


Abstract

In the simulation of UV-Vis spectroscopy, multipole expansions are an indispensable tool
to calculate absorption intensities, justified by the vast difference in scale between the wave
length of light and the spatial extent of the molecular system. Depending on the type of
spectroscopy, conventional or electronic circular dichroism, this expansion yields the electric-
dipole approximation or the rotational strength, respectively, at first order. I will use the
term dipole approximation throughout this thesis as a single descriptor encompassing both
schemes. However, in the X-ray regime, where the wave length can reach molecular dimen-
sions, this approximation comes into question. The main goal of this thesis is to assess the
validity of the dipole approximation in the simulation of X-ray absorption spectroscopy. In
the pursuit of this goal, a fully relativistic approach is employed to correctly describe the
core electrons. Furthermore, this approach allows us to reach the far ends of the hard X-ray
regime, typically probing core electrons of heavy elements.

In general, there are two methods to include non-dipolar effects: either the semi-classical
light–matter interaction is treated exactly, or the multipole expansion is truncated beyond
first order. For the truncated approach there are two possible representations that are
equivalent in the complete basis set limit: the generalized length- and velocity representation.
Imposing former representation yields multipole moments in their conventional form known
from classical electrodynamics. Both of these schemes have been implemented in Dirac,
a quantum chemistry code capable of two- and four-component relativistic calculations. In
this thesis, the implementation of this code is discussed, together with four applications.

Based on the core- and valence transitions of the radium atom, the convergence with
respect to the multipole expansion and the choice of basis set is assessed. For extremely
high excitation energies (∼ 3728 eV), it follows that the absorption cross-section converges
extremely slowly with respect to the multipole expansion. Subsequent analysis reveals that
this slow convergence is introduced at the property integral level. The basis set studies on
the same system indicate that the basis set convergence is generally more difficult at high
orders and for core transitions. The magnetic- and velocity representation electric-multipole
moments were most difficult to converge, due to linear dependence problems associated
with the small component function. The full interaction, however, does not suffer from the
aforementioned problems.

However, even for the core transitions, non-dipolar corrections are rather modest, at
most 20%, due to the compactness of the radium 1s1/2 orbital. For that reason, additional
calculations were performed on the Cl K-edge of TiCl4, whose symmetry equivalent centers
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delocalise the core orbitals. Even though the corrections were significant in individual tran-
sitions (a factor around 5), this effect was difficult to perceive due to spectral broadening.
Further investigations on systems of this type may require wave function methods beyond
SCF.

Additionally, the electronic circular dichroism of the H2S2 molecule was calculated across
the electromagnetic spectrum, using the full- and truncated interaction operator. Interest-
ingly, non-dipolar effects seem to be much more relevant for electronic circular dichroism,
inducing corrections of roughly a factor of 2 for the relatively light H2S2 molecule. Even with
spectral broadening, these effects are visible due to the signed nature of circular dichroism.
Further calculations demonstrate that these effects are even more pronounced for the heaver
analogues, i.e. H2Se2 and H2Te2.

Taking these points into considerations, the electric-dipole approximation seems to de-
scribe the overall characteristics of the core spectra well, although it is mandatory to go
beyond this approximation to capture dipole-forbidden transitions. For electronic circular
dichroism, however, it seems much more relevant to include non-dipolar effects, with effects
already appearing for relatively light elements. Furthermore, for this type of spectroscopy,
it can be argued that a first-order truncated approach does not make sense for heavier ele-
ments, due to the strong non-dipolar effects. Based on its favourable convergence behaviour
with respect to basis set choice and the multipole expansion, the full interaction operator is
the most robust method to include non-dipolar effects.

ii



Preface

This Ph.D thesis has been submitted in partial fulfilment of the requirements for obtaining
a Ph.D degree in the subject of theoretical chemistry at the University of Toulouse III - Paul
Sabatier. The work presented herein was carried out from October 2020 to October 2023
at the Laboratoire de Chimie et Physique Quantiques under the supervision of Trond Saue
and co-supervision of Nanna Holmgaard List. However, I was first introduced to this line
of research during my Master’s internship between May 2019 and December 2019, where I
worked on the same project as the one presented in this thesis. The research output of this
project, forming the main inspiration of this thesis, is hereafter listed in chronological order
of publication date:

* 1. Nanna Holmgaard List, Timothé Romain Léo Melin, Martin van Horn, and Trond
Saue. Beyond the electric-dipole approximation in simulations of x-ray absorption
spectroscopy: Lessons from relativistic theory. The Journal of chemical physics, 152
(18):184110, 2020. doi:10.1063/5.0003103

2. Martin van Horn, Trond Saue, and Nanna Holmgaard List. Probing chirality across
the electromagnetic spectrum with the full semi-classical light–matter interaction. The
Journal of Chemical Physics, 156(5):054113, 2022. doi:10.1063/5.0077502

3. Martin van Horn, Nanna Holmgaard List, and Trond Saue. Transition moments be-
yond the electric-dipole approximation: Visualization and basis set requirements. The
Journal of Chemical Physics, 158(18):184103, 05 2023. doi:10.1063/5.0147105.

The first article in this list is marked with an asterisk, because it is based on work from my
Master’s internship. I have included it to this list regardless, due to its high relevance to
current work

As can be inferred from the above list, several authors have contributed to these articles,
so in the following, I will explicitly state my own contributions: I provided the analysis
to conclude that schemes bases on truncated light–matter interactions converge extremely
slowly in the hard X-ray regime; furthermore, I performed the calculations and analyses
related to the basis set studies; I derived the equations- and implemented all the code
related to electronic circular dichroism and lastly I implemented the calculation of oscillator
strengths in the generalized velocity representation with explicit separation between electric-
and magnetic components.
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Introduction

Over the centuries, the evolution of chemistry is characterized by the emergence of distinct
sub-disciplines whose boundaries gradually eroded over time. One notable example is the rise
of organic chemistry during the nineteenth century.[5, Chapter 8] In its early days, this field
was mainly preoccupied with the chemistry of living matter, whereas its more developed and
older cousin, inorganic chemistry, was rather centered around inorganic salts and mineral
acids. For that reason, a dichotomous division of chemistry was prevalent, according to which
organic chemistry is based on fundamentally different principles than inorganic chemistry.
However, one key discovery that challenged this paradigm is the synthesis of urea from
inorganic matter by Wöhler in 1828.[6] Combined with the further improvements in the
characterization techniques of organic compounds, a unification of both fields was inevitable.
The chemists at the heart of these developments can be likened to detectives, meticulously
deducing structural features using minimalistic resources, such as decomposition analysis
and chemical reactivity.[5, Chapter 9]

In modern-day chemistry, the resolution of molecular structure has become a routine task
due to the advent of spectroscopy. Spectroscopy generally measures light–matter interactions
in terms of absorption, emission or scattering as a function of the wave length. However,
the utility of spectroscopy extends beyond mere structural characterization, since it also
serves as a technique to gauge molecular properties, whose nature generally depends on the
wave length of light.[7, Chapter 8] For example, in the lower energy range of the spectrum,
i.e. microwave and IR, the radiation induces molecular rotations and vibrations, whereas
the UV-Vis regime is associated with electronic excitations.[8, Chapters 10 and 11] Further
decreasing the wave length gives rise to X-rays, whose application in molecular spectroscopy
has been pioneered by de Broglie[9], Moseley[10], Siegbahn[11, 12] and Stenström.[13] X-rays
have sufficient energy to reveal the shell structure of the inner electrons, which are buried
deep inside the core and otherwise unaffected by UV-Vis radiation. Furthermore, above
a certain threshold, X-rays may even ionize the system, which manifests itself as sudden
vertical jumps in the absorption spectrum, also referred to as the edges. The edges form a
particularly useful tool in structural analysis, as they are centered at the ionization energies
of core electrons, thus being element-specific and well-separated.

However, the more interesting structural features are not easily deduced from the edges
alone, but rather from its neighbouring regions.[14, 15] In the region beyond the edge, subtle
oscillations can be observed, caused by interferences of photoelectrons that are back-scattered
from their local surroundings. The technique to measure these oscillations, also referred to
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as extended X-ray absorption fine structure (EXAFS), provides us with information about
the crystal structure of the sample.[16] However, this thesis will rather be devoted to the
opposite side of the edge, which can be probed using near-edge X-ray absorption fine struc-
ture (NEXAFS).[15] In this energy range, the X-rays are still energetic enough to interact
with core electrons, although they are excited to bound, empty levels. Since core orbitals
tend to be localized around the nuclei, NEXAFS provides site-specific information about
the system under consideration, thus forming a complement to UV-Vis spectroscopy which
involves valence excitations that are delocalized over the entire molecule. In its simplest
form, NEXAFS is based on linearly polarized light, although this procedure has one critical
blind spot: it does not distinguish between the members of an enantiomeric pair.

Such a pair consists of two molecules that are related by mirror symmetry, while at the
same time being non-superimposable. This situation generally occurs for molecules that lack
any mirror plane, inversion center or axis of improper rotation, e.g. chiral point-groups: Cn
or Dn. Historically, the existence of enantiomerism formed the decisive evidence to conclude
that molecules are three-dimensional objects characterized by their particular constellation
of atoms.[5, Chapter 11] In the modern day, enantiomerism has not lost any of its relevance,
being a crucial factor to consider in medicinal chemistry, since only a specific enantiomer
may fit in the highly asymmetric pocket of a protein molecule.

In addition, enantiomers have the same bulk physical properties and, as alluded to before,
the same spectra if the experiment is based on linearly polarized light. To make a distinction,
one posibility is to measure its electronic circular dichroism (ECD), which is defined as the
difference in absorption between left- and right-handed circularly polarized light. Typically,
this quantity is measured in the UV-Vis range, although it manifests itself in the X-ray
regime as well, where it is called X-ray natural circular dichroism (XNCD) by convention.
XNCD comes with the same benefits as ordinary NEXAFS in the sense that it provides more
local information compared to ECD in the UV-Vis range.

However, creating circularly polarized light at elevated frequencies can be quite challeng-
ing, as X-rays are notoriously difficult to manipulate using conventional optical elements. In
present day, this technical feat can be routinely carried out due to the recent developments
of synchrotron radiation. Originally being a by-product of particle physics, these devices
are circular particle accelerators that use magnetic fields to constrain electrons to circular
orbits in their hollow interior.[17, 18, 19] X-rays can be extracted from these electrons by
applying an additional alternating magnetic field that is perpendicular to the trajectory of
the electrons. The induced oscillations of the electrons give rise to a coherent X-ray source
that allows for full polarization control. This makes synchrotron radiation particularly useful
to carry out NEXAFS experiments. Alternative techniques that have gained much traction
are based on free electron lasers[20] or high harmonic generation.[21]

Even though much useful information can be extracted from these experiment alone,
assignment and interpretation of the spectra require input from theory and simulation. For
example, the absolute stereochemistry of chiral molecules can only be determined when
ECD (or XNCD) is compared to equivalent results from quantum chemical simulations.
Furthermore, in conjunction with theory, NEXAFS can be used to determine the oxidation

2



Introduction

state and local coordination environment of metal complexes.[22] Therefore, the advances
in experimental techniques should go hand-in-hand with the development of theory and
implementation thereof.

To simulate X-ray spectroscopy, it seems only natural to apply the well-established theory
developed for the UV-Vis regime. However, a large discrepancy with experiment is observed
if we blindly transfer this theory to the X-ray domain. To correct this discrepancy, it is thus
necessary to include several effects beyond what is typically required for UV-Vis spectroscopy.
First of all, since relativistic effects are generated in the core region, they need consideration
in the simulation of core excitations already for quite light elements.[23, 24] Secondly, after
exciting the core electron, the system is left with a core-hole that reduces the screening of
the nuclear charge. As a result, the effective nuclear charge increases, which amounts to an
additional stabilization of the excited state, referred to as core-hole relaxation.[25, 26] Third,
in the UV-Vis regime, the wavelength is considerably larger than the extent of the molecule,
suggesting that the fields appear to be uniform from the perspective of the molecule. Due to
this difference in scale, the light–matter interaction can effectively be described by the first
terms of a multipole expansion, yielding the electric-dipole approximation for linearly polar-
ized light and the rotational strength for circular dichroism, the latter of which depends on
both the electric- and magnetic-dipole moment. Considering that in both cases only dipolar
contributions are needed, it seems natural to use dipole approximation as an umbrella term
to designate both of these schemes. In the X-ray regime, however, the dipole approximation
come into question.
In this thesis, it will be assessed whether the dipole approximation holds in the
simulation of X-ray absorption spectroscopy.

In general, there are two possible approaches to include non-dipolar effects: either the
semi-classical light–matter interaction is treated exactly, or the multipole expansion is trun-
cated beyond zeroth order. However, truncated expansions inherently introduce gauge-origin
dependency in the calculation, a problem which Bernadotte et al.[27] solved by expanding
the absorption cross-section rather than the light–matter interaction itself. Furthermore,
schemes of this type may also suffer from negative absorption cross-sections[28] and ap-
pearant divergences, which are, in principle, both alleviated if enough terms are included
in the multipole expansion, although the latter problem may require an unreasonably large
amount.[1] There are several other examples of implementations, besides the ones from the
abovementioned references, that are capable to compute absorption intensities using either
a truncated interaction,[29, 30] or the full interaction.[31, 32, 33] Some of these schemes
have even been extended to model more complicated phenomena such as X-ray magnetic
circular dichroism,[34] X-ray scattering[35] or transient absorption.[36] However, all of these
implementations have a limited spectral range of applicability, since they are derived from a
non-relativistic framework, having at most perturbative relativistic corrections. In the hard
X-ray regime, where non-dipolar effects are most relevant, the light typically excites core
orbitals of heavy elements, which demand a fully relativistic treatment. To answer the main
question in a way that also holds for the hard X-ray regime, it is thus mandatory to work
within such a framework.
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In this thesis, I will present an implementation to simulate light–matter interactions us-
ing both the full- and truncated interaction in a four-component relativistic framework. This
implementation is a part of Dirac,[37] a quantum chemical code specialized in relativistic
molecular calculations either at the two- or four-component level. However, it should be
noted that even this level of theory has a limited range of validity. At extreme energy scales,
such as the ones encountered in highly charged cations, the effects of quantum electrodynam-
ics may play a role in X-ray absorption spectra, either affecting the core electron through
vacuum polarization/self-energy effects, or pair-creation stemming from high-energy pho-
tons. In addition, I have not included the effects of the core hole, the importance of which
has been alluded to in previous paragraph. However, the treatment of these effects is beyond
the scope of this thesis and will not be further pursued.

This thesis will be divided into four chapters. The first three discuss the required theory,
whereas the fourth chapter discusses the Dirac implementation itself together with some
applications. In particular, each chapter contains the following subjects:

• In Chapter 1, I will discuss the conventional methodology to calculate UV-Vis absorp-
tion spectra.

• Chapter 2 will be devoted to the basic principles of relativistic quantum chemistry.

• Subsequently, in Chapter 3, it will be discussed how light–matter interactions can be
treated beyond the dipole approximation.

• Using the results from previous three chapters, I will discuss the implementation in
Dirac and apply it to various examples in Chapter 4.

• The last section is devoted to the conclusion and outlook.

The various quantities appearing throughout this work are expressed in SI units and unless
stated otherwise, the Einstein summation convention will be applied.
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Chapter 1

Conventional Methods to Simulate
UV-Vis Absorption Spectroscopy

1.1 Introduction
In this chapter, I will illustrate conventional quantum chemical methods to calculate UV-
Vis absorption spectra. The ideas and derivations expressed in this chapter generally follow
the book Principles and Practices of Molecular Properties [7], which should be consulted for
further details. To classify the type of approximations typically made in the simulation of
UV-Vis spectroscopy, I will divide the calculation of absorption intensities into three main
components: the ground state calculation, excited-state calculation and the treatment of the
light–matter interaction.

To simplify the ground state calculation, approximations can be applied to either the
electronic-structure method or the Hamiltonian. For example, the valence orbitals typically
involved in UV-Vis spectroscopy are the least susceptible to relativistic effects, suggesting
that a non-relativistic Hamiltonian, such as the Schrödinger- or Pauli Hamiltonian, is usually
sufficient. After having decided which Hamiltonians to use, an electronic structure method
has to be chosen to approximate the complexity of the many-body wave function. There is
a plethora of electronic structure methods to choose from, each of which having a distinct
cost-to-accuracy ratio. For example, the ground state can most reliably be obtained using
wave function methods such as coupled cluster (CC) or configuration interaction (CI), albeit
at the expense of computational costs. The computational costs are less for the Hartree-Fock
(HF), although its accuracy is rather low as well. An improved cost to accuracy ratio can
be obtained by employing density-functional theory (DFT), which roughly comes at the cost
of a HF calculation and can even approach the accuracy of wave function methods in some
cases. In this thesis, HF and DFT will be the methods of choice to describe the ground state.
Hereafter, I will use the term self-consistent-field methods to encompass both approaches.

Using the ground-state as a starting point, there is a variety of methods available to
treat excited states, as will become more clear in this chapter. For exact states, and CI wave
functions, this procedure is rather straightforward, because excited states can be obtained
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directly from diagonalization of the Hamiltonian. Following this route at the SCF level is
more cumbersome, because HF and DFT are essentially ground state theories. However,
explicit calculation of excited states can be avoided by applying linear response theory. In
this chapter, it will be shown how the poles and residues of the linear response functions
can be related to excitation energies and transition moments, which in turn, can be used
to obtain absorption intensities. As a main drawback, this method does not take core-hole
effects into consideration, which should not matter too much in the UV-Vis regime.

What thus remains is to find a suitable description of the light–matter interaction. In this
work, a semi–classical description will be pursued, although there are examples in literature
in which the quantum mechanical nature of light is taken into account.[38, 39] A particular
feature of the UV-Vis regime is the large size of the wavelength compared to the molecular
system, which allows for the application of the dipole approximation.

To better understand the origins of this approximation, let us consider the following
example. Suppose we want to model the absorption of linearly polarized red light
(λ = 700 nm) by a benzene molecule. The electromagnetic fields describing this type of light
are shown below

E (r, t) = Eωε sin [k · r− ωt+ δ] ; B (r, t) =
Eω
ω

(k× ε) sin [k · r− ωt+ δ] , (1.1)

where appears the wave vector k with length

k =
ω

c
=

2π

λ
, (1.2)

the polarization vector ε and the phase δ.[40, Chapter 9][41, Chapter 7] Light can be polarized
in other forms than the one shown above, but that discussion will be postponed to Chapter
3.

For dilute solutions, the absorption of light is given by the Lambert-Beer law

I

I0

= e−Nσ(ω)`. (1.3)

In this expression, I and I0 are the out- and ingoing intensities, whereas the exponent gives
the effective number of absorbing molecules, expressed in terms of the number density of
absorbing molecules, N , the length traversed by the light, `, and the absorption cross-section,
σ(ω). The latter can be regarded as a surface spanned by all molecules that have successfully
absorbed the incoming light, hence forming a measure of the absorption intensity. The
quantities expressed in the Lambert-Beer law are macroscopic in nature and are in principle,
only available from experiment, whereas quantum chemical simulations typically provide
microscopic quantities. In the context of light absorption, the two scales can be connected
by the following relation

Iσ(ωfi) = ~ωfiwi→f , (1.4)
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where wi→f is the transition rate and ~ωfi the energy difference between the initial- and final
state. Both sides of this equation give a measure of the energy that is absorbed by the system.
The transition rate can be calculated using quantum mechanical methods, thus avoiding the
need to directly calculate the absorption cross-section. Before we proceed to calculate this
quantity, let us first take a step back and examine the system under consideration (Figure
1.1).

Figure 1.1: schematic representation of a benzene molecule interacting with linearly polarized red
light (λ = 700 nm) consisting of an electric (red) and magnetic (blue) component. To make the
magnetic field amplitude visible in this picture, it is not depicted at its true relative scale with
respect to the electric field. The benzene molecule is only visible after zooming into a small region
of space and in this region, the molecule effectively experiences a uniform field, which is dominated
by its electric component. The mathematical expressions describing the electromagnetic fields are
given at the bottom of the box. The propagation- and polarization direction are described by the unit
vectors ek and ε, respectively, with the latter being defined by the relation ek = c

ωk.

What stands out is the vast difference in scale between the wavelength and the benzene
molecule, the latter of which can only be perceived in a zoomed-in frame. In this frame, most
of the curvature of the plane wave is lost, implying that the molecule effectively experiences
a uniform field, whose magnetic component can safely be neglected due to its prefactor of
1/c. Formulated more mathematically, the light–matter interaction is expanded in orders of
the wave vector and truncated at first order, justified by the limit kr � 1. At this order, our
interaction is given by the electric-dipole operator, corresponding to a uniform electric field.
These considerations form the basis of the electric-dipole approximation, which is widely used
in UV-Vis spectroscopy. To describe ECD, however, the electric-dipole approximation is not
sufficient, since this interaction also depends on the magnetic-dipole operator, appearing an
order higher in our expansion.
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Let us now direct our attention to the Hamiltonian that describes this system. Without
the loss of generality, our Hamiltonian can be separated into a static part (given by a non-
relativistic Hamiltonian) and a time-dependent interaction operator

Ĥ = Ĥ0 + V̂ (t); V̂ (t) =

∫ ∞
−∞

dte−iωtV̂ (ω), (1.5)

the latter of which is conveniently expressed as a Fourier transform. Furthermore, hermiticity
of the interaction operator implies the following relation in the frequency domain

V̂ †(t) = V̂ (t)→ V̂ †(ω) = V̂ (−ω). (1.6)

I will postpone the explicit construction of this operator to Chapter 3, as it suffices for now
to assume that this operator is periodic. In turn, this implies that the Fourier transform of
the interaction operator is discretized into frequency components that are integer multiples
of a fundamental frequency

V̂ (t) = V̂ (t+ T )→ ω = nωT ; ωT =
2π

T
, n ∈ N. (1.7)

Therefore, the interaction operator can be expressed as

V̂ (t) =
N∑

y=−N

λωyα V̂α(ωy)e
−iωyt+εt, (1.8)

where the indices y and α represent the Fourier- and Cartesian components. For the Carte-
sian components, the Einstein summation convention is applied, whereas the sum over fre-
quency components is written explicitly. As can be concluded from the hermiticity of the
overall operator, the summation over the frequency components contains positive- and neg-
ative indices, corresponding to equal but opposite pairs of frequencies

ω0, (ω1,−ω1), (ω2,−ω2), (ω3,−ω3), · · · . (1.9)

Here, the zeroth frequency is zero (ω0 = 0), thus allowing for the possibility of static con-
tributions to our perturbation. Furthermore, in this expression, ε is an infinitesimal number
ensuring that the perturbation is switched on slowly, i.e. an adiabatic switch.

Within the electric-dipole approximation, the frequency components are given by the
electric-dipole moment operator

V̂α(ωy) = Q̂[1]
α = −erα; λωyα =

1

2
Eωεα, (1.10)

where −e is the electron charge. In our particular case of monochromatic light, only one pair
of frequencies contributes, allowing us to express our interaction operator in a more simple
form
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V̂ (t) = EωεαQ̂
[1]
α cos(ωt)eεt. (1.11)

However, in the following, the representation from Eqn. (E.8) is preferred to preserve gener-
ality of the formalism.

1.2 Exact-State Formalism

1.2.1 Absorption Intensities

Using our Hamiltonian as a starting point, the time evolution of the wave function can be
found by solving the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉. (1.12)

Approximative schemes are needed to find a solution to this equation, because in general it
is not analytically solvable. To keep our analysis simple, it will be assumed for now that the
exact eigenfunctions of the time-independent Hamiltonian are known

Ĥ0|n〉 = En|n〉. (1.13)

This set of functions is complete and can thus form a basis for the time-dependent wave
function

|ψ(t)〉 =
∑
n

cn(t)e−
iEnt

~ |n〉, (1.14)

where the time-dependent phase factors of each eigenfunction is included in the expansion.
Equations of motion can be obtained for these coefficients by inserting this ansatz into the
time-dependent Schrödinger equation

i~
∑
n

∂

∂t
(cn(t)e−

iEnt
~ )|n〉 =

∑
n

cn(t)e−
iEnt

~ Ĥ|n〉 (1.15)

and projecting with 〈m|

∂cm(t)

∂t
=
∑
n

1

i~
eiωmntVmn(t)cn(t); ωmn =

1

~
(Em − En) (1.16)

Vmn(t) = 〈m|V̂ (t)|n〉. (1.17)

However, solving this equation still forms a major obstacle. The problem can be simplified
by expanding the coefficients, and thus the wave function, in orders of λ = {λωyα }

cn(t) = c(0)
n + c(1)

n (t) + c(2)
n (t) + · · · ; |ψ(t)〉 = |ψ(0)〉+ |ψ(1)〉+ |ψ(2)〉+ · · · . (1.18)
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This expansion is the essence of perturbation theory and it is valid provided that λ� 1. At
t = −∞, before the perturbation has been switched on, the wave function is in the ground
state, which translates to the following boundary condition c(0)

n = δn0.
To first order in the perturbation, the equation of motion reads

∂c
(1)
m (t)

∂t
=
∑
n

1

i~
eiωmntVmn(t)c(0)

n (t) (1.19)

from which the first-order coefficients can be isolated upon integration

c(1)
m (t) =

1

i~

∫ t

−∞
dt′eiωmnt

′
Vmn(t′)c(0)

n = −1

~

N∑
y=−N

〈m|λωyα V̂α(ωy)|0〉
ωy − ωm0 + iε

e(−iωy+iωm0+ε)t. (1.20)

In the integration step, the adiabatic switch shows its true virtue, because the lower bound of
this integral would be ill-defined without its presence. Furthermore, due to its infinitesimal
nature, it can be neglected in the final expression. To arbitrary order, the coefficients can
be obtained by applying this procedure recursively

c(N)
m (t) =

1

i~

∫ t

−∞
dt′eiωmnt

′
Vmn(t′)c(N−1)

n (t). (1.21)

However, for the purposes of this thesis, the first-order equations are sufficient, as the light
intensity of conventional spectrometers is typically too small to evoke high-order effects. We
thus arrive at the following expression for the first-order perturbed wave function

|ψ(1)〉 =
∑
n

N∑
y=−N

[
− λ

ωy
α

~
〈n|V̂α(ωy)|0〉
ωn0 − ωy

e−iωyt
]
e−i

E0t
~ |n〉, (1.22)

in which the adiabatic switch is neglected. Turning back our attention to Eqn. (E.4), the
absorption rate from the ground state to a final state, |f〉, can be found using the first-order
coefficients

w0→f =
d|c(1)

f (t)|2
dt

=
d

dt

∣∣∣∣− N∑
y=−N

λ
ωy
α

~
〈f |V̂α(ωy)|0〉
ωy − ωf0 + iε

e(−iωy+ε)t

∣∣∣∣2 (1.23)

If we assume resonance conditions, i.e. ωy = ωf0, and let the adiabatic switch go to zero,
then the yth term in the summation diverges. Evidently, an infinite transition rate does not
make physical sense. However, for now, let us tolerate the presence of this divergence and
use it to our advantage. The fact that one term in this summation is infinite, implies that
all other terms can be neglected. From further manipulations of the above expression, we
arrive at the following result

w0→f =
2π

~2
|〈f |λωf0

α V̂α(ωf0)|0〉|2f(ω;ωf0, ε)e
2εt; f(ω;ωf0, ε) =

1

π

ε

(ωf0 − ω)2 + ε2
. (1.24)
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As the adiabatic switch approaches zero, the frequency-dependent factor reduces to a Dirac-
delta function

lim
ε→0

f(ω;ωf0, ε) = δ(ωf0 − ω), (1.25)

which confirms the presence of a divergence, as expected from previous analysis. Strictly
speaking, the delta function is a distribution rather than an actual function, implying that
it can only be properly defined inside of an integral: f(a) =

∫
dxδ(x − a)f(x). In section

1.2.2, it will be illustrated how divergences of this type can be useful in the calculation of
excitation energies and transition moments. However, before we arrive there, I will first
demonstrate how to avoid these divergences altogether.

The origin of this problem can be traced back to the lack of essential physics in our
model. The perturbing operator in the Hamiltonian only allows for stimulated emission,
whereas in more realistic systems, emission can also occur spontaneously under the influence
of environmental factors such as thermal collisions or vacuum fluctuations.[42] These effects
can be taken into account phenomenologically by the following change of variables ωn0 →
ωn0 + iγn0 in the denominator

c
(1)
f (t) = −

N∑
y=−N

λ
ωy
α

~

[ 〈f |V̂α(ωy)|0〉
ωf0 − ωy + iγf0

e(−iωy+iωf0)t

]
eεt. (1.26)

Here, γn0 represents a damping factor that introduces exponential decay. The damping
factor pushes the poles into the complex plane, thus making the coefficient well-defined on
the real line. Using these adjusted coefficients, the transition rate can be expressed as

lim
ε→0

w0→f =
2π

~2
|〈f |λωf0

α V̂α(ωf0)|0〉|2f(ω;ωf0, γf0); f(ω;ωf0, γf0) =
1

π

γf0

(ωf0 − ω)2 + γ2
f0

.

(1.27)
Due to the finite value of the damping factor, f(ω, ωf0, γf0) becomes a Lorentzian linewidth
function. By comparing with Eqn. (E.4), we find the following expression for the absorption
cross-section

σ(ω) =
ω

~I
|V ωf0

f0 |2f(ω;ωf0, γf0) (1.28)

The above result is referred to as Fermi’s golden rule and it will be the central equation
in this thesis to evaluate absorption intensities.[43, 44] In practice, the auxiliary quantity
ω
~I |V ω

f0|2 is calculated first, giving rise to discrete peaks, which are then broadened according
to the Lorentzian distribution. Alternatively, absorption intensities can be calculated using
response functions, which will be discussed in the next section.

1.2.2 Response Functions

Having established the time-dependence of the first-order perturbed wave function, we can
proceed to express the time evolution of expectation values. Let us in this example study

11



Chapter 1. Conventional Methods to Simulate UV-Vis Absorption Spectroscopy

the time evolution of the αth component of the electric-dipole moment of our system

Q[1]
α (t) = 〈ψ(t)|Q̂[1]

α |ψ(t)〉. (1.29)

This expression will be simplified by developing it in orders of the perturbation

Q[1]
α (t) = 〈ψ(0)|Q̂[1]

α |ψ(0)〉+ 〈ψ(1)|Q̂[1]
α |ψ(0)〉+ 〈ψ(0)|Q̂[1]

α |ψ(1)〉+ · · · . (1.30)

To describe linear absorption processes, it suffices to only keep the first few terms in this
expansion

Q[1]
α (t) = Q

[1]
0;α +

N∑
y=−N

λ
ωy
β 〈〈Q̂[1]

α ; V̂β(ωy)〉〉e−iωyt, (1.31)

where appears the permanent electric-dipole moment

Q
[1]
0;α = 〈ψ(0)|Q̂[1]

α |ψ(0)〉 (1.32)

and the linear response function

〈〈Q̂[1]
α ; V̂β(ω)〉〉 = −1

~
∑
n

[〈0|V̂β(ω)|n〉〈n|Q̂[1]
α |0〉

ωn0 + ω
+
〈0|Q̂[1]

α |n〉〈n|V̂β(ω)|0〉
ωn0 − ω

]
. (1.33)

In this expression, I have dropped the frequency index y, since the response function only
depends on one frequency component of the interaction operator. For a given perturbation
frequency, the linear response function tells us how the electric-dipole moment changes under
the influence of the external perturbation. More generally, the response function 〈〈Â; B̂〉〉
gauges the response of the expectation value of Â under the influence of B̂ as a perturbation,
or the other way around due to their symmetric nature. Furthermore, by only considering
the zeroth frequency mode of a perturbation, i.e. ω0 = 0, response functions can also be
used to describe static perturbations. In the following I will denote static response functions
as 〈〈Â; B̂〉〉0.

Similar to the findings of previous section, response function diverges under resonance
conditions, i.e. ωn0 = ±ωy. However, this artifact should not be seen as a nuisance, but rather
as a useful tool that provides us with excitation energies and transition moments.[45][46, Sec-
tion 6.4] From response functions, we can assert whether a certain frequency is a transition
frequency, because a divergence appears in this case. Therefore, the poles serve as a diag-
nostic that can be used to find transition frequencies. Once this pole has been identified,
transition moments can be extracted from the residues of the response functions.

lim
ω→ωn0

(ωn0 − ω)〈〈Q̂[1]
α ; V̂β(ω)〉〉 = −1

~
〈0|Q̂[1]

α |n〉〈n|V̂β(ω)|0〉. (1.34)

These transition moments can then be inserted into Fermi’s golden rule to obtain the absorp-
tion cross-section. Although these relations seem obvious in an exact-state-formalism, they
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prove to be essential to calculate excitation energies and transition moments in approximate
theories.

Alternatively, the divergences can be eliminated by introducing an imaginary damping
factor

〈〈Q̂[1]
α ; V̂β(ω)〉〉 = −1

~
∑
n

[〈0|V̂β(ω)|n〉〈n|Q̂[1]
α |0〉

ωn0 + ω + iγn0

+
〈0|Q̂[1]

α |n〉〈n|V̂β(ω)|0〉
ωn0 − ω − iγn0

]
(1.35)

that push the poles into the imaginary plane. This response function is thus valid over the
entire spectral range.[47, 48] Due to their general structure, damped response functions can
provide information on a plethora of molecular properties such as the refractive index,[47]
electronic circular dichroism[49, 50] and absorption spectra.[51, 52] An absorption spectrum
can be obtained from this response function by tracing its imaginary part over the spectral
range of interest. To facilitate this calculation, it is often assumed that there is a universal
damping factor for all terms in the response function

Im[〈〈Q̂[1]
α ; V̂ ω

β 〉〉] =
γ

~
∑
n

[〈0|Q̂[1]
α |n〉〈n|V̂β(ω)|0〉

(ωn0 − ω)2 + γ2
− 〈0|V̂β(ω)|n〉〈n|Q̂[1]

α |0〉
(ωn0 + ω)2 + γ2

]
(1.36)

In this work, we will pursue the former method that uses the poles and residues of the re-
sponse functions to calculate absorption intensities, which will be generalized to SCF meth-
ods in the next section.

1.3 SCF Theory

1.3.1 Energy Optimization

In the previous section, it was assumed that the exact eigenstates of the time-independent
Hamiltonian are known. However, in practice, this is seldom the case due to the sheer
complexity of the many-body wave function. To perform calculations, it is thus necessary to
resort to approximative schemes. I recall that this work is based on SCF methods, i.e. HF
and DFT, both of which essentially involve the optimization of a single Slater determinant

1√
N !

∣∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) · · · φN(r1)
φ1(r2) φ2(r2) · · · φN(r2)

...
... . . . ...

φ1(rN) φ2(rN) · · · φN(rN)

∣∣∣∣∣∣∣∣∣ , (1.37)

where {φi} are one-electron functions, ri the coordinates of electron i and N the number of
electrons in the system. At first glance, HF and DFT seem to resemble quite a lot, although
the physical origins of the two theories differ significantly.
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The foundations of DFT are given by the two Hohenberg-Kohn theorems.[53] The theorem
states that all properties of the wave function can be obtained from the electron density alone.
In particular, the energy can be expressed as a functional of the density

E[ρ] = T [ρ] + Ven[ρ] + Vee[ρ], (1.38)

where T [ρ], Ven[ρ] and Vee[ρ] are the kinetic energy, electron-nucleus attraction and the
electron-electron repulsion functionals, respectively. The second theorem states that this
functional obeys a variational principle

E0 ≤ E[ρ̃], (1.39)

where ρ̃ is some trial density. If the density functional is known, it thus becomes possible to
obtain the ground state density using optimization schemes. However, the first theorem is an
existence proof and thus neither prescribes how the exact functional should be constructed,
nor how approximate functionals can be systematically improved. Notably, the kinetic energy
functional is difficult to construct.

Kohn and Sham made a huge leap forward with their follow-up paper, in which they
represented the problem as a fictitious non-interacting system.[54] This fictitious system
partially eliminates the complications associated with the kinetic energy functional, since
the kinetic energy of this system can be obtained exactly. To compensate for this drastic
approximation, the system is subjected to an effective one-electron potential ensuring that
the non-interacting one-electron density is equivalent to the density of the exact many-
body wave function. More specifically, this potential corrects for exchange and correlation
effects and the approximative nature of the kinetic energy. The one-particle functions that
constitute the determinant can be obtained by solving[

T̂ + vH [ρ] + vxc[ρ]

]
φi = εφi, (1.40)

where appears the kinetic energy operator, T̂ , the exchange-correlation potential, vxc[ρ], and
the Hartree potential, vH [ρ] =

∫
d3r′ρ(r′)/|r′ − r|. Using this fictitious system, the exact

energy can be obtained from the functional

E[ρ] = Ts[ρ] + Ven[ρ] + J [ρ] + Exc[ρ], (1.41)

where Ts[ρ] is the kinetic energy of the fictitious system, J [ρ] the energy associated with the
Hartree potential and Exc[ρ] the exchange-correlation energy. To this day, the main challenge
associated with DFT is to find approximative exchange-correlation potentials, since there is
no systematic method to improve this potential.

HF theory, however, is much more simple in nature. In this theory, the wave function
is approximated by a single determinant, while the Hamiltonian is exact. Given that the
exact many-body wave function is an infinite expansion of such determinants, the HF deter-
minant is in some cases the dominant contribution to the wave function. Therefore, the HF
determinant can be understood as an effective one-determinantal wave function. It should
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be stressed, however, that the Kohn-Sham determinant does not share this interpretation,
because in this case the density is physically meaningful and not the determinant on its own.

Regardless of the applied method, it is convenient to represent SCF methods using the
second-quantization formalism.[55] In this formalism, the occupation numbers of each orbital
are contained in a vector. Electrons can be added or removed from orbitals by the action of
creation and annihilation operators

ap|k〉 = ap|i1, i2, · · · ip, · · · , iN〉 =

{
0 if ip = 0

Γkp|i1, i2, · · · 0, · · · , iN〉 if ip = 1
(1.42)

a†p|k〉 = a†p|i1, i2, · · · ip, · · · , iN〉 =

{
Γkp|i1, i2, · · · 1, · · · , iN〉 if ip = 0

0 if ip = 1
,

where {ip} are occupation numbers of orbitals and Γkp is a phase factor depending both on
the index p and the overall occupation, represented by the the label k. It can be shown that
this phase factor is required to correctly reproduce the Slater-Condon rules. In the Slater
determinant representation, the fermionic nature of electrons is taken into account by the
anti-symmetry of determinants upon exchange of rows. The second-quantization formalism,
however, naturally incorporates this feature into its algebraic properties. The algebra of
these operators can be summarized as

{ap, aq} = 0; {a†p, aq} = δpq {a†p, a†q} = 0, (1.43)

from which we can derive the relation

|1p, 1q〉 = a†pa
†
q|vac〉 = −a†qa†p|vac〉 = −|1q, 1p〉. (1.44)

In the following, it will be assumed that the indices (pqrs) represent general orbitals, (ijkl)
occupied orbitals and (abcd) virtual orbitals.

In this convention, the second-quantized electronic Hamiltonian assumes the form

Ĥ0 = hpqa
†
paq +

1

2
(pq|rs)a†pa†rasaq, (1.45)

where appears the one-electron integrals

hpq =

∫
d3rφ†p(r)

[
T̂ + Ven

]
φq(r); h∗pq = hqp (1.46)

and the two-electron integrals

(pq|rs) =

∫
d3r1

∫
d3r2

φ†p(r1)φq(r1)φ†r(r2)φs(r2)

r12

. (1.47)

For some generic wave function, ψ, the energy can be obtained from the expectation value
of the Hamiltonian
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E = 〈ψ|Ĥ0|ψ〉 = hpqDpq +
1

2
(pq|rs)dpq,rs, (1.48)

where in the second equality, I have introduced the one-body

Dpq = 〈ψ|a†paq|ψ〉 (1.49)

and two-body density matrix

dpq,rs = 〈ψ|a†pa†rasaq|ψ〉. (1.50)

In the special case of Hartree-Fock theory, which is based on a single determinant state, the
two-body density matrix can be expressed in terms of the one-body density matrix, yielding
the following expression for the Hartree-Fock energy

EHF = hpqDpq +
1

2

(
(pq|rs)− (ps|rq)

)
DpqDrs. (1.51)

A similar expression can be found for DFT by relating the one-body density matrix to its
corresponding density function[56]

ρ(r) = Dpqφ
†
p(r)φq(r) (1.52)

and inserting it in Eqn. (1.41)

EDFT = hpqDpq +
1

2

(
(pq|rs)− γ(ps|rq)

)
DpqDrs + Exc[ρ]. (1.53)

To allow for the possibility of hybrid functionals, the factor γ is included which mixes in
Hartree-Fock exchange.[57]

Both SCF theories are variational, so the orbitals can be obtained by minimizing the
energy. For this procedure, it is convenient to express the determinant in a set of parameters.
In this work, an exponential parametrization will be chosen to describe the SCF determinant

|0̃〉 = exp[−κ̂]|0〉; κ̂ = κpqâ
†
pâq. (1.54)

Here, |0〉 is a reference state which, in current context, is the wave function from previous SCF
iteration. As a starting guess, orbitals are typically given as linear combinations of atomic
orbitals, which may be obtained from equivalent basis set calculations,[58] the extended
Huckel approach[59] or numerical calculations.[60] The action of the exponential operator is
to rotate between orbitals. Unitarity is ensured in this operator by imposing anti-hermiticity
in the parameter matrix: κ∗pq = −κqp. Using the properties of this operator, it can be shown
that orbitals transform according to

ãp = Upqâ
†
q; Upq =

(
exp[−κ̂]

)
pq
. (1.55)

Written in this form, the wave function parameters can assume any value without breaking
orthonormality. Alternatively, a constrained optimization can be applied using the method
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of Lagrange multipliers,[61][62, p. 407] but this will not be further pursued in this work.
Using the exponential parametrization, the one-body density matrix assumes the form

D̃pq = 〈0̃|a†paq|0̃〉 = 〈0|exp[κ̂]a†paq exp[−κ̂]|0〉. (1.56)

The energy can thus be expressed as a function of the parameters by inserting this definition
into the energies provided by Eqs. (1.51) and (1.53). At the minimum of the energy, the
partial derivatives of the energy with respect to the parameters vanish, hence forming a
condition of convergence. By extension, this condition is determined by the first partial
derivatives of the one-body density matrix.

However, before proceeding to further analyse this condition, it should be stressed that
for a certain subset of parameters, the density matrix does not change, hence fulfilling the
variational condition trivially. To understand this better, let us apply a Baker-Campbell-
Hausdorff expansion to the one-body density matrix

〈0|exp[κ̂]a†paq exp[−κ̂]|0〉 = 〈0|a†paq + [κ̂, a†paq] +
1

2

[
κ̂, [κ̂, a†paq]

]
+ · · · |0〉. (1.57)

When evaluated at the reference point, only the linear commutator terms can contribute to
the first derivative with respect to the parameters. For the occupied-occupied and virtual-
virtual block, these derivatives thus assume the form

∂D̃pq

∂κij

∣∣
κ=0

= 〈0|
[
a†iaj, a

†
paq
]
|0〉 = 0 (1.58)

∂D̃pq

∂κab

∣∣
κ=0

= 〈0|
[
a†aab, a

†
paq
]
|0〉 = 0.

The non-redundant parameters are given by the occupied-virtual and virtual-occupied blocks

∂D̃pq

∂κai

∣∣∣∣
κ=0

= 〈0|[a†aai, a†paq]|0〉 = 〈0|a†paq|Φa
i 〉 = δpiδqa (1.59)

∂D̃pq

∂κ∗ai

∣∣∣∣
κ=0

= 〈0|[a†iaa, a†paq]|0〉 = 〈Φa
i |a†paq|0〉 = δqiδpa.

The variational condition can thus be expressed as

∂E

∂κai

∣∣∣∣
κ=0

=
∂E0

∂κ∗ai

∣∣∣∣
κ=0

= 0; ∀κai, κ∗ai, (1.60)

In case of DFT, the energy derivatives also depend on derivatives of the exchange-correlation
energy. These derivatives can most conveniently be expressed in terms of the exchange-
correlation density,
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∂exc(ρ, ζ)

∂κai

∣∣∣∣
κ=0

=
∂exc
∂ρ

∂ρ

∂κai
+
∂exc
∂ζ

∂ζ

∂κai
; Exc[ρ] =

∫
d3rexc(ρ, ζ). (1.61)

As a general feature of GGA functionals, the exchange-correlation density is also a function
of ζ = ∇ρ·∇ρ.[56] For DFT, it can be shown that the variational condition can be expressed
in terms of the Kohn-Sham Fock matrix

∂EDFT
∂κai

∣∣∣∣
κ=0

= −FKS
ai = 0 (1.62)

∂EDFT
∂κ∗ai

∣∣∣∣
κ=0

= −FKS
ia = 0

FKS
pq = hpq + (pq|ii)− γ(pi|iq) + vxc;pq, (1.63)

whereas in HF theory, we obtain the closely related Fock matrix

∂EHF
∂κai

∣∣∣∣
κ=0

= −Fai = 0 (1.64)

∂EHF
∂κ∗ai

∣∣∣∣
κ=0

= −Fia = 0

Fpq = hpq + (pq|ii)− (pi|iq). (1.65)

Therefore, the optimal wave function can be obtained by finding a set of parameters
that put the secondary-inactive/inactive-secondary block of the (Kohn-Sham) Fock matrix
to zero. Alternatively, the orbitals can be found by solving the pseudo-eigenvalue problem
of the (Kohn-Sham) Fock operator

F̂ (KS)φi = εiφi, (1.66)

which amounts to a diagonalization of the Fock matrix. By extension, the variational con-
dition is met in a diagonal basis, although this procedure is somewhat excessive, as it also
sets the off-diagonal of the inactive-inactive and secondary-secondary blocks to zero, corre-
sponding to redundant parameters.

Nevertheless, the pseudo-eigenvalue problem is particularly useful in atomic physics,
where spherical symmetry renders the problem one-dimensional, thus allowing the prob-
lem to be solved on a numerical grid.[63, Chapter 3] Using the grid-based methods, it is
possible to nearly approach the complete basis set limit and it is thus very suitable for
benchmark calculations. However, like any method, it does have significant drawbacks. For
instance, the finite-difference methods is less applicable for molecules, generally requiring
three dimensional grids. Furthermore, using a finite-difference method it is only possible to
compute occupied orbitals, which complicates its extension to correlated- or excited-state
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methods. Therefore, a basis set expansion is the preferred method for the purposes of this
thesis.

However, before proceeding it should be noted that Eqs. (1.62) and (1.64) do not guaran-
tee a global minimum, because they can also mark a local minimum, a saddle point, or even
a local maximum. By using second-order optimization schemes, the possibility of maxima
and saddle points can be ruled out. However, even second-order schemes are not capable of
finding a global minimum with absolute certainty.

Besides its utility in energy optimization, the variational condition can also be used
to determine static molecular properties. To arrive at this point, the Helmann-Feynman
theorem needs to be invoked,[64, 65] which is an exact-state theorem that can be reproduced
for variational, approximate theories, such as SCF theory

dE(λ, κ, κ∗)

dλ0
α

=
∂E

∂λ0
α

+
∑
ai

∂E

∂κai

∂κai
∂λ0

α

+
∑
ai

∂E

∂κ∗ai

∂κ∗ai
∂λ0

α

=
∂E

∂λ0
α

= 〈Φ0|V̂ 0
α |Φ0〉, (1.67)

where V̂ 0
α is a static perturbation with λ0

α being its associated coupling strength. In the
above equation, it is assumed that the variational condition holds at every field strength and
the orbitals do not explicitly depend on the perturbation, the latter of which does not hold
for geometric distortion or magnetic properties with the use of London atomic orbitals.[66]
Further differentiation of this condition yields the static response function

d2E

dλ0
αdλ

0
β

∣∣∣∣
λ=0

= 〈〈V̂ 0
α ; V̂ 0

β 〉〉0. (1.68)

However, in current context, we are interested in light–matter interactions, thus implying
that the static response functions have limited interest. In the following, I will generalize
above findings to the time-dependent domain.

1.3.2 Quasi-Energy

We start of with our SCF wave function and subject it to the influences of a time-dependent
interaction operator. However, by introducing time-dependence into our Hamiltonian, we
bump into the immediate problem that the energy is not a conserved quantity. Without
the energy and a variational condition, it is not straightforward how to apply Eqn. (1.68)
and find time-dependent response functions. Notwithstanding, in the presence of a periodic
perturbation, the perturbed state does share some similarities with stationary states. If
the system is exposed sufficiently long to a time-periodic perturbation, the influences of
the adiabatic switch can be neglected and after this point, the wave function will continue
oscillating periodically. This steady-state behaviour can be inferred from Eqn. (1.22) and
it holds more generally by virtue of Floquet’s theorem.[67, 68, 69] The existence of such
steady-states suggest that there might be other conserved quantities apart from the energy.

To further investigate this idea, I will draw inspiration from the static problem, hence
assuming that only the zeroth frequency component in Eqn. (E.8) contributes. However, the
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perturbation is strictly speaking quasi-static, as it is turned on using an adiabatic switch.
Using the adiabatic theorem, it can thus be shown that in the limit t→∞, the wave function
becomes

|ψ〉 =
∑
n

cn(t)e−iEnt/~|n〉 → |ψ〉 = e−iE
′t/~
∑
n

c′n(t)|n〉, (1.69)

where E ′ is the exact energy of the full Hamiltonian, including the perturbation. It can be
shown that the coefficients, cn, are related to c′n by

cn(t) = c′n(t)e−i
(
E′−En

)
t/~. (1.70)

The perturbative expansion of these coefficients is complicated because the exact perturbed
energy appearing in the exponent needs to be expanded as well. Furthermore, the additional
terms arising from this exponent diverge. Therefore, it seems to be more practical to isolate
the exponential phase from our ansatz

|ψ〉 = e−iE
′t/~|ψ̄〉 (1.71)

and apply a perturbative series based on the phase-isolated wave function. However, if one
insists, expression (1.70) can be used, because the diverging terms do not contribute to ex-
pectation values, as pointed out by Langhoff et al.[70] Therefore, the divergences introduced
by the exponential phase are secular in nature, meaning that they can be removed with the
proper mathematical manipulations.

Besides its capability to isolate secular divergences, the phase-isolated ansatz is also
particularly useful when defining time-dependent molecular properties. The time-dependent
generalization of the phase-isolated ansatz can be expressed as

|ψ〉 = eiφ(t)/~|ψ̄〉, (1.72)

where the phase, φ(t), is now a general time-dependent function. This decomposition is
made unique by imposing that φ(t) is real and that the projection of phase-isolated wave
function onto the unperturbed wave function is zero. The following equation can be obtained
by inserting our ansatz in the time-dependent Schrödinger equation(

Ĥ − i~ ∂
∂t

)
|ψ̄〉 = Q(t)|ψ̄〉; Q(t) =

∂φ(t)

∂t
, (1.73)

where the second equation defines the quasi-energy. However, this equation is seldom used,
as it is much more convenient to obtain the quasi-energy from projection with the phase-
isolated wave function

Q(t) = 〈ψ̄|
(
Ĥ − i~ ∂

∂t

)
|ψ̄〉. (1.74)

The quasi-energy deserves its name due to its connection to the energy in the static limit
Q(t)→ E.
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Due to this connection, the quasi-energy seems like a suitable candidate for the general-
ization of Eqn. (1.68) to the time-dependent domain. However, considering that Eqn. (1.67)
is derived from the variational properties of the energy, it should be assessed whether the
quasi-energy is variational as well before making this connection. I will thus apply the
following variations to the wave function

|ψ̄〉 → |ψ̄〉+ |δψ̄〉, (1.75)

which should preserve the norm of the wave function

(〈δψ̄|+〈ψ̄|)(|ψ̄〉+ |δψ̄〉) = 〈ψ̄|ψ̄〉+ 〈δψ̄|ψ̄〉+ 〈ψ̄|δψ̄〉. (1.76)

Therefore, the allowed variations assume the form

|δψ̄〉 = |ψ̄⊥〉+ iε|ψ̄‖〉; ε ∈ R, (1.77)

where |ψ̄⊥〉 and |ψ̄‖〉 are parallel and perpendicular to the phase isolated wave function.
Applying these variations to the quasi-energy yields the result

δQ(t) = −i~ ∂
∂t
〈ψ̄|δψ̄〉, (1.78)

suggesting that the quasi-energy is not variational. Furthermore, differentiation with re-
spect to the field strength gives the time-dependent generalization of the Helmann-Feynman
theorem

dQ

dλ
ωy
α

= 〈ψ̄|V̂ ωy
α |ψ̄〉 − i~

∂

∂t
〈ψ̄| dψ̄

dλ
ωy
α
〉. (1.79)

However, we would like to connect quasi-energy derivatives with expectation values, and by
extension to time-dependent response functions.

Fortunately, the time-periodicity of the system can be used to our advantage. Due to this
property, the time derivative term is periodic, suggesting it vanishes upon time-averaging
over a full period

1

T

∫ T/2

−T/2
dtḟ(t) = 0; f(t+ T ) = f(t). (1.80)

Using these relation we can retrieve a variational condition for the time-averaged quasi-energy

δQT = 0 (1.81)

and a more useful expression for the time-dependent Helmann-Feynman theorem[71]

dQT

dλ
ωy
α

=
1

T

∫ t+T/2

t−T/2
dt〈ψ̄|V̂ ωy

α |ψ̄〉 − i~
1

T

∫ t+T/2

t−T/2
dt
∂

∂t
〈ψ̄|δψ̄〉 = 〈Φ0|V̂ ωy

α |Φ0〉δωy , (1.82)
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where δωy is a generalized Kronecker delta that equals 1 if ωy = 0 and 0 otherwise.
In analogy with the static case, the time-dependent Helmann-Feynman theorem can be

exploited to compute response functions. For these purposes, I will further differentiate
Eqn. (1.82)

d2QT

dλ
ωy
α dλ

ωz
β

∣∣∣∣
λ=0

=
1

T

∫ t+T/2

t−T/2
dt〈 dψ̄

dλωzβ
|V̂α(ωy)e

−iωyt|ψ̄〉
∣∣∣∣
λ=0

+
1

T

∫ t+T/2

t−T/2
dt〈ψ̄|V̂α(ωy)e

−iωyt| dψ̄
dλωzβ

〉
∣∣∣∣
λ=0

,

(1.83)
which indeed gives the time-dependent response functions upon insertion of the first-order
perturbed wave function.

d2QT

dλ
ωy
α dλ

ωz
β

∣∣∣∣
λ=0

= 〈〈V̂α(ωy); V̂β(ωz)〉〉δωy+ωz (1.84)

Response functions can thus be computed by evaluating field strength derivatives of the
quasi-energy.

1.3.3 Response Theory

To evaluate the quasi-energy derivatives, it is necessary to expand SCF theory to the time-
dependent domain. For HF theory, this is a straightforward exercise, because the HF de-
terminant directly represents the wave function. In exponentially parametrized form, the
time-dependent generalization of the HF wave function can be expressed as

|ψ̄(t)〉 = exp[−κ̂(t)]|Φ0〉; κ̂(t) = κai(t)a
†
aai − κ∗ai(t)a†iaa, (1.85)

where the generator is given by non-redundant rotations. Contrary to Eqn. (1.54), the
reference state in this ansatz is the optimized HF ground state, while the parameters are
time-dependent to accommodate the influences of the perturbing operator. The action of the
generator is to (de-)excite orbitals, thus including contributions from excited determinants.
Using this ansatz, the quasi-energy can be expressed as

QT = Q0:HF +
N∑

y=−N

λωyα Qα(ωy), (1.86)

in terms of the two quantities

Q0;HF = {EHF}T − 〈ψ̄|i~
∂

∂t
|ψ̄〉T ; Qα(ωy) = 〈ψ̄|V̂α(ωy)e

−iωyt|ψ̄〉T , (1.87)

where the subscript T denotes time-averaging.
Due to previously established similarities between HF and DFT, it is tempting to assume

that a time-dependent generalization of the latter (TDDFT) is based on a similar ansatz.
However, demonstrating the validity of this assumption turns out to be a non-trivial task.
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After all, the Hohenberg-Kohn theorems makes use of a variational principle of the energy,
thus only applying to the ground state. A major breakthrough was provided in a seminal
article by Runge and Gross, where they generalized the Hohenberg-Kohn theorems to the
time-dependent domain by formulating the problem as an action integral.[72] However, this
formulation can be rather cumbersome, as the initial state needs to be known to establish
a one-to-one correspondence between the density and potentials. Here, I will rather follow
a procedure based on the variational properties of the time-averaged quasi-energy, which
avoids problems associated with boundary conditions due to the assumed periodicity of the
system.[73, 74] Using the variational properties of the time-averaged quasi-energy, it can
be demonstrated that it can be expressed as a functional of the density, in analogy with
the Hohenberg-Kohn theorems. Furthermore, this density can be expressed using fictitious
system of non-interacting particles, thus yielding the following functional

QT [ρ] = Q0;DFT [ρ] +
N∑

y=−N

λωyα
{∫

d3rV̂α(ωy)ρ(r,κ)
}
T

(1.88)

Q0;DFT [ρ] = {Ts[ρ] + Ven[ρ] + J [ρ] +Qxc[ρ]}T − 〈ψ̄|i~
∂

∂t
|ψ̄〉T . (1.89)

It seems tempting to identify the first four terms in Q0:DFT with the time-averaged DFT
energy (Eqn. (1.41)). However, the observant reader should have noticed that the exchange
correlation functional is different. Indeed, in the time-dependent case, this functional does
not only correct for the lack of exchange, correlation and the approximate nature of the
kinetic energy, but also for the approximate nature of the time-derivative term.[75] In general,
the time-dependent exchange-correlation functional is difficult to obtain. For that reason, the
adiabatic approximation is often applied, where the general exchange correlation potential
is approximated by the time-independent one,[76] i.e. Qxc[ρ] → {Exc[ρ]}T . Within this
approximation, the quasi-energy thus becomes

QT [ρ] = {EDFT [ρ]}T − 〈ψ̄|i~
∂

∂t
|ψ̄〉T +

N∑
y=−N

λωyα
{∫

d3rV̂α(ωy)ρ(r,κ)
}
T
. (1.90)

Having derived expressions for the quasi-energy at the SCF level, the most difficult theoretical
step has been taken, with the remainder of the derivation leaning on the general properties
of the quasi-energy, thus being mostly equivalent for both HF and DFT. In the following, I
will closer inspect the dependency of the quasi-energy on the rotation parameters to derive
working equations for its field strength derivatives.

Due to time-periodicity, the parameters in our ansatz can be expanded in Fourier com-
ponents that are integer multiples of a fundamental frequency[67, 68, 69]
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κai(t) =
N∑

k=−N

κ
(1)
ai (ωk)e

−iωkt +
N∑

k,l=−N

κ
(2)
ai (ωk, ωl)e

−i(ωk+ωl)t + · · · (1.91)

κ∗ai(t) =
N∑

k=−N

κ
(1)∗
ai (−ωk)e−iωkt +

N∑
k,l=−N

κ
(2)∗
ai (−ωk,−ωl)e−i(ωk+ωl)t + · · · .

Here, the superscripts on the parameters denote the order of the response. To distinguish the
frequency components of the response with the ones of the interaction, I have labelled the
former using the indices k, l and the latter using y, z. Within this parametrization, the time
averaged quasi-energy becomes a function of the field strengths and the Fourier amplitudes

QT (λωkα , κ
(1)
n (ωk), κ

(1)∗
n (ωk), κ

(2)
n (ωk, ωl), κ

(2)∗
n (−ωk,−ωl), · · · ), (1.92)

where the index pair ai is now represented as a super index n. In linear response, only
the first-order response parameters are considered, which can be conveniently represented in
vector form

K(ωk) =

(
κ(1)(ωk)
κ(1)∗(−ωk)

)
; Km(ωk) =

{
κ

(1)
m (ωk) if m > 0

κ
(1)∗
m (−ωk) if m < 0

, (1.93)

where the indices of this vector are positive for the upper half and negative for the lower
half. The quasi-energy derivatives can now be found using the chain rule

d2QT

dλ
ωy
α dλ

ωz
β

∣∣∣∣
λ=0

=

[
∂2QT

∂λ
ωy
α ∂λ

ωz
β

]∣∣∣∣
λ=0

(1.94)

+
N∑

k=−N

[
∂2QT

∂λωzβ ∂Kn(ωk)

∂Kn(ωk)

∂λ
ωy
α

]∣∣∣∣
λ=0

+
N∑

k=−N

[
∂QT

∂Kn(ωk)

∂2Kn(ωk)

∂λ
ωy
α ∂λ

ωz
β

]∣∣∣∣
λ=0

+
N∑

k,l=−N

[
∂Kn(ωk)

∂λωzβ

(
∂2QT

∂Kn(ωk)∂Km(ωl)

∂Km(ωl)

∂λ
ωy
α

+
∂2QT

∂λ
ωy
α ∂Kn(ωk)

)]∣∣∣∣
λ=0

.

Several simplifications can be applied to above results. Firstly, the perturbation only appears
linear in the Hamiltonian, implying that the first term in Eqn. (1.94) vanishes. Secondly, as
demonstrated in previous section, the time averaged quasi-energy is variational for all field
strengths

∂QT

∂Kn(ωk)

∣∣∣∣
λ

= 0; ∀λ, (1.95)

rendering the third term zero as well. Further simplifications can be made by differentiation
of the variational condition with respect to the field strength

24



Chapter 1. Conventional Methods to Simulate UV-Vis Absorption Spectroscopy

[
∂2QT

∂Kn(ωk)∂λ
ωy
α

]∣∣∣∣
λ=0

+
N∑

l=−N

[
∂2QT

∂Kn(ωk)∂Km(ωl)

∂Km(ωl)

∂λ
ωy
α

]∣∣∣∣
λ=0

= 0. (1.96)

This expression necessarily equals zero because the variational condition holds for all field
strengths. Upon inspection of Eqn. (1.94), the differentiated variational condition can be
recognized in the last two terms. Therefore, Eqn. (1.94) simplifies to

d2QT

dλ
ωy
α dλ

ωz
β

∣∣∣∣
λ=0

=
N∑

k=−N

[
∂2QT

∂λωzβ ∂Kn(ωk)

∂Kn(ωk)

∂λ
ωy
α

]∣∣∣∣
λ=0

. (1.97)

To evaluate the double derivatives of the quasi-energy, and hence response functions, it
is required to evaluate the property gradient

EV
ωy
β
δωk+ωy =

 ∂2QT

∂λ
ωy
β ∂κ

(1)
n (ωk)

∣∣
λ=0

∂2QT

∂λ
ωy
β ∂κ

(1)∗
n (−ωk)

∣∣
λ=0

 (1.98)

and the solution vectors

XV
ωy
α

(ωk) =

(
Z
Y ∗

)
=

 ∂κ
(1)
n (ωk)

∂λ
ωy
α

∣∣
λ=0

∂κ
(1)∗
n (−ωk)

∂λ
ωy
α

∣∣
λ=0

 . (1.99)

Note that both of these quantities are stored in vector format for convenience. Using this
notation, the response functions can be expressed in the elegant form below

〈〈Â; B̂〉〉 = E†AXB. (1.100)

The solution vectors can be obtained by inverting the differentiated variational condition.
However, solving this equation requires the property gradient and the double derivative
of the quasi-energy with respect to the first-order Fourier components. Therefore, I will
first proceed to calculate these quantities. To evaluate the property gradient, I will exploit
the fact that its evaluated at zero field strength, implying that only the linear terms with
respect to the field strength and first-order response parameters are non-vanishing. To
gather contributions to the quasi-energy in a transparent manner, it proves to be useful
to apply a Baker-Campbell-Hausdorff expansion to the perturbed density matrix and the
time-derivative term

〈Φ0|exp[κ̂]a†paq exp[−κ̂]|Φ0〉 = 〈Φ0|a†paq|Φ0〉+ 〈Φ0|[κ̂, a†paq]|Φ0〉+
1

2
〈Φ0|

[
κ̂, [κ̂, a†paq]

]
|Φ0〉+ · · ·

(1.101)

〈Φ0|exp[κ̂]i~∂t exp[−κ̂]|Φ0〉 = 〈Φ0|i~∂t|Φ0〉+ 〈Φ0|[κ̂, i~∂t]|Φ0〉+
1

2
〈Φ0|

[
κ̂, [κ̂, i~∂t]

]
|Φ0〉+ · · · .
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Note that unlike the expansion from Eqn. (1.57), these expressions are defined with respect to
the SCF ground state and the response parameters. The property gradient can be evaluated
by first inserting these terms into the quasi-energy and then gathering the terms of the right
order. Therefore, the gradient reads

∂2QT

∂Km(ωk)∂λ
ωy
α

∣∣∣∣
λ=0

=

{
−〈Φ0|

[
V̂
ωy
α , a†aai

]
|Φ0〉δωk+ωy m > 0

〈Φ0|
[
V̂
ωy
α , a†iaa

]
|Φ0〉δωk+ωy m < 0

, (1.102)

which has inherited the overall vector structure from Eqn. (1.93). In vector notation, it can
be rewritten as

EV
ωy
α

=

(
gV ωyα
g∗
V
ωy
α

)
; gV ωyα ;ai = −〈Φ0|V̂ ωy

α |Φa
i 〉 = −

∫
d3rφ∗i (r)V̂ ωy

α φa(r). (1.103)

We now proceed to calculate the double derivative of the quasi-energy with respect to the
response parameters. This quantity is ideally represented as a matrix having the following
block-structure

Q
[2]
T =

[
∂2QT

∂κ∗n(−ωk)∂κm(ωl)
∂2QT

∂κ∗n(−ωk)∂κ∗m(−ωl)
∂2QT

∂κn(ωk)∂κm(ωl)
∂2QT

∂κn(ωk)∂κ∗m(−ωl)

]
. (1.104)

To evaluate these derivatives, we can follow a similar approach as the one for the property
gradient, although the situation is somewhat more complicated for DFT, due to the ad-
ditional burden to evaluate the double derivatives of the exchange-correlation density. The
evaluation of these terms boil down to calculating the exchange-correlation kernel (see ref. 75
for more detail)

Wxc;pq,rs =

∫
d3r

(
∂2exc
∂ρ2

∣∣∣∣
λ=0

ΩpqΩrs + 2
∂2exc
∂ρ∂ζ

∣∣∣∣
λ=0

[
(∇ρ0 ·∇Ωpq)Ωrs + Ωpq(∇ρ0 ·∇Ωrs)

(1.105)

+ 4
∂2exc
∂ζ2

∣∣∣∣
λ=0

(∇ρ0 ·∇Ωpq)(∇ρ0 ·∇Ωrs) + 2
∂exc
∂ζ

∣∣∣∣
λ=0

(∇Ωpq ·∇Ωrs)

)

Ωpq = φ†p(r)φq(r).

Therefore, we end up with the following general structure

Q
[2]
T = (E

[2]
0 − ~ωlS[2])δωk+ωl , (1.106)

where appears the generalized metric
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S[2] =

[
Σ ∆
−∆∗ −Σ∗

]{
Σai,bj = 〈0|

[
− a†iaa, a†baj

]
|0〉 = δabδij

∆ai,bj = 〈0|
[
aiaa, a

†
jab
]
|0〉 = 0

(1.107)

and the electronic Hessian, E[2]
0 . Depending on the level of theory, the Hessian assumes

different forms. In Hartree-Fock theory,[77] the Hessian reads

E
[2]
0 =

[
A B
B∗ A∗

]{
Aai,bj = 〈0|

[
− a†iaa, [a†baj, Ĥ0]

]
|0〉 = δijFab − δabFji + (ai|jb)− (ab|ji)

Bai,bj = 〈0|
[
a†iaa, [a

†
jab, Ĥ0]

]
|0〉 = (ai|bj)− (aj|bi)

(1.108)
whereas in DFT it assumes the form[78]

E
[2]
0 =

[
A B
B∗ A∗

]{
Aai,bj = δijF

KS
ab − δabFKS

ji + (ai|jb)− γ(ab|ji) +Wxc;ai,jb

Bai,bj = (ai|bj)− γ(aj|bi) +Wxc;ai,bj.
(1.109)

Using these quantities, Eqn. (1.96) can be written in its conventional form(
E

[2]
0 − ~ωS[2]

)
XV ωα (ω) = −EV ωα , (1.110)

which is also referred to as the response equation. Note that in this equation, the action
of the Kronecker symbol ensures that all different frequency components stemming from
various sources are the same. For ease of notation, this index has thus been dropped. As
eluded to before, the solution vectors can be obtained by inverting the matrix expression

XV ωα (ω) = −
(
E

[2]
0 − ~ωS[2]

)−1
EV ωα . (1.111)

In practice, however, such a matrix inversion is rarely performed explicitly due to the sheer
size of the electronic Hessian. Instead, the Hessian is projected in a basis of trial vectors and
solved iteratively, which is explained more thoroughly in Appendix A.1.

With the explicit form of the solution vectors, the response functions can be expressed
as

〈〈Â; B̂〉〉 = −E†A(E
[2]
0 − ~ωS[2])−1EB. (1.112)

However, I recall that we started this venture in response theory to find transition moments
and excitation energies at the SCF level. In the exact-state case, it is a straightforward
exercise to identify the poles and hence find these quantities. From expression (1.112),
however, it is less clear where the poles are located. From elementary linear algebra, it is
known that the inverse of any matrix is inversely proportional to its determinant. It thus
follows that the resolvent matrix in Eqn. (1.112) induces divergences if

det
(
E

[2]
0 − ~ωS[2]

)
= 0. (1.113)
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This condition is nothing more than the characteristic equation of the generalized eigen-
value problem

E
[2]
0 Xn = ~ωn0S

[2]Xn. (1.114)

In above expression ωn0 should be understood as the specific value of ω that induces a
divergence, i.e. the transition frequency. From the structure of the electronic Hessian and
the generalized metric, it can be shown that the eigenvectors come in pairs having equal but
opposite frequencies

{
ω+ = + |ωn| ,Xn,+ =

[
Zn

Y ∗n

]}
∪
{
ω− = − |ωn| ,Xn,− =

[
Yn
Z∗n

]}
. (1.115)

Expressing the response function in the set of these eigenvectors thus allows us the identify
the poles. To further pursue this idea, I define a unitary matrix

X =
(
X1,X2, · · · ,XN

)
; X†X = I (1.116)

which has the eigenvectors as columns.[79] The response functions can be transformed by
inserting the identity matrix

−E†AXX†(E
[2]
0 − ~ωS[2])−1XX†EB = −E†AX(XE

[2]
0 X† − ~ωXS[2]X†)−1X†EB (1.117)

Brought in diagonal form, the resolvent can be expressed as

(XE
[2]
0 X† − ~ωXS[2]X†)−1 =



1
~ω1,0−~ω 0 0 · · · 0

0 1
~ω2,0−~ω 0 · · · 0

0 0
. . . . . . 0

...
... . . . 1

~ωN−1,0+~ω
...

0 0 0 · · · 1
~ωN,0+~ω

 , (1.118)

which further establishes the analogy between the resolvent and the frequency denominators
in the exact response functions (Eqn. (1.33)). Written in this diagonal representation, the
approximate response functions become

〈〈Â; B̂〉〉 = −
′∑
n

[
(E†AXn)(X†nEB)

~ωn0 − ~ω
+

(E†AXn)(X†nEB)

~ωn0 + ~ω

]
. (1.119)

In this form, the residues can be readily evaluated

lim
ωB→ωn0

(ωB − ωn)〈〈Â; B̂〉〉 = −1

~
(E†AXn)(X†nEB), (1.120)
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implying that the transition moments can be written as

〈f |Â|i〉SCF = E†AXn = −Zai〈Φa
i |Â|Φ0〉 − Y ∗ai〈Φ0|Â|Φa

i 〉. (1.121)

Using the well-defined hermiticity of the interaction operator, the transition moments can
be further simplified by utilizing the paired structure of the solution vectors

Xh =
1

2
(Xm,+ +Xm,−) =

1

2

[
Z + Y

(Z + Y )∗

]
; Xa =

1

2
(Xm,+ −Xm,−) =

1

2

[
Z − Y

− (Z − Y )∗

]
,

(1.122)
which makes the transition moment either purely real or imaginary

X†hE
[1]
A = Re

[
(Z + Y )† gA

]
; X†aE

[1]
A = iIm

[
(Z − Y )† gA

]
. (1.123)

To calculate absorption intensities, the eigenvalue problem from Eqn. (1.114) is first solved,
yielding the transition frequencies and the solution vectors. The transition moments, which
may be frequency-dependent, are then constructed from relation (1.121). Absorption inten-
sities are then calculated by inserting these transition moments into Fermi’s golden rule.

By comparison with exact-state theory, it is tempting to associate the solution vectors
with excited states

X̂n|Φ0〉 =

(
Yaia

†
iaa + Z∗aia

†
aai

)
|Φ0〉. (1.124)

However, this comparison does not hold, because |Xn〉 does not obey the so-called killer-
condition.[77, 80] This condition applies to excited states

|n〉 = Ôn|0〉, (1.125)

generated from the ground state by the operator Ô. According to the killer-condition, the
Hermitian conjugate of Ô should annihilate the ground-state

Ô†n|0〉 = 0. (1.126)

However, when applying X̂†n to the ground state, this condition is violated

X̂†n|Φ0〉 = Yai|Φa
i 〉. (1.127)

Therefore, the approximate methods describes in this section can only provide transition
moments and excitation energies.

Using the techniques developed in this chapter, we are now in a position to calculate
UV-Vis absorