3 4 2,92

(� = 1)g 5 6 2,24
4 5 2,26
6 7 2,29
3 4 2,31
2 3 2,33
5 6 2,34
1 2 2,35
4 5 2,37
3 4 2,38
0 1 2,42
6 7 2,42
5 6 2,44
2 3 2,44
4 5 2,46
1 2 2,48
3 4 2,48
2 3 2,53
7 8 2,67
6 7 2,70
5 6 2,71
4 5 2,76
8 9 2,77
7 8 2,78
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TABLE IV. (Continued)

Symmetry Lower state Higher state R (Å)

6 7 2,80
3 4 2,84
8 9 2,85
5 6 2,86
7 8 2,87
4 5 2,94
6 7 2,96
8 9 2,99
5 6 3,06
7 8 3,25

(� = 1)u 6 7 2,34
5 6 2,36
3 5 2,42
2 3 2,46
6 8 2,46
6 7 2,50
5 6 2,52
4 5 2,54
7 9 2,54
6 7 2,56
3 4 2,56
5 6 2,58
4 5 2,60
9 10 2,64
7 8 2,64
6 7 2,70
8 9 2,70
7 8 2,86
8 9 2,90
6 8 2,92
9 10 3,06
8 9 3,10
7 8 3,14

(� = 2)g 2 6 2,24
3 4 2,24
1 2 2,30
6 7 2,42
0 1 2,42
4 6 2,44
3 4 2,46
1 2 2,54
6 7 2,61
2 3 2,49
5 6 2,62
4 5 2,64
3 4 2,68
2 3 2,82
6 7 2,86
5 6 2,88
4 5 2,94
6 7 2,94
5 6 3,04
3 4 3,14
6 7 3,16

(� = 2)u 3 4 2,48
6 7 2,50
5 6 2,50

TABLE IV. (Continued)

Symmetry Lower state Higher state R (Å)

4 5 2,51
3 4 2,52
2 3 2,55
1 2 2,56
4 5 2,64
6 7 2,70
5 7 2,74
4 5 2,78
3 4 2,82
2 3 2,84
6 7 2,86
4 5 2,90
5 6 2,92
4 5 2,94
3 4 2,98
6 7 3,15

populations between the (� = 2)g symmetry and the other
symmetries.

IV. CONCLUSION

As a first step towards the generation of accurate mod-
els for the reactivity in iodine plasmas, in this work we
have investigated a computational protocol, combining four-
component multireference CI calculations for the I2 system to
obtain potential energy curves and the semiclassical Landau-
Zener surface hopping method to treat nuclear dynamics, to
obtain theoretical cross sections of the mutual neutralization
reaction between I+ and I− for collision energies varying from
0.001 eV to 50 eV.

Our results agree qualitatively with the recent experimental
measurements performed at the double ion ring DESIREE
facility in the overlapping collision energy range. Further-
more, our work provides absolute cross sections over a broad
range of collision energy. Our results show that the total cross
section decrease from 1000 Å2 at 0.001 eV collision energy to
about 10 Å2 at 10 eV impact energy. Moreover, the branching
ratios towards the different final states do not vary signifi-
cantly with respect to the collision energy. We also studied
the dynamics of this mutual neutralization reaction.

The data and insights provided in this work will allow
to model, beyond the current state of the art, the chemistry
taking place in iodine plasma, which is particularly relevant
for electric space propulsion.
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APPENDIX

The diffuse functions used to describe accurately Rydberg
and ion-pair states are given in Table III. Table IV reports the
list of the avoided crossings considered in this work.
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Summary and Conclusion

In this thesis, we have investigated two aspects of relativistic quantum chem-
istry calculations on molecules: the methodological development of relativistic
coupled cluster response theory and the application of established methods to
the electronic structure of molecules containing heavy elements

Chapter 3 details the implementation of frequency-dependent linear response
properties, drawing upon two distinct relativistic coupled cluster wave function
models, namely CC-CC and CC-CI. We validated our approach by examining
three diverse categories of molecular properties including the purely electric
property (frequency (in)dependent) polarizability, purely magnetic property
(indirect spin-spin coupling constant), and electric-magnetic mixed property
(optical rotation). The validation is done by reproducing the results obtained by
other programs such as DALTON and CFOUR using a non-relativistic Hamilto-
nian. Furthermore, the utilization of complex algebra enables us to extend the
frequency from real to complex numbers for the evaluation of the damped lin-
ear response function. This is associated with the absorption cross-section in
the theoretical simulation of the spectroscopy.

In Chapter 4, we further implemented the frequency-dependent quadratic
response and two-photon absorption (TPA) grounded in the relativistic equation-
of-motion coupled cluster model to study nonlinear molecular properties. Par-
allel to Chapter 3, we test two different types of properties - the purely elec-
tric property (first hyperpolarizability), and the mixed electric-magnetic prop-
erty (Verdet constant). We validated our code by exactly reproducing the EOM
quadratic response results obtained by DALTON. Given DALTON’s absence of
an EOM-type two-photon absorption, we compared our EOM-based TPA to that
of the CC-QR module in DALTON. We found a discrepancy of approximately
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3%, which aligns with the magnitude of variation noted in quadratic response
properties.

In Chapter 5, we reimplemented EOM-CC energy including ionization po-
tential (IP), electron affinity (EA), and excitation energy (EE) on the ExaCorr
module. We have so far performed very basic calculations to validate our code.
In these tests, the new EOM codes reproduce the RELCCSD results very well.
We are optimistic to be able to show the number of applications of this code in
the near future.

All three implementations mentioned above are based on the new coupled
cluster module ExaCorr in the DIRAC program. ExaCorr is designed to be able
to exploit a large number of GPU-accelerated nodes, found in supercomputer
architectures. While the lack of symmetry implementation is a drawback for
small symmetric systems, the large-scale parallelization compensates for this
limitation, especially for sizable systems under the 𝐶1 symmetry.

However, the high cost of the coupled cluster method still poses significant
challenges to carrying out investigations on large systems even utilizing the Ex-
aCorr. To further improve the efficiency of this code, in Chapter 6, we imple-
mented the MP2 frozen natural orbitals (FNOs) to replace the Hartree-Fock or-
bitals before performingCC calculations. We showcase the performance on both
correlation energy and the expectation value of ground state including electric
dipole and quadrupole moment, the electric gradient at the nuclei, and parity-
violating energy difference. We found that using MP2FNOs can accelerate the
convergence of the correlation energy and molecular properties. This allows for
reliable estimates using just half the size of the full virtual orbital space.

In Chapter 7, we applied the existing relativistic quantum chemistry mod-
els including EOM-CC, multi-reference configuration interaction (MRCI), and
Polarization Propagator (PP) to obtain the electronic structure (like potential
energy curves) and molecular properties such as transition dipole moment as
accurate as possible. While these applications belong to different physics topics
-the work of TlCl towardsmolecular laser cooling and fundamental physics, and
the work of I2 is used in the analysis of the atomic collision in plasma physics,
the relativistic effect and electron correlation both show their significance.

In conclusion, the development and application work both showcase that
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for molecular property calculation, particularly for molecules containing heavy
elements, it is necessary to develop and apply methods that can deal with rel-
ativistic effects and electron correlation on an equal footing. The relativistic
(EOM) coupled cluster and response theory forms a good team for the frequency
(in)dependent molecular property calculation.

As a perspective, most current implementation work in this thesis relies on
the single-code tensor operation library TAL-SH, which is limited by the capac-
ity of a single node. Naturally, in the near future, we should extend all the code
including response properties, and EOM energy to use a library suited for dis-
tributed memory computing architectures, such as the ExaTENSOR. Once that
is carried out, we can combine the code with other developed methods such
as the quantum embedding approach[113] to investigate the large molecules
we could not compute before for both response properties and energy. We are
working towards this goal.

Moreover, the high cost remains a dark cloud above the performance of the
coupled cluster method on calculating large systems. Extending the current
relativistic MP2FNOs by introducing the effect of excited states is a promising
approach to accomplish the reduced-scaling calculation of coupled cluster re-
sponse theory. To advance towards this goal we have implemented in ExaCorr
the CIS and CIS(D) methods[114], which can help in this direction, both as tools
to generate natural transition orbitals[115] and as a low-order scaling alterna-
tive to EOM-CCSD for obtaining excited state energies.

Finally, our current frequency domain response code is based upon time-
dependent perturbation theory. This makes it unsuitable to obtain the response
of molecules to strong perturbations. To address this, we aim to develop real-
time relativistic coupled cluster models, leveraging the components of the exist-
ing program. With that, we will have a toolset to investigate molecular proper-
ties across the periodic table in different regimes (linear/nonlinear, strong/weak
perturbations, short/long process timescales).



206 Summary and Conclusion



Bibliography

(1) King, D. M.; Liddle, S. T. Progress in molecular uranium-nitride chem-
istry. Coordin. Chem. Rev 2014, 266-267, 2–15, DOI: 10.1016/j.ccr.
2013.06.013.

(2) Loiseau, T.; Mihalcea, I.; Henry, N.; Volkringer, C. The crystal chem-
istry of uranium carboxylates. Coordin. Chem. Rev 2014, 266-267, 69–
109, DOI: 10.1016/j.ccr.2013.08.038.

(3) Yang,W.; Parker, T. G.; Sun, Z.-M. Structural chemistry of uranium phos-
phonates. Coordin. Chem. Rev 2015, 303, 86–109, DOI: 10.1016/j.ccr.
2015.05.010.

(4) Liddle, S. T. TheRenaissance ofNon-AqueousUraniumChemistry.Angew.
Chem. Int. Ed. 2015, 54, 8604–8641, DOI: 10.1002/anie.201412168.

(5) Clark, D. L.; Hobart, D. E.; Neu, M. P. Actinide Carbonte Complexes
and Their Importance in Actinide Environmental Chemistry. Chem. Rev.
1995, 95, 25–48, DOI: 10.1021/cr00033a002.

(6) Hartline,D. R.;Meyer, K. FromChemical Curiosities andTrophyMolecules
to Uranium-Based Catalysis: Developments for Uranium Catalysis as a
New Facet in Molecular Uranium Chemistry. JACS Au 2021, 1, 698–709,
DOI: 10.1021/jacsau.1c00082.

(7) Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Towards uranium cat-
alysts. Nature 2008, 455, 341–349, DOI: 10.1038/nature07372.

(8) Vodyanitskii, Y. N. Chemical aspects of uranium behavior in soils: A re-
view.Eurasian Soil Sc. 2011, 44, 862–873,DOI: 10.1134/S1064229311080163.

(9) Sénéchal, K.; Toupet, L.; Ledoux, I.; Zyss, J.; Le Bozec, H.; Maury, O. First
lanthanide dipolar complexes for second-order nonlinear optics. Chem.
Commun. 2004, 2180–2181, DOI: 10.1039/B407073A.

(10) Law, G.-L.; Wong, K.-L.; Lau, K.-K.; Lap, S.-t.; Tanner, P. A.; Kuo, F.;
Wong, W.-T. Nonlinear optical activity in dipolar organic–lanthanide
complexes. J. Mater. Chem. 2010, 20, 4074, DOI: 10.1039/b926376d.

207

https://doi.org/10.1016/j.ccr.2013.06.013
https://doi.org/10.1016/j.ccr.2013.06.013
https://doi.org/10.1016/j.ccr.2013.08.038
https://doi.org/10.1016/j.ccr.2015.05.010
https://doi.org/10.1016/j.ccr.2015.05.010
https://doi.org/10.1002/anie.201412168
https://doi.org/10.1021/cr00033a002
https://doi.org/10.1021/jacsau.1c00082
https://doi.org/10.1038/nature07372
https://doi.org/10.1134/S1064229311080163
https://doi.org/10.1039/B407073A
https://doi.org/10.1039/b926376d


208 Bibliography

(11) Andraud, C.; Maury, O. Lanthanide Complexes for Nonlinear Optics:
From Fundamental Aspects to Applications. Eur. J. Inorg. Chem. 2009,
2009, 4357–4371, DOI: 10.1002/ejic.200900534.

(12) Tancrez, N.; Feuvrie, C.; Ledoux, I.; Zyss, J.; Toupet, L.; Le Bozec, H.;
Maury, O. Lanthanide Complexes for Second Order Nonlinear Optics:
Evidence for the Direct Contribution of f Electrons to the Quadratic Hy-
perpolarizability. J. Am. Chem. Soc. 2005, 127, 13474–13475, DOI: 10.
1021/ja054065j.

(13) Sénéchal-David, K. et al. Synthesis, Structural Studies, Theoretical Cal-
culations, and Linear and Nonlinear Optical Properties of Terpyridyl
Lanthanide Complexes: New Evidence for the Contribution of f Elec-
trons to the NLO Activity. J. Am. Chem. Soc. 2006, 128, 12243–12255,
DOI: 10.1021/ja063586j.

(14) Valore, A. et al. Fluorinated β-DiketonateDiglymeLanthanideComplexes
as New Second-Order Nonlinear Optical Chromophores: The Role of f
Electrons in the Dipolar and Octupolar Contribution to Quadratic Hy-
perpolarizability. J. Am.Chem. Soc. 2010, 132, 4966–4970,DOI: 10.1021/
ja101081q.

(15) Klepov, V. V.; Serezhkina, L. B.; Vologzhanina, A. V.; Pushkin, D. V.;
Sergeeva,O.A.; Stefanovich, S. Y.; Serezhkin, V.N. Tris(acrylato)uranylates
as a scaffold for NLO materials. Inorg. Chem. Commun. 2014, 46, 5–8,
DOI: 10.1016/j.inoche.2014.04.024.

(16) Wang, S.; Alekseev, E. V.; Ling, J.; Liu, G.; Depmeier,W.; Albrecht-Schmitt,
T. E. Polarity and Chirality in Uranyl Borates: Insights into Understand-
ing the Vitrification of Nuclear Waste and the Development of Nonlin-
ear Optical Materials.Chem.Mater. 2010, 22, 2155–2163, DOI: 10.1021/
cm9037796.

(17) Barker, T. J.; Denning, R. G.; Thorne, J. R. G. Applications of two-photon
spectroscopy to inorganic compounds. 2. Spectrum and electronic struc-
ture of cesiumuranyl nitrate, CsUO2(NO3)3. Inorg. Chem. 1992, 31, 1344–
1353, DOI: 10.1021/ic00034a011.

(18) Serezhkin, V. N.; Grigoriev, M. S.; Abdulmyanov, A. R.; Fedoseev, A. M.;
Savchenkov, A. V.; Stefanovich, S. Y.; Serezhkina, L. B. Syntheses, Crystal
Structures, and Nonlinear Optical Activity of Cs 2 Ba[AnO 2 (C 2 H 5
COO) 3 ] 4 (An = U, Np, Pu) and Unprecedented Octanuclear Complex
Units in KR 2 (H 2 O) 8 [UO 2 (C 2 H 5 COO) 3 ] 5 (R = Sr, Ba). Inorg. Chem.
2017, 56, 7151–7160, DOI: 10.1021/acs.inorgchem.7b00809.

https://doi.org/10.1002/ejic.200900534
https://doi.org/10.1021/ja054065j
https://doi.org/10.1021/ja054065j
https://doi.org/10.1021/ja063586j
https://doi.org/10.1021/ja101081q
https://doi.org/10.1021/ja101081q
https://doi.org/10.1016/j.inoche.2014.04.024
https://doi.org/10.1021/cm9037796
https://doi.org/10.1021/cm9037796
https://doi.org/10.1021/ic00034a011
https://doi.org/10.1021/acs.inorgchem.7b00809


Bibliography 209

(19) Żuk, M.; Podgórski, R.; Ruszczyńska, A.; Ciach, T.; Majkowska-Pilip, A.;
Bilewicz, A.; Krysiński, P. Multifunctional Nanoparticles Based on Iron
Oxide andGold-198Designed forMagnetic Hyperthermia and Radionu-
clide Therapy as a Potential Tool for Combined HER2-Positive Cancer
Treatment.Pharmaceutics 2022, 14, 1680,DOI: 10.3390/pharmaceutics14081680.

(20) Takeda, M.; Shibuya, H.; Inoue, T. The Efficacy of Gold-198 Grain Mold
Therapy for Mucosal Carcinomas of the Oral Cavity. Acta Oncologica
1996, 35, 463–467, DOI: 10.3109/02841869609109923.

(21) Schiff, L. I. Measurability of Nuclear Electric Dipole Moments. Phys. Rev.
1963, 132, 2194–2200, DOI: 10.1103/PhysRev.132.2194.

(22) Safronova, M. S.; Budker, D.; DeMille, D.; Kimball, D. F. J.; Derevianko,
A.; Clark, C. W. Search for new physics with atoms and molecules. Rev.
Mod. Phys. 2018, 90, 025008, DOI: 10.1103/RevModPhys.90.025008.

(23) Chupp, T. E.; Fierlinger, P.; Ramsey-Musolf, M. J.; Singh, J. T. Electric
dipole moments of atoms, molecules, nuclei, and particles. Rev. Mod.
Phys. 2019, 91, 015001, DOI: 10.1103/RevModPhys.91.015001.

(24) Arrowsmith-Kron, G. et al. Opportunities for Fundamental Physics Re-
searchwithRadioactiveMolecules, en, arXiv:2302.02165 [nucl-ex, physics:nucl-
th, physics:physics], 2023.

(25) Rosa, M. D. Laser-cooling molecules: Concept, candidates, and support-
ing hyperfine-resolved measurements of rotational lines in the A-X(0,0)
band of CaH. Eur. Phys. J. D 2004, 31, 395–402, DOI: 10.1140/epjd/
e2004-00167-2.

(26) Ivanov, M. V.; Jagau, T.-C.; Zhu, G.-Z.; Hudson, E. R.; Krylov, A. I. In
search of molecular ions for optical cycling: a difficult road. Phys. Chem.
Chem. Phys. 2020, 22, 17075–17090, DOI: 10.1039/D0CP02921A.

(27) Christiansen,O.; Jørgensen, P.; Hattig, C. Response functions fromFourier
component variational perturbation theory applied to a time‐averaged
quasienergy. Int. J. Quantum. Chem 1998, 68, 52.

(28) Cronstrand, P.; Luo, Y.; Ågren, H. In Advances in Quantum Chemistry;
Elsevier: 2005; Vol. 50, pp 1–21, DOI: 10.1016/S0065-3276(05)50001-
7.

(29) Helgaker, T.; Coriani, S.; Jørgensen, P.; Kristensen, K.; Olsen, J.; Ruud, K.
RecentAdvances inWave Function-BasedMethods ofMolecular-Property
Calculations. Chem. Rev. 2012, 112, 543–631, DOI: 10.1021/cr2002239.

https://doi.org/10.3390/pharmaceutics14081680
https://doi.org/10.3109/02841869609109923
https://doi.org/10.1103/PhysRev.132.2194
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/RevModPhys.91.015001
https://doi.org/10.1140/epjd/e2004-00167-2
https://doi.org/10.1140/epjd/e2004-00167-2
https://doi.org/10.1039/D0CP02921A
https://doi.org/10.1016/S0065-3276(05)50001-7
https://doi.org/10.1016/S0065-3276(05)50001-7
https://doi.org/10.1021/cr2002239


210 Bibliography

(30) Norman, P.; Ruud, K.; Saue, T., Principles and practices of molecular prop-
erties: theory, modeling and simulations, First edition; John Wiley & Sons:
Hoboken, NJ, 2018.

(31) Dreuw, A.; Head-Gordon, M. Single-Reference ab Initio Methods for the
Calculation of Excited States of Large Molecules. Chem. Rev. 2005, 105,
4009–4037, DOI: 10.1021/cr0505627.

(32) Adamo, C.; Jacquemin, D. The calculations of excited-state properties
with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013,
42, 845–856, DOI: 10.1039/C2CS35394F.

(33) Laurent, A.D.; Jacquemin,D. TD-DFTbenchmarks: A review. Int. J. Quan-
tum Chem 2013, 113, 2019–2039, DOI: 10.1002/qua.24438.

(34) Ikäläinen, S.; Lantto, P.; Vaara, J. Fully Relativistic Calculations of Fara-
day and Nuclear Spin-Induced Optical Rotation in Xenon. J. Chem. The-
ory Comput. 2012, 8, 91–98, DOI: 10.1021/ct200636m.

(35) Kervazo, S.; Réal, F.; Virot, F.; Severo Pereira Gomes, A.; Vallet, V. Accu-
rate Predictions of Volatile PlutoniumThermodynamic Properties. Inorg.
Chem. 2019, 58, 14507–14521, DOI: 10.1021/acs.inorgchem.9b02096.

(36) Sunaga, A.; Saue, T. Towards highly accurate calculations of parity vio-
lation in chiral molecules: relativistic coupled-cluster theory including
QED-effects. Mol. Phys. 2021, 119, e1974592, DOI: 10.1080/00268976.
2021.1974592.

(37) Bartlett, R. J.; Musiał, M. Coupled-cluster theory in quantum chemistry.
Rev. Mod. Phys. 2007, 79, 291–352, DOI: 10.1103/RevModPhys.79.291.

(38) Wang, F. In Handbook of Relativistic Quantum Chemistry, Liu, W., Ed.;
Springer Berlin Heidelberg: Berlin, Heidelberg, 2017, pp 797–823, DOI:
10.1007/978-3-642-40766-6_33.

(39) Krylov, A. I. Equation-of-Motion Coupled-Cluster Methods for Open-
Shell and Electronically Excited Species: The Hitchhiker’s Guide to Fock
Space.Annu. Rev. Phys. Chem. 2008, 59, 433–462,DOI: 10.1146/annurev.
physchem.59.032607.093602.

(40) Bartlett, R. J. Coupled‐cluster theory and its equation‐of‐motion exten-
sions. WIREs Comput Mol Sci 2012, 2, 126–138, DOI: 10.1002/wcms.76.

(41) Crawford, T. D.; Schaefer, H. F. In Reviews in computational chemistry,
2007; Vol. 14.

(42) Shavitt, I.; Bartlett, R. J., Many-body methods in chemistry and physics:
MBPT and coupled-cluster theory; Cambridge molecular science, OCLC:
ocn297147115; CambridgeUniversity Press: Cambridge ;NewYork, 2009.

https://doi.org/10.1021/cr0505627
https://doi.org/10.1039/C2CS35394F
https://doi.org/10.1002/qua.24438
https://doi.org/10.1021/ct200636m
https://doi.org/10.1021/acs.inorgchem.9b02096
https://doi.org/10.1080/00268976.2021.1974592
https://doi.org/10.1080/00268976.2021.1974592
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1007/978-3-642-40766-6_33
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1146/annurev.physchem.59.032607.093602
https://doi.org/10.1002/wcms.76


Bibliography 211

(43) Lyakh, D. I.; Musiał, M.; Lotrich, V. F.; Bartlett, R. J. Multireference Na-
ture of Chemistry: The Coupled-Cluster View. Chem. Rev. 2012, 112,
182–243, DOI: 10.1021/cr2001417.

(44) Sneskov, K.; Christiansen, O. Excited state coupled cluster methods: Ex-
cited state coupled clustermethods.WIREs ComputMol Sci 2012, 2, 566–
584, DOI: 10.1002/wcms.99.

(45) Liu, J.; Cheng, L. Relativistic coupled‐cluster and equation‐of‐motion
coupled‐clustermethods.WIREsComputMol Sci 2021, 11, DOI: 10.1002/
wcms.1536.

(46) SverdrupOfstad, B.; Aurbakken, E.; Sigmundson Schøyen,Ø.; Kristiansen,
H. E.; Kvaal, S.; Pedersen, T. B. <span style=”font-variant:small-caps;”>Time‐dependent
coupled‐cluster</span> theory.WIREsComputMol Sci 2023, e1666,DOI:
10.1002/wcms.1666.

(47) Calvin, J. A.; Peng, C.; Rishi, V.; Kumar, A.; Valeev, E. F. Many-Body
Quantum Chemistry on Massively Parallel Computers. Chem. Rev. 2021,
121, 1203–1231, DOI: 10.1021/acs.chemrev.0c00006.

(48) Kobayashi, R.; Rendell, A. P. A direct coupled cluster algorithm for mas-
sively parallel computers. Chem. Phys. Lett 1997, 265, 1–11, DOI: 10.
1016/S0009-2614(96)01387-5.

(49) Wang, M.; May, A. J.; Knowles, P. J. Parallel programming interface for
distributed data.Computer Physics Communications 2009, 180, 2673–2679,
DOI: 10.1016/j.cpc.2009.05.002.

(50) Kuś, T.; Lotrich, V. F.; Bartlett, R. J. Parallel implementation of the equation-
of-motion coupled-cluster singles and doubles method and application
for radical adducts of cytosine. J. Chem. Phys 2009, 130, 124122, DOI:
10.1063/1.3091293.

(51) Asadchev, A.; Gordon, M. S. Fast and Flexible Coupled Cluster Imple-
mentation. J. Chem. Theory Comput. 2013, 9, 3385–3392, DOI: 10.1021/
ct400054m.

(52) Peng, C.; Calvin, J. A.; Pavošević, F.; Zhang, J.; Valeev, E. F. Massively
Parallel Implementation of Explicitly Correlated Coupled-Cluster Sin-
gles and Doubles Using TiledArray Framework. J. Phys. Chem. A 2016,
120, 10231–10244, DOI: 10.1021/acs.jpca.6b10150.

(53) Olivares-Amaya, R.;Watson,M.A.; Edgar, R.G.; Vogt, L.; Shao, Y.; Aspuru-
Guzik, A. Accelerating Correlated Quantum Chemistry Calculations Us-
ing Graphical Processing Units and aMixed PrecisionMatrixMultiplica-
tion Library. J. Chem. Theory Comput. 2010, 6, 135–144, DOI: 10.1021/
ct900543q.

https://doi.org/10.1021/cr2001417
https://doi.org/10.1002/wcms.99
https://doi.org/10.1002/wcms.1536
https://doi.org/10.1002/wcms.1536
https://doi.org/10.1002/wcms.1666
https://doi.org/10.1021/acs.chemrev.0c00006
https://doi.org/10.1016/S0009-2614(96)01387-5
https://doi.org/10.1016/S0009-2614(96)01387-5
https://doi.org/10.1016/j.cpc.2009.05.002
https://doi.org/10.1063/1.3091293
https://doi.org/10.1021/ct400054m
https://doi.org/10.1021/ct400054m
https://doi.org/10.1021/acs.jpca.6b10150
https://doi.org/10.1021/ct900543q
https://doi.org/10.1021/ct900543q


212 Bibliography

(54) DePrince, A. E.; Hammond, J. R. Coupled Cluster Theory on Graphics
Processing Units I. The Coupled Cluster Doubles Method. J. Chem. The-
ory Comput. 2011, 7, 1287–1295, DOI: 10.1021/ct100584w.

(55) Lyakh, D. I. An efficient tensor transpose algorithm for multicore CPU,
Intel Xeon Phi, andNVidia Tesla GPU.Computer Physics Communications
2015, 189, 84–91, DOI: 10.1016/j.cpc.2014.12.013.

(56) Ma, W.; Krishnamoorthy, S.; Villa, O.; Kowalski, K. GPU-Based Imple-
mentations of the Noniterative Regularized-CCSD(T) Corrections: Ap-
plications to Strongly Correlated Systems. J. Chem. Theory Comput. 2011,
7, 1316–1327, DOI: 10.1021/ct1007247.

(57) Kaliman, I. A.; Krylov, A. I. New algorithm for tensor contractions on
multi-core CPUs, GPUs, and accelerators enables CCSDandEOM-CCSD
calculations with over 1000 basis functions on a single compute node. J.
Comput. Chem. 2017, 38, 842–853, DOI: 10.1002/jcc.24713.

(58) Pototschnig, J. V.; Papadopoulos, A.; Lyakh, D. I.; Repisky, M.; Halbert,
L.; Severo Pereira Gomes, A.; Jensen, H. J. A.; Visscher, L. Implementa-
tion of Relativistic Coupled Cluster Theory for Massively Parallel GPU-
Accelerated Computing Architectures. J. Chem. Theory Comput. 2021,
acs.jctc.1c00260, DOI: 10.1021/acs.jctc.1c00260.

(59) Lyakh, D. I. Domain‐specific virtual processors as a portable program-
ming and executionmodel for parallel computationalworkloads onmod-
ern heterogeneous high‐performance computing architectures. Int JQuan-
tum Chem 2019, 119, e25926, DOI: 10.1002/qua.25926.

(60) Liakos, D. G.; Sparta, M.; Kesharwani, M. K.; Martin, J. M. L.; Neese, F.
Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-
Cluster Theory. J. Chem. Theory Comput. 2015, 11, 1525–1539, DOI: 10.
1021/ct501129s.

(61) Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. Sparse maps—
Asystematic infrastructure for reduced-scaling electronic structuremeth-
ods. II. Linear scaling domain based pair natural orbital coupled cluster
theory. J. Chem. Phys. 2016, 144, 024109, DOI: 10.1063/1.4939030.

(62) Riplinger, C.; Neese, F. An efficient and near linear scaling pair natu-
ral orbital based local coupled cluster method. J. Chem. Phys. 2013, 138,
034106, DOI: 10.1063/1.4773581.

(63) Crawford, T.D.; Kumar, A.; Bazanté, A. P.; Di Remigio, R. Reduced‐scaling
coupled cluster response theory: Challenges and opportunities. WIREs
Comput Mol Sci 2019, 9, DOI: 10.1002/wcms.1406.

https://doi.org/10.1021/ct100584w
https://doi.org/10.1016/j.cpc.2014.12.013
https://doi.org/10.1021/ct1007247
https://doi.org/10.1002/jcc.24713
https://doi.org/10.1021/acs.jctc.1c00260
https://doi.org/10.1002/qua.25926
https://doi.org/10.1021/ct501129s
https://doi.org/10.1021/ct501129s
https://doi.org/10.1063/1.4939030
https://doi.org/10.1063/1.4773581
https://doi.org/10.1002/wcms.1406


Bibliography 213

(64) D’Cunha, R.; Crawford, T. D. PNO++: Perturbed Pair Natural Orbitals
for Coupled Cluster Linear Response Theory. J. Chem. Theory Comput.
2021, 17, 290–301, DOI: 10.1021/acs.jctc.0c01086.

(65) Epifanovsky, E.; Zuev, D.; Feng, X.; Khistyaev, K.; Shao, Y.; Krylov, A. I.
General implementation of the resolution-of-the-identity and Cholesky
representations of electron repulsion integrals within coupled-cluster
and equation-of-motionmethods: Theory and benchmarks. J. Chem. Phys.
2013, 139, 134105, DOI: 10.1063/1.4820484.

(66) Schütz, M.; Manby, F. R. Linear scaling local coupled cluster theory with
density fitting. Part I: 4-external integrals. Phys. Chem. Chem. Phys. 2003,
5, 3349–3358, DOI: 10.1039/B304550A.

(67) Hohenstein, E. G.; Fales, B. S.; Parrish, R.M.;Martínez, T. J. Rank-reduced
coupled-cluster. III. Tensor hypercontraction of the doubles amplitudes.
J. Chem. Phys. 2022, 156, 054102, DOI: 10.1063/5.0077770.

(68) DePrince, A. E.; Sherrill, C.D.Accuracy andEfficiency ofCoupled-Cluster
Theory Using Density Fitting/Cholesky Decomposition, Frozen Natural
Orbitals, and a t 1 -Transformed Hamiltonian. J. Chem. Theory Comput.
2013, 9, 2687–2696, DOI: 10.1021/ct400250u.

(69) Peng, C.; Calvin, J. A.; Valeev, E. F. Coupled‐cluster singles, doubles and
perturbative tripleswith density fitting approximation formassively par-
allel heterogeneous platforms. Int J Quantum Chem 2019, 119, DOI: 10.
1002/qua.25894.

(70) Bozkaya, U.; Sherrill, C. D. Analytic energy gradients for the coupled-
cluster singles and doubles with perturbative triples method with the
density-fitting approximation. J. Chem. Phys. 2017, 147, 044104, DOI:
10.1063/1.4994918.

(71) DIRAC, a relativistic ab initio electronic structure program,ReleaseDIRAC23
(2023), written by R. Bast, A. S. P. Gomes, T. Saue and L. Visscher and
H. J. Aa. Jensen,with contributions from I. A.Aucar, V. Bakken, C. Chibueze,
J. Creutzberg, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevold-
sen, E. Faßhauer, T. Fleig,O. Fossgaard, L.Halbert, E.D.Hedegård, T.Hel-
gaker, B. Helmich–Paris, J. Henriksson, M. van Horn, M. Iliaš, Ch. R. Ja-
cob, S. Knecht, S. Komorovský, O. Kullie, J. K. Lærdahl, C. V. Larsen,
Y. S. Lee, N. H. List, H. S. Nataraj, M. K. Nayak, P. Norman, A. Ny-
vang, G. Olejniczak, J. Olsen, J. M. H. Olsen, A. Papadopoulos, Y. C. Park,
J. K. Pedersen,M. Pernpointner, J. V. Pototschnig, R. di Remigio,M. Repisky,
K. Ruud, P. Sałek, B. Schimmelpfennig, B. Senjean, A. Shee, J. Sikkema,
A. Sunaga, A. J. Thorvaldsen, J. Thyssen, J. van Stralen,M. L. Vidal, S. Vil-
laume, O. Visser, T. Winther, S. Yamamoto and X. Yuan (available at

https://doi.org/10.1021/acs.jctc.0c01086
https://doi.org/10.1063/1.4820484
https://doi.org/10.1039/B304550A
https://doi.org/10.1063/5.0077770
https://doi.org/10.1021/ct400250u
https://doi.org/10.1002/qua.25894
https://doi.org/10.1002/qua.25894
https://doi.org/10.1063/1.4994918


214 Bibliography

https://doi.org/10.5281/zenodo.7670749, see also https://www.
diracprogram.org).

(72) Saue, T.; Bast, R.; Gomes, A. S. P.; Jensen, H. J. A.; Visscher, L.; Aucar,
I. A.; Di Remigio, R.; Dyall, K. G.; Eliav, E.; Fasshauer, E., et al. The
DIRAC code for relativistic molecular calculations. J. Chem. Phys 2020,
152, 204104.

(73) Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Annalen
der Physik 1927, 389, 457–484, DOI: 10.1002/andp.19273892002.

(74) Saue, T. RelativisticHamiltonians forChemistry: APrimer.ChemPhysChem
2011, 12, 3077–3094, DOI: 10.1002/cphc.201100682.

(75) Dyall, K. G.; Fægri, K., Introduction to relativistic quantum chemistry; Ox-
ford University Press: New York, 2007.

(76) Foldy, L. L.; Wouthuysen, S. A. On the Dirac Theory of Spin 1/2 Particles
and ItsNon-Relativistic Limit.Phys. Rev. 1950, 78, 29–36, DOI: 10.1103/
PhysRev.78.29.

(77) Douglas, M.; Kroll, N. K. Quantum Electrodynamical Corrections to the
Fine Structure of Helium. ANNALS OF PHYSICS 1974, 82, 89.

(78) Nakajima, T.; Hirao, K. The Douglas–Kroll–Hess Approach. Chem. Rev.
2012, 112, 385–402, DOI: 10.1021/cr200040s.

(79) Buenker, R. J.; Chandra, P.; Hess, B. A. Matrix representation of the rel-
ativistic kinetic energy operator: Two-component variational procedure
for the treatment of many-electron atoms and molecules. Chem. Phys.
1984, 84, 1–9, DOI: 10.1016/0301-0104(84)80001-4.

(80) Chang, C.; Pelissier, M.; Durand, P. Regular Two-Component Pauli-Like
Effective Hamiltonians in Dirac Theory. Phys. Scr. 1986, 34, 394–404,
DOI: 10.1088/0031-8949/34/5/007.

(81) Lenthe, E. V.; Baerends, E. J.; Snijders, J. G. Relativistic regular two-
component Hamiltonians. J. Chem. Phys 1993, 99, 4597–4610, DOI: 10.
1063/1.466059.

(82) Van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic total energy
using regular approximations. J. Chem. Phys 1994, 101, 9783–9792, DOI:
10.1063/1.467943.

(83) Iliaš, M.; Aa. Jensen, H. J.; Kellö, V.; Roos, B. O.; Urban, M. Theoretical
study of PbO and the PbO anion. Chem. Phys. Lett 2005, 408, 210–215,
DOI: 10.1016/j.cplett.2005.04.027.

https://doi.org/10.5281/zenodo.7670749
https://www.diracprogram.org
https://www.diracprogram.org
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/cphc.201100682
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1021/cr200040s
https://doi.org/10.1016/0301-0104(84)80001-4
https://doi.org/10.1088/0031-8949/34/5/007
https://doi.org/10.1063/1.466059
https://doi.org/10.1063/1.466059
https://doi.org/10.1063/1.467943
https://doi.org/10.1016/j.cplett.2005.04.027


Bibliography 215

(84) Iliaš, M.; Saue, T. An infinite-order two-component relativistic Hamil-
tonian by a simple one-step transformation. J. Chem. Phys 2007, 126,
064102, DOI: 10.1063/1.2436882.

(85) Liu,W.; Peng,D. Infinite-order quasirelativistic density functionalmethod
based on the exact matrix quasirelativistic theory. J. Chem. Phys 2006,
125, 044102, DOI: 10.1063/1.2222365.

(86) Kutzelnigg, W.; Liu*, W. Quasirelativistic theory I. Theory in terms of
a quasi-relativistic operator. Mol. Phys. 2006, 104, 2225–2240, DOI: 10.
1080/00268970600662481.

(87) Kutzelnigg, W. Effective Hamiltonians for degenerate and quasidegener-
ate direct perturbation theory of relativistic effects. The Journal of Chem-
ical Physics 1999, 110, 8283–8294, DOI: 10.1063/1.478739.

(88) Sikkema, J.; Visscher, L.; Saue, T.; Iliaš, M. The molecular mean-field
approach for correlated relativistic calculations. The Journal of Chemical
Physics 2009, 131, 124116, DOI: 10.1063/1.3239505.

(89) Kell�, V.; Sadlej, A. J. Picture change and calculations of expectation val-
ues in approximate relativistic theories. Int. J. Quant. Chem. 1998, 68,
159–174, DOI: 10.1002/(SICI)1097- 461X(1998)68:3<159::AID-
QUA3>3.0.CO;2-U.

(90) Helgaker, T.; Jørgensen, P.; Olsen, J.,Molecular electronic-structure theory;
Wiley: Chichester ; New York, 2000.

(91) Stanton, R. E.; Havriliak, S. Kinetic balance: A partial solution to the
problem of variational safety in Dirac calculations. J. Chem. Phys 1984,
81, 1910–1918, DOI: 10.1063/1.447865.

(92) Pawłowski, F.; Olsen, J.; Jørgensen, P.Molecular response properties from
aHermitian eigenvalue equation for a time-periodicHamiltonian. J. Chem.
Phys 2015, 142, 114109, DOI: 10.1063/1.4913364.

(93) Szalay, P. G.; Müller, T.; Gidofalvi, G.; Lischka, H.; Shepard, R. Multicon-
figuration Self-Consistent Field and Multireference Configuration Inter-
action Methods and Applications. Chem. Rev. 2012, 112, 108–181, DOI:
10.1021/cr200137a.

(94) Bartlett, R. J. Many-body perturbation theory and coupled cluster theory
for electron correlation in molecules. Annual review of physical chemistry
1981, 32, 359–401.

(95) Langhoff, S. R.; Davidson, E. R. Configuration interaction calculations
on the nitrogen molecule. Int. J. Quantum Chem. 1974, 8, 61–72, DOI:
10.1002/qua.560080106.

https://doi.org/10.1063/1.2436882
https://doi.org/10.1063/1.2222365
https://doi.org/10.1080/00268970600662481
https://doi.org/10.1080/00268970600662481
https://doi.org/10.1063/1.478739
https://doi.org/10.1063/1.3239505
https://doi.org/10.1002/(SICI)1097-461X(1998)68:3<159::AID-QUA3>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1097-461X(1998)68:3<159::AID-QUA3>3.0.CO;2-U
https://doi.org/10.1063/1.447865
https://doi.org/10.1063/1.4913364
https://doi.org/10.1021/cr200137a
https://doi.org/10.1002/qua.560080106


216 Bibliography

(96) Marie, A.; Kossoski, F.; Loos, P.-F. Variational coupled cluster for ground
and excited states. J. Chem. Phys 2021, 155, 104105, DOI: 10.1063/5.
0060698.

(97) Koch, H.; Jensen, H. J. A.; Jo/rgensen, P.; Helgaker, T.; Scuseria, G. E.;
Schaefer, H. F. Coupled cluster energy derivatives. Analytic Hessian for
the closed-shell coupled cluster singles and doubles wave function: The-
ory and applications. J. Chem. Phys 1990, 92, 4924–4940, DOI: 10.1063/
1.457710.

(98) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A fifth-
order perturbation comparison of electron correlation theories. Chem.
Phys. Lett 1989, 157, 479–483, DOI: 10.1016/S0009-2614(89)87395-6.

(99) Sałek, P.; Vahtras, O.; Helgaker, T.; Ågren, H. Density-functional theory
of linear and nonlinear time-dependent molecular properties. J. Chem.
Phys 2002, 117, 9630–9645, DOI: 10.1063/1.1516805.

(100) Koch, H.; Jørgensen, P. Coupled cluster response functions. J. Chem. Phys
1990, 93, 3333–3344, DOI: 10.1063/1.458814.

(101) Coriani, S.; Pawłowski, F.; Olsen, J.; Jørgensen, P. Molecular response
properties in equation ofmotion coupled cluster theory: A time-dependent
perspective. J. Chem. Phys 2016, 144, 024102, DOI: 10.1063/1.4939183.

(102) Shee, A.; Visscher, L.; Saue, T. Analytic one-electron properties at the 4-
component relativistic coupled cluster level with inclusion of spin-orbit
coupling. J. Chem. Phys 2016, 145, 184107, DOI: 10.1063/1.4966643.

(103) Shee, A.; Saue, T.; Visscher, L.; Severo Pereira Gomes, A. Equation-of-
motion coupled-cluster theory based on the 4-componentDirac–Coulomb(–
Gaunt) Hamiltonian. Energies for single electron detachment, attach-
ment, and electronically excited states. J. Chem. Phys. 2018, 149, 174113,
DOI: 10.1063/1.5053846.

(104) Davidson, E. R. The iterative calculation of a few of the lowest eigen-
values and corresponding eigenvectors of large real-symmetric matrices.
Journal of Computational Physics 1975, 17, 87–94, DOI: 10.1016/0021-
9991(75)90065-0.

(105) David Sherrill, C.; Schaefer, H. F. In Advances in Quantum Chemistry;
Elsevier: 1999; Vol. 34, pp 143–269, DOI: 10.1016/S0065-3276(08)
60532-8.

https://doi.org/10.1063/5.0060698
https://doi.org/10.1063/5.0060698
https://doi.org/10.1063/1.457710
https://doi.org/10.1063/1.457710
https://doi.org/10.1016/S0009-2614(89)87395-6
https://doi.org/10.1063/1.1516805
https://doi.org/10.1063/1.458814
https://doi.org/10.1063/1.4939183
https://doi.org/10.1063/1.4966643
https://doi.org/10.1063/1.5053846
https://doi.org/10.1016/0021-9991(75)90065-0
https://doi.org/10.1016/0021-9991(75)90065-0
https://doi.org/10.1016/S0065-3276(08)60532-8
https://doi.org/10.1016/S0065-3276(08)60532-8


Bibliography 217

(106) Bouchafra, Y.; Shee, A.; Réal, F.; Vallet, V.; Severo Pereira Gomes, A.
Predictive Simulations of Ionization Energies of Solvated Halide Ions
with Relativistic Embedded Equation of Motion Coupled Cluster The-
ory. Phys. Rev. Lett. 2018, 121, 266001, DOI: 10.1103/PhysRevLett.
121.266001.

(107) Opoku, R. A.; Toubin, C.; Gomes, A. S. P. Simulating core electron bind-
ing energies of halogenated species adsorbed on ice surfaces and in solu-
tion via relativistic quantum embedding calculations. Phys. Chem. Chem.
Phys. 2022, 24, 14390–14407, DOI: 10.1039/D1CP05836C.

(108) Severo Pereira Gomes, A.; Jacob, C. R. Quantum-chemical embedding
methods for treating local electronic excitations in complex chemical sys-
tems. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2012, 108, 222, DOI:
10.1039/c2pc90007f.

(109) Wesolowski, T. A.; Shedge, S.; Zhou, X. Frozen-Density Embedding Strat-
egy for Multilevel Simulations of Electronic Structure. Chem. Rev. 2015,
115, 5891–5928, DOI: 10.1021/cr500502v.

(110) Jacob, C. R.; Neugebauer, J. Subsystem density-functional theory: Sub-
system density-functional theory. WIREs Comput Mol Sci 2014, 4, 325–
362, DOI: 10.1002/wcms.1175.

(111) Misael, W. A.; Gomes, A. S. P. Core excitations and ionizations of uranyl
inCs$_{2}$UO$_{2}$Cl$_{4}$ from relativistic embeddeddamped response
time-dependent density functional theory and equation of motion cou-
pled cluster calculations, en, arXiv:2302.07223 [physics], 2023.

(112) Surjuse, K.; Chamoli, S.; Nayak, M. K.; Dutta, A. K. A low-cost four-
component relativistic equation ofmotion coupled clustermethod based
on frozen natural spinors: Theory, implementation, and benchmark. J.
Chem. Phys 2022, 157, 204106, DOI: 10.1063/5.0125868.

(113) De Santis, M.; Sorbelli, D.; Vallet, V.; Gomes, A. S. P.; Storchi, L.; Belpassi,
L. Frozen-Density Embedding for Including Environmental Effects in
the Dirac-Kohn–ShamTheory: An Implementation Based onDensity Fit-
ting andPrototypingTechniques. J. Chem. TheoryComput. 2022, 18, 5992–
6009, DOI: 10.1021/acs.jctc.2c00499.

(114) Yuan, X.; Lejeune, T.; Gomes, A. S. P. in preparation 2023.

(115) Höfener, S.; Klopper, W. Natural transition orbitals for the calculation of
correlation and excitation energies. Chem. Phys. Lett 2017, 679, 52–59,
DOI: 10.1016/j.cplett.2017.04.083.

https://doi.org/10.1103/PhysRevLett.121.266001
https://doi.org/10.1103/PhysRevLett.121.266001
https://doi.org/10.1039/D1CP05836C
https://doi.org/10.1039/c2pc90007f
https://doi.org/10.1021/cr500502v
https://doi.org/10.1002/wcms.1175
https://doi.org/10.1063/5.0125868
https://doi.org/10.1021/acs.jctc.2c00499
https://doi.org/10.1016/j.cplett.2017.04.083


218 Bibliography



AppendixA
Supplemental information of Chapter
3

219



Supplementary information: Formulation and

Implementation of frequency-dependent linear

response properties with Relativistic

Coupled-Cluster theory for GPU-accelerated

computer architectures
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Working equations for CCSD linear response

In what follows a, b, c, .. will indicate particle lines, i, j, k, ... hole lines, and p, q, r, s, ... general

indexes.1 In all equations below we use Einstein notation. Furthermore we define

• P as a permutation operator, with : P−pqf (. . . pq . . . ) = f (. . . pq . . . )− f (. . . qp . . . );

• Xp
q = ⟨p|X |q⟩ are matrix elements of property operator X ;

• V pq
rs = ⟨pq| |rs⟩ are antisymmetrized two-electron integrals, and fp

q = ⟨p| f |q⟩ Fock

matrix elements;

• λ denotes ground-state CC Lagrange multipliers, and is therefore equivalent to t̄(0),

and we have ⟨Λ| = ⟨R|+
∑

µ λµ ⟨µ| e−T0 = ⟨R|+
∑

µ λµ ⟨µ̄| ≡ ⟨R|+
∑

µ t̄
(0)
µ ⟨µ̄|

• r and l denote, depending on context, (trial) vectors associated to the solution of right

and left-hand EOMCC or response equations.

Linear response

The ξX vector is defined as2

ξXµ = ⟨µ̄|X |CC⟩ (1)

and the programmable expressions for its elements are given by:

ξXa
i = +Xa

i +Xa
e t

e
i −Xm

i tam − (Xm
e tei )t

a
m +Xm

e taeim (2)

ξXab
ij = +P−abX

b
f t

af
ij − P−ijX

m
j tabim − P−ij(X

m
e tei )t

ab
mj − P−ab(X

m
f tam)t

fb
ij (3)

The ηX vector is defined as2

ηXµ = ⟨Λ| [X, τ̂µ] |CC⟩ (4)
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and the programmable expressions for its elements are given by

ηXi
a =X i

a +Xe
aλ

i
e −X i

mλ
m
a −Xm

a temλ
i
e −X i

et
e
mλ

m
a − 1

2

(
tfemnλ

mi
fe

)
Xn

a

− 1

2

(
tfenmλ

nm
fa

)
X i

e (5)

ηXij
ab =+ P−ijP−abλ

i
aX

j
b + P−abλ

ij
aeX

e
b − P−ijλ

im
ab X

j
m − P−ab

(
temλ

ij
ae

)
Xm

b

− P−ij

(
temλ

im
ab

)
Xj

e (6)

whereas the elements of the EOMη vector3 are

EOMηXi
a = +ηXi

a + λij
abξ

Xb
j (7)

The CC Hessian (F) is defined as2

Fµν = ⟨Λ |[[H0, τ̂µ] , τ̂ν ]|CC⟩ (8)

and the programmable expressions for the matrix elements for its contraction with a response

vector
x
t,

(
x
tF

)
are given by

(
x
tF

)k

c

=+ V ki
ca .

x
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cFk

a .
x
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EOM-EE σ-Vectors and intermediates

The programmable expressions for the elements for the EOM-EE right Rσ and left Lσ vectors

are given by:

Rσa
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The programmable expressions for the elements of the intermediates F , W used above

are given by:
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Davidson scheme for solving first-order response equa-

tion

Due to the extremely large dimension of H̄ in practical calculations, solving the response

equations to obtain the perturbed amplitudes calls for the use of iterative procedures,4,5 since

directly inverting (H̄−ωkI) in the full single and double excitation space to is not feasible in

all but the simplest cases. In this work we have opted to follow the scheme outlined by Olsen

et al. 6 , with adjustments due to the fact that in H̄ is non-symmetric, so that a common

framework for solving both linear systems and eigenvalue equations can be put in place.

To this end, we have reimplemented and generalized the Davidson solver code outlined

by Shee et al. 7 , so that all matrix/vector operations are now expressed in terms of tensor

operations, involving the tensor datatypes available in the GPU-accelerated tensor opera-

tion frameworks used in ExaCorr.8 In doing so, we have conserved the features previously

implemented for the solution of eigenvalue equations (multi-root solutions, root-following,

etc), and added the ability to solve right-hand side and left-hand side linear systems (though

for linear response we will only make use of the righ-hand side solutions).

The iterative solver workflow for the solution of linear systems therefore consists of the

following steps, which are summarized in figure 1:

1. Choose an orthonormal vector as the initial guess for the trial vector space {b} where

t = bβ′ (note that t and b are TAL-SH tensors and β′ is a Fortran array). By default,

we start with pivoted unit trial vectors (see below for details);

2. Construct the reduced subspace matrix G′ and column vector C′ by projecting the

G = (H̄− ωkI) matrix H̄ and property gradient vector C = ξY onto the current trial

vector space {bi, i = 1, . . . L}, respectively. The H̄b products are obtained with the

EOM-EE σ-vector routines;

GtY = −ξY =⇒ b†Gbβ′ = b†C =⇒ G′β′ = C′ (29)

6



3. Evaluate the residual vector (rk) and preconditioner (pk)

rk = (σ − ωkb)β
′ −C

pk = (ωk − H̄||)
−1

the latter being utilized to improve convergence;9 compute the norm of rk and compare

it to the threshold defined by the user ;

4. If the norm of rk exceeds the threshold, it indicates that the calculation has not con-

verged. In this case, we construct the correction vector ϵk = pkrk and orthonormalize

it to the existing trial vector using a modified Gram-Schmidt procedure, in order to

generate the new trial vectors bk, adding it to {bi, i = 1, . . . , L, Lk}. Using the newly

generated trial vectors, repeat step 2 until the norm of the residual vector becomes

smaller than the threshold;

5. Once the norm of the error vector falls below the threshold, it indicates that the

calculation has converged. At this point, the Davidson routine stops, and the final

solution vector is obtained from b and β′ as a TAL-SH tensor, which is subsequently

used to calculate the response function of interest.

7



Figure 1: Workflow of the Davidson scheme for solving response equations. The operations
performed within the black boxes are independent from the Davidson loop. The tasks in the
blue boxes are implemented using TAL-SH tensors. The solution of the linear system in the
subspace, indicated by the red box, employs Fortran arrays.
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Frequency dependent polarizability of IIB atoms

Figure 2: Frequency dependent polarizability of Zn and Cd.

Table 1: Number of iterations for solving response equations with different
frequencies

Frequency (a.u.) Zn Cd Hg
0.0 15 14 13
0.05 18 16 14
Xa 49 39 52
Xb 39 36 41

a Frequency close to the B transition: For Zn: 0.213 a.u.; For Cd: 0.203
a.u; For Hg: 0.25 a.u;

b : With damping factor γ = 0.01 a.u.
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Comparison between LRCC with DIRAC and Dalton

Figure 3: Comparison of LR-CC damped response results obtained with DIRAC with the
Levy-Leblond Hamiltonian and standard LR-CC results obtained with Dalton, to which a
Lorentzian broadening L = 1

1+(
ω−ω0
γ/2

)2
, with the same γ used in the LR-CC damped response

calculations has been applied.
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Excitation energy of I2

We present the results of excitation energy of I2 for B3Π0+ and C1Π1 states. We use the

RELCCSD module to perform the calculations, where all occupied and virtual orbitals are

correlated. The Complete basis set(CBS) results are extrapolated by TZ and QZ values with

the formula:

ECBS =
43EQZ − 33ETZ

43 − 33

Table 2: EOM-CCSD Excitation energy of I2 for B3Π0+ and C1Π1 states

B3Π0+ C1Π1

eV nm eV nm
aug-DZ 2.28 544 2.54 487
aug-TZ 2.38 520 2.59 478
aug-QZ 2.41 514 2.61 475
CBS 2.43 510 2.62 473
Exp 2.34 530 2.51 495
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Indirect spin-spin couplings

We present here the results for the Indirect spin-spin coupling J for the hydrogen halides.

Table 3: Isotropic and anisotropic spin-spin coupling J(Hz) for HX(X=F, Cl, Br, I)

Models 1HF19 1HCl35 1HBr79 1HI127

Isotropic
NR-HF 560.2324 33.1722 32.6909 -2.1729

NR-B3LYP 377.5294 23.2295 -5.6679
NR-CC-CI 458.5500 36.9018 92.9897
NR-CC-CC 457.6892 36.6414 90.5146
NR-CC-CCa 457.6715 36.6414 90.5144
X2C-HF 559.7091 32.0803 -13.6915 -201.2263

X2C-B3LYP 375.7986 22.3179 -35.3065 -138.7448
X2C-CC-CI 457.7350 36.4102 71.9471 8.4426
X2C-CC-CC 456.8450 36.1321 68.7287 1.8104

DC-HF 559.3715 31.9899 -14.6151 -203.2970
Anisotropic

NR-HF 28.8305 70.3046 489.1606 672.0842
NR-B3LYP 71.7803 59.0412 393.8655
NR-CC-CI -42.4747 42.8696 304.9419
NR-CC-CC -39.4953 43.7373 310.8541
X2C-HF 29.2373 70.9774 508.9765 739.8355

X2C-B3LYP 72.9026 59.3847 394.2909 486.5593
X2C-CC-CI -41.3592 43.4599 322.0869 466.6810
X2C-CC-CC -38.3627 44.3369 328.3281 475.1557

DC-HF 29.3720 71.0300 509.5169 740.8219
a Calculations were performed using the CFOUR program
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Table 4: Difference in the linear response contribution to the spin-spin coupling constant
KHX between CC-CI and CC-CC (∆KLR = KLR(CC-CI)−KLR(CC-CC), in a. u.) for the
HX(X=F, Cl, Br, I) systems, broken down into the xx, yy, zz components. Apart from the
absolute values, we also provide the difference per correlated electron (∆KLR

e = ∆KLR/Ne,
with Ne = 10, 18, 36 and 54 across the series)

components
System Hamiltonian zz xx yy

∆KLR HF NR -0.0277 0.0456 0.0456
X2C -0.0273 0.0465 0.0465

HCl NR -0.0751 0.1298 0.1298
X2C -0.0724 0.1347 0.1347

HBr NR -0.1351 0.4097 0.4097
X2C -0.0860 0.4834 0.4834

HI X2C 0.1130 1.0875 1.0875
∆KLR

e HF NR -0.0028 0.0046 0.0046
X2C -0.0027 0.0046 0.0046

HCl NR -0.0042 0.0072 0.0072
X2C -0.0040 0.0075 0.0075

HBr NR -0.0038 0.0114 0.0114
X2C -0.0024 0.0134 0.0134

HI X2C 0.0021 0.0201 0.0201

Table 5: Isotropic and anisotropic indirect spin-spin coupling (Jiso and Janiso in Hz) for the
isolated H2Se subsystem taken at the geometry of the supermolecule, (Jsuper

iso and Jsuper
aniso in Hz)

for the H2Se subsystem in H2Se-H2O, and the shifts (∆J , in Hz) for the isolated (”ME”) H2Se
molecules in the presence of H2O

Models Jiso Jsuper
iso ∆JME

iso Janiso Jsuper
aniso ∆JME

ianso
1Hb-H

1

HFa -17.1157 -18.4466 -1.3309 43.4044 42.9922 -0.4122
HF -16.3598 -17.6472 -1.2874 43.5591 43.1654 -0.3937

BLYP -7.4945 -7.8597 -0.3652 41.2526 40.9022 -0.3504
B3LYP -8.1176 -8.5639 -0.4463 41.2997 40.9395 -0.3602
CC-CI -9.8335 -10.2246 -0.3911 39.9376 39.5455 -0.3921
CC-CC -10.2487 -10.6565 -0.4078 40.1031 39.7072 -0.3959

1H-Se34

HFa 93.6021 93.6042 0.0021 302.0356 300.7717 -1.2639
HF 55.2216 56.1003 0.8787 349.7842 346.5116 -3.2726

BLYP -24.8033 -21.2742 3.5291 263.5003 261.1415 -2.3588
B3LYP -7.0856 -4.0854 3.002 267.6406 265.3991 -2.2415
CC-CI 68.1164 70.0653 1.9489 213.7819 212.0822 -1.6998
CC-CC 67.4464 69.4103 1.9639 218.0737 216.3287 -1.7450

a Nonrelativistic calculation with the Levy-Leblond Hamiltonian
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Optical rotation

Table 6: Optical rotation Test of H2S2 using uncontracted basis set

Method G Tensor Optical rotation
CC(X2C) -0.10732 -271.1273

CC(X2C, virtual to 100 a.u.) -0.10757 -271.7746
CC(LEVY-LEBLOND) -0.10029 -253.3778

CC(DALTON) -0.10029 -253.3856

Table 7: Optical rotation (a.u.) of Hydrogen peroxide series (H2Y2) with a frequency corre-
sponding to the sodium D-line (589.29 nm, 0.077319 a.u.) calculated with X2C and LEVY-
LEBLOND Hamiltonian

Method H2O2 H2S2 H2Se2 H2Te2
HF(LEVY-LEBLOND) -93.2588 -124.5926 -205.8141 -93.6808

HF(X2C) -93.0240 -136.7733 -22.3730 2007.9020
B3LYP(LEVY-LEBLOND) -172.7622 -295.4117 -1098.4716 -18269

B3LYP(X2C) -173.8253 -320.9461 -1418.7842 4075
CC(LEVY-LEBLOND) -181.5585 -253.3779 -386.6950 -263.5968

CC(X2C) -182.4976 -271.1273 -1906.1708 218.8335
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Table 8: Excitation energy (a.u.) of the first ten states of H2Se2 and H2Te2 from nonrela-
tivistic calculations

State TDHF CIS B3LYP CC
H2Se2

Singlet state
1 0.1083 0.1120 0.0889 0.1016
2 0.1624 0.1646 0.1343 0.1478
3 0.2024 0.2035 0.1668 0.1796
4 0.2214 0.2233 0.1919 0.2061
5 0.2407 0.2489 0.2077 0.2283

Triplet state
1 0.0719 0.0820 0.0661 0.0812
2 0.0954 0.1311 0.1121 0.1309
3 0.1315 0.1461 0.1510 0.1561
4 0.1798 0.1841 0.1576 0.1703
5 0.1900 0.1958 0.1764 0.1901

Singlet-Triplet Splitting
1 0.0364 0.0300 0.0228 0.0203
2 0.0671 0.0335 0.0222 0.0169
3 0.0709 0.0574 0.0158 0.0235
4 0.0416 0.0392 0.0343 0.0359
5 0.0507 0.0531 0.0313 0.0383

H2Te2
Singlet state

1 0.0957 0.0989 0.0777 0.0898
2 0.1402 0.1421 0.1158 0.1292
3 0.1814 0.1829 0.1497 0.1611
4 0.1898 0.1923 0.1638 0.1760
5 0.1994 0.2171 0.1816 0.1999

Triplet state
1 0.0635 0.0725 0.0584 0.0721
2 0.0924 0.1141 0.0968 0.1143
3 0.1138 0.1296 0.1320 0.1367
4 0.1530 0.1590 0.1388 0.1498
5 0.1532 0.1599 0.1453 0.1565

Singlet-Triplet Splitting
1 0.0322 0.0264 0.0193 0.0177
2 0.0478 0.0279 0.0190 0.0149
3 0.0676 0.0532 0.0178 0.0244
4 0.0368 0.0333 0.0250 0.0262
5 0.0462 0.0572 0.0363 0.0434
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CPU vs GPU Benchmarks

We provide below an assessment of the difference in performance between RelCCSD, CPU

and GPU-based execution of EOM-EE and response equation of Hg atoms with the same

correlation orbital space and basis set indicated in the manuscript: 12 occupied and 102

virtual spinors.

These calculations have all been carried out in a single node of the TGCC BULL Irene/Jo-

liot Curie (partition V100L), consisting of a Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz

(72 cores and 386 Gb of RAM per node) and one NVIDIA Tesla V100-PCIE-32GB GPU.

To make the comparision only dependent upon the GPU usage, we have set the number of

OpenMP threads to 1 in all runs, and toggle between CPU and GPU usage for the same

executable. Both ExaCorr and the standalone code were compiled with GCC 11.1.0, CUDA

11.7 and Openblas 0.3.15 as available in the computer center.

To examine this in greater detail, we focus on the single evaluation of the EOM-EE sigma

vector, which is central to the procedure of solving the response equations (as well as in the

determination of EOM eigenvalues and eigenvectors). We have done so with a stand-alone

program that sets up, for a given problem size (number of occupied and virtual spinors), the

necessary variables (1-/2-body integral tensors, EOM-CC intermediates, T amplitudes and

a single trial vector) and executes a single instance of the production EOM-EE sigma vector

code 10 times over, while collecting at each evaluation the elapsed walltime. The results

for these evaluations is presented in table 9. As is the case with ExaCorr, the stand-alone

program does not carry out I/O to disk, with all aforementioned tensors being always present

in RAM.

From these results, we observe speedups of at least a factor of 6 for smaller problem

sizes (which are comparable to the setup for the valence-only calculation on the Hg atom

described in the paper), though in absolute terms sigma vector evaluation is rather quick

for both CPU and GPU execution. For larger problem sizes, we observe somewhat larger

speedups for the GPU code.
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Table 9: Timings (in seconds) for benchmark evaluations of the EOM-EE sigma vector code
used by the response equation solver using CPU and GPU (and the speedup for the GPU
case) for different problem sizes (number of occupied O and virtual V spinors), as well as a
model metric for the cost C of the evaluation (calculated as the formal O2V4 scaling). For
convenience, a scaled cost (SC, obtained by scaling all C values by the smallest one) is also
provided.

time (s) Cost metric
O V CPU GPU speedup C SC
10 102 6 1 6 1.08E+10 1.0
10 130 13 2 6 2.86E+10 2.6
10 160 26 5 6 6.55E+10 6.1
10 200 58 10 6 1.60E+11 14.8
20 102 20 2 9 4.33E+10 4.0
20 130 43 4 10 1.14E+11 10.6
20 160 85 8 10 2.62E+11 24.2
20 200 183 16 12 6.40E+11 59.1
30 102 48 5 10 9.74E+10 9.0
30 130 103 8 13 2.57E+11 23.7
30 160 203 14 15 5.90E+11 54.5
30 200 429 25 17 1.44E+12 133.0
40 102 96 8 12 1.73E+11 16.0
40 130 203 13 15 4.57E+11 42.2
40 160 395 21 19 1.05E+12 96.9
40 200 821 37 22 2.56E+12 236.5
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The difference in performance reported on table 9 can also be visualized in terms of the

scaling plot, shown in figure 4, which presents the increase execution time with respect to

the increase in problem size, here taken to be the SC cost metric presented above. From the

figure we see for both CPU and GPU code execution time grows in a fairly linear manner

(in log scale) with increased problem size.

We note the slope for the CPU case is somewhat larger than for the GPU code, which

could indicate the increase in speedup with problem size could come at least in part from a

less optimized CPU implementation as opposed to being purely a gain in performance of the

GPU code with increased problem size, but at this stage we have not explored the matter

further. We were unable to increase the problem size beyond those shown due to the amount

of RAM available on the node.

Figure 4: Scaling of sigma vector evaluation for benchmark calculations employing CPU
and GPU offloading for increased problem size (on the basis of the scaled cost measure, see
table 9).

Beyond assessing the performance of the code for sigma vector evaluation, we present

in table 10 a comparison of the CPU and GPU performance for the solution of the linear

response functions to determine the XX, YY and ZZ components of the dipole polarizability

for the mercury atom. This comparison provides a picture closer to the actual code use in

18



production.

Our results indicate that GPU offloading remains advantageous in practice as a means

to speed up our calculations. However, we see that for the tests carried out the speedup in

the total time to solution in each of these code sections is not as significant as for the sigma

vector evaluation itself. This is not unexpected since there are other operations which are

less computationally intensive than the sigma vector evaluation (such as trial vector update,

orthonormalization and antisymmetrization). That said, as the problem size increased we

see an increase of the speedup, in line with what is observed for the sigma vector evaluation.

Table 10: Walltimes (in seconds) for the aggregate time for determination of the XX, YY
and ZZ components of the dipole polarizability (LR) for the Hg atom for GPU and CPU
execution, as a function of problem size (number of occupied O and virtual V spinors). For
a direct comparison to the results in table 9, all calculations employed 1 OpenMP thread.

time (s)
O V CPU GPU speedup
12 102 773 317 2.4
18 148 5485 1524 3.6
18 180 10879 2606 4.2

ExaCorr vs RELCCSD comparison

We present below a comparison between the ExaCorr and RELCCSD implementations. As

response theory is not implemented in RELCCSD, the fairest comparison between codes

that can be done is for the solution of the EOM-EE problem for a single excited state, and

without making use of double group point symmetry in RELCCSD. Given the very different

design decisions (basically a tradeoff between storing data on RAM for ExaCorr and on disk

for RELCCSD), we compare only the time to solution for the EOM-EE equations in each

case. Our results, shown in table 11, indicate that time to solution between RELCCSD

and ExaCorr (GPU) are comparable, though for the small problem size considered here

RELCCSD still shows a smaller time to solution.
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Table 11: Walltimes (in seconds) for the aggregate time for determination of a single EOM-
EE excited state for Hg electron for the Hg atom, employing the RELCCSD and ExaCorr
(CPU and GPU) codes, for a given number of occupied O and virtual V spinors.

O V RELCCSD ExaCorr (CPU) Exacorr(GPU)
12 102 46 255 115
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F-59000 Lille, France

‡Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije

Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

E-mail: xiang.yuan@univ-lille.fr; loic.halbert@univ-lille.fr; l.visscher@vu.nl;

andre.gomes@univ-lille.fr

Working equations for CCSD EOM quadratic response

In what follows a, b, c, .. will indicate particle lines, i, j, k, ... hole lines, and p, q, r, s, ... general

indexes.1 In all equations below we use Einstein notation. Furthermore, we define

• P as a permutation operator, with : P−pqf (. . . pq . . . ) = f (. . . pq . . . )− f (. . . qp . . . );

• Y p
q = ⟨p|Y |q⟩ are matrix elements of property operator Y .
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In our implementation the property Jacobian EOMAY
νµ is never formed by itself, instead

we always evaluate the product of t̄X (or Lf ) and EOMAY
νµ. This product has the same

structure as ηYµ (Eq. 1, see definition of matrix elements in Yuan et al. 2 )

(ηYs )
′ =EOM ηYs − ⟨HF | Ŷ |HF ⟩ (1)

(ηYd )
′ = ηYd , (2)

with the difference of using t̄X (or Lf ) rather than t̄0 as in linear response.

Also, we reuse the ηYµ diagrams and routine by replacing the t̄0 by t̄X to define a new

intermediate (XY η′)µ:

(XY η′)ia =Y e
a (t̄

X)ie − Y i
m(t̄

X)ma − Y m
a (tem(t̄

X)ie)− (Y i
e t

e
m)(t̄

X)ma

− 1/2(tfemn(t̄
X)mi

fe )Y
n
a − 1/2(tfenm(t̄

X)nmfa )Y
i
e + (t̄X)imae (ξ

Y )em (3)

(XY η′)ijab =P−abP−ij(t̄
X)iaY

j
b − P−ij(t̄

X)imab Y
j
m + P−ab(t̄

X)ijaeY
e
b

− P−ij(t
e
mY

j
e )(t̄

X)imab − P−ab(t
e
mY

m
b )(t̄X)ijae (4)

DIRAC revision number

0923e70dd0, fe4351caf9 and 380df6b

Performance of MP2 frozen natural orbitals

We utilize the six notations below to streamline the discussion and represent the correspond-

ing MP2FNO selection scheme.

• FNO(I): threshold of occupation number 1.0d−4

• FNO(II): threshold of occupation number 1.0d−5
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• FNO(III): threshold of occupation number 1.0d−6

• FNO(I’): threshold of occupation number 1.0d−4 plus doubly-degenerate orbitals

• FNO(II’): threshold of occupation number 1.0d−5 plus doubly-degenerate orbitals

• FNO(III’): threshold of occupation number 1.0d−6 plus doubly-degenerate orbitals

From Table 1 we note under the standard selection schemes: FNO(I, II, III), the excitation

energy of the low-lying states: (4s4p) 3P and (4s4p) 1P are closed to the canonical orbitals

results. On the other hand, for higher states 3S, 1S, 1D, and 3D, the excitation energy are

significantly overestimated. Additionally, we note that the sequence of the excited states is

incorrect for FNO(I) and FNO(II). For instance, under FNO(II), the 3S state is positioned

higher than 1S.

This discrepancy can be traced back to the overestimation of the 5s orbital energy. As

illustrated in Table 2 when comparing the recanonicalized orbital energy of FNOs to the

original 5s orbital energy (-0.0999 a.u.), the energy value of 5s orbital in FNO(I)(0.2745

a.u), FNO(II)(0.1640 a.u.), and FNO(III)(-0.0119 a.u.) are all higher. Notably, for FNO(I)

and FNO(II), these are so much higher than the energies even become strongly positive.

We now shift our focus to FNO(I’), FNO(II’), and FNO(III’). We observe that the energies

of the 3S and 1S states are more accurate. For example, for FNO(I’) the error of 1S state

is 0.0017 a.u, which is significantly less than the error observed in FNO(I) at 0.1351 a.u.

This can be attributed to the fact that we achieve a notable stabilization of the 5s orbital

(-0.0932 a.u.) across the FNO(I’, II’, III’) spaces.

However, incorporating doubly-degenerate orbitals with low occupation numbers in the

ground state doesn’t significantly improve the 1D, and 3D states. We also observe that the

degeneracy of the components of 5p3/2 and 4d3/2 and 4d5/2 orbitals in FNO(I’, II’, III’) is

sometimes broken with the |mj| = 1/2 orbitals being lower than the others. This issue can

likely be attributed to the scheme we employed to include the doubly-degenerate s1/2 and
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p1/2, instead of full shells. This symmetry breaking at the orbital level is then reflected in a

poorer description of the high-lying states involving those orbitals.

We note no such thing takes place for the 4p orbitals since these have large enough

occupation numbers at the ground state to always be included in the correlation treatment.

Table 1: Performance of MP2FNOs on the excitation energy (a.u.) of eight excited states
for Ga+

Excited state FNO(I) FNO(II) FNO(III) FNO(I’) FNO(II’) FNO(III’) Canonical Expa

(4s4p)3P u
0 0.2310 0.2126 0.2120 0.2117 0.2119 0.2113 0.2112 0.2158

(4s4p)3P u
1 0.2333 0.2146 0.2140 0.2189 0.2141 0.2135 0.2132 0.2179

(4s4p)3P u
2 0.2384 0.2188 0.2181 0.2383 0.2187 0.2181 0.2173 0.2221

(4s4p)1P u
1 0.2657 0.3280 0.3249 0.3543 0.3271 0.3241 0.3221 0.3221

(4s5s)3Sg
1 0.5981 0.6425 0.4915 0.4666 0.4647 0.4645 0.4630 0.4691

(4s5s)1Sg
1 0.5864 0.6414 0.5192 0.4861 0.4838 0.4835 0.4812 0.4860

(4p2)1Dg
2
* 0.5918 0.6453 0.5183 0.5469 0.5466 0.5454 0.4914 0.4908

(4s4d)3Dg
1 0.5987 0.6632 0.5439 0.5678 0.5467 0.5460 0.5118 0.5186

a Results from NIST
* 44% from the configuration 4s4d

Table 2: Orbital energy (a.u.) of lowest 12 virtual orbitals for Ga+

FNO(I’) FNO(I’) FNO(II) FNO(II’) FNO(III) FNO(III’) Canonical Virtual orbitals
-0.1317 -0.1955 -0.1892 -0.1955 -0.1892 -0.1955 -0.1957 4p1/2

-0.1253 -0.1253 -0.1854 -0.1854 -0.1854 -0.1854 -0.1924 4p3/2

-0.1253 -0.1253 -0.1854 -0.1854 -0.1854 -0.1854 -0.1924 4p3/2

0.2745 -0.0932 0.1640 -0.0932 -0.0119 -0.0932 -0.0999 5s1/2
0.4708 -0.0384 0.1693 -0.0384 0.1270 -0.0384 -0.0659 5p1/2

0.4708 0.0579 0.1693 0.0579 0.1270 0.0579 -0.0654 5p3/2

0.4734 0.1870 0.2745 0.1693 0.1276 0.1270 -0.0654 5p3/2

0.4734 0.4708 0.4708 0.1693 0.1276 0.1270 -0.0566 4d3/2

0.4734 0.4708 0.4708 0.1870 0.1276 0.1276 -0.0566 4d3/2

1.6174 0.4734 0.4734 0.4708 0.1640 0.1276 -0.0565 4d5/2

1.6509 0.4734 0.4734 0.4708 0.1693 0.1276 -0.0565 4d5/2

1.6509 0.4734 0.4734 0.4734 0.1693 0.1693 -0.0565 4d5/2

4
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Figure S1: Convergence of the CCSD EFG at the I atom with respect to the size of the virtual orbital space, for the X2C
Hamiltonian, comparing FNO and CMO, the latter being truncated at exactly the same number of FNO and approximately

respecting atomic shell boundaries as shown in the article body. The X axis indicates the fraction of the virtual space retained,
while the Y axis gives the fraction of the correlation energy recovered with respect to the value obtained with the untruncated

virtual space.
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Table S1: Correlation energy and expectation value using uncontracted aug-cc-pVTZ
and aug-cc-pCVTZ basis sets for HCl with full orbital space

MP2 Correlation energy (a.u.) aug-cc-pVTZ aug-cc-pCVTZ
All Electrons -0.33206 -0.51702

Valence Electrons only -0.20986 -0.21094
CCSD Correlation energy (a.u.) aug-cc-pVTZ aug-cc-pCVTZ

All Electrons -0.34904 -0.53415
Valence Electrons only -0.22911 -0.23077

CCSD Dipole Moment (a.u.) aug-cc-pVTZ aug-cc-pCVTZ
All Electrons 0.73 0.73

Valence Electrons only 0.76 0.77
CCSD Quadupole Moment (a.u.) aug-cc-pVTZ aug-cc-pCVTZ

All Electrons 2.74 2.74
Valence Electrons only 2.87 2.87

CCSD Electric field gradient (a.u.) aug-cc-pVTZ aug-cc-pCVTZ
All Electrons 3.59 3.56

Valence Electrons only 3.41 3.38

Table S2: Energy and molecular properties of HTs using different Hamiltonians with Hartree-Fock wave
functions

Property(a.u.) DCa DCSSSSb X2C X2Cc X2C spinfree NONREL
Total energy -53750.9 -53718.7 -53671.3 -53448.8 -53241.6 -45401.0

HOMO-LUMO gap 0.2669 0.2668 0.2670 0.2694 0.3428 0.3633
Electric Dipole moment 0.992 0.988 0.986 0.955 0.358 -0.074

Electric Quadrupole momentd 1566.65 1566.66 1566.68 1566.83 1568.00 1570.81
Electric field gradiente 60.1 59.9 59.8 56.5 78.4 21.7

a Dirac–Coulomb Hamiltonian in which (SS|SS) integrals are replaced by an interatomic SS correction.
b Dirac-Coulomb Hamiltonian with explicitly including (SS|SS) type Coulomb integrals.
c Using Gaussian charge nuclear model.
d ZZ component.
e ZZ component on Ts nucleus.
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Table S3: The fraction of the MP2 and CCSD correlation energy of hydrogen halides
molecules using frozen natural orbitals

Retained Virtual Orbital Space MP2 Correlation Energy CCSD Correlation Energy
HF

0.00% 0.00% 0.00%
11.54% 64.93% 64.33%
32.05% 85.02% 85.09%
64.10% 98.36% 98.46%
82.05% 99.88% 99.89%

100.00% 100.00% 100.00%
HCl

0.00% 0.00% 0.00%
10.99% 43.08% 44.59%
35.16% 84.80% 85.63%
62.64% 94.91% 95.13%
81.32% 99.39% 99.43%

100.00% 100.00% 100.00%
HBr

0.00% 0.00% 0.00%
16.13% 57.53% 56.12%
29.68% 77.27% 76.52%
48.39% 92.01% 91.71%
67.74% 98.03% 97.97%

100.00% 100.00% 100.00%
HI

0.00% 0.00% 0.00%
11.52% 30.97% 31.32%
26.18% 67.66% 66.99%
43.46% 89.49% 89.23%
59.16% 96.74% 96.66%

100.00% 100.00% 100.00%
HAt

0.00% 0.00% 0.00%
11.76% 35.97% 33.95%
23.90% 63.53% 61.22%
44.85% 87.62% 86.66%
62.87% 96.86% 96.62%

100.00% 100.00% 100.00%
HTs

0.00% 0.00% 0.00%
10.54% 25.86% 24.22%
23.47% 55.31% 52.89%
42.86% 80.29% 79.00%
59.52% 93.50% 93.08%

100.00% 100.00% 100.00%
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Table S1: Einstein coefficients Av′v′′ (in s−1) and vibrational branching Rv′v′′ of the
a3Π1-X1Σ

+
0 for TlF

v’=0 v’=1 v’=2
v”=0 Av′v′′ 10907071 4540 116407

Rv′v′′ 0.98836 0.00041 0.01055
v”=1 Av′v′′ 8497 10368496 336295

Rv′v′′ 0.00077 0.93956 0.03047
v”=2 Av′v′′ 112369 168188 8307317

Rv′v′′ 0.01018 0.01524 0.75278
v”=3 Av′v′′ 2946 313347 934001

Rv′v′′ 0.00027 0.02839 0.08464
v”=4 Av′v′′ 1889 58348 799012

Rv′v′′ 0.00017 0.00529 0.07240
v”=5 Av′v′′ 2723 10286 288217

Rv′v′′ 0.00025 0.00093 0.02612

Table S2: Einstein coefficients Av′v′′ (in s−1) and vibrational branching Rv′v′′ of the
a3Π

+
0 -X1Σ

+
0 for TlCl

v’=0 v’=1 v’=2
v”=0 Av′v′′ 5644340 10468 58963

Rv′v′′ 0.98565 0.00183 0.01030
v”=1 Av′v′′ 3017 5206414 313698

Rv′v′′ 0.00053 0.90918 0.05478
v”=2 Av′v′′ 76729 107077 3447529

Rv′v′′ 0.0134 0.0187 0.60203
v”=3 Av′v′′ 260 288471 427477

Rv′v′′ 0.00005 0.05037 0.07465
v”=4 Av′v′′ 2001 19844 780483

Rv′v′′ 0.00035 0.00347 0.13629
v”=5 Av′v′′ 56 21714 224278

Rv′v′′ 0.00001 0.00379 0.03916

Table S3: The polarizability of TlF and TlCl at CCSD TZ level with finite field computation

Molecule ZZ component of Polarizability (a.u)
TlF 110
TlCl 191
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I. GAS SETUP OF MRCI

We reduce the number of reference determinants in space1
and space2 but correlate more virtual orbitals. The virtual
space for the correlating calculations contains orbitals with
energies up to and including 5 a.u and 8.4 a.u, respectively.
In space3, we employ the same configuration as depicted in

the manuscript, but with the dyall.aae3Z basis set. In space4,
we consider the outer-core correlations from the 5d orbitals
of Tl. In space5 and space6, we correlate the electrons
of 5d(Tl) and 3s(Cl) by allowing single and double excita-
tions,respectively, and additionally correlate more virtual or-
bitals (that is, those with energies up to and including 30 a.u.).
In space7 and space8, we freeze the core orbitals but only
include more virtual orbitals to provide the reference.
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Table S4: Generalized Active Spaces and occupation constraints for the TlCl molecule

GAS(space0_aae4z 2 a.u) Min_occupation Max_occupation Kramers pairs Total determinants
I 0 8 4
II 6 8 4
III 8 8 70 10 442 120

GAS(space1_aae4z 5 a.u) Min_occupation Max_occupation Kramers pairs Total determinants
I 4 4 2
II 6 8 5
III 8 8 167 306 570

GAS(space2_aae4z 8.4 a.u) Min_occupation Max_occupation Kramers pairs Total determinants
I 4 4 2
II 6 8 5
III 8 8 195 410 909

GAS(space3_aae3z 2 a.u) Min_occupation Max_occupation Kramers pairs Total determinants
I 0 8 4
II 6 8 4
III 8 8 70 10 227 291

GAS(space4_aae3z 2 a.u) Min_occupation Max_occupation Kramers pairs Total determinants
I 11 12 6
II 16 18 3
III 18 20 8
IV 20 20 62 11 525 942

GAS(space5_aae3z 30 a.u) Min_occupation Max_occupation Kramers pairs Total determinants
I 11 12 6
II 16 18 3
III 18 20 8
IV 20 20 151 61 620 589

GAS(space6_aae3z 30 a.u) Min_occupation Max_occupation Kramers pairs Total determinants
I 10 12 6
II 16 18 3
III 18 20 8
IV 20 20 151 105 069 249

GAS(space7_aae3z 2 a.u) Min_occupation Max_occupation Kramers pairs Total determinants
I 12 12 6
II 16 18 3
III 18 20 8
IV 20 20 62 2 176 044

GAS(space8_aae3z 30 a.u) Min_occupation Max_occupation Kramers pairs Total determinants
I 12 12 6
II 16 18 3
III 18 20 8
IV 20 20 151 11 532 895

Table S5: TlCl: The computed transition dipole moments of a3Π
+
0 -X1Σ

+
0 at Re and the corresponding

lifetimes

TZ results; Truncation energy (a.u.) TDM(D) lifetime(ns) Excitation energy(cm−1) Reference core orbitals
2 0.795 163 31603 MRCI_space3 no
2 0.821 153 31821 MRCI_space7 no
2 0.868 137 32465 MRCI_space4 yes

30 0.843 145 32110 MRCI_space8 no
30 0.936 118 33835 MRCI_space5 yes
30 0.973 109 34443 MRCI_space6 yes

QZ results;
2 0.767 175 31813 MRCI_space0 no
2 0.803 160 35506 MRCI_space1 no
2 0.804 160 35593 MRCI_space2 no



5

Figure S1: Total energies of ground state X1Σ
+
0 and excited state a3Π

+
0 for TlCl, for the different CI spaces explored.
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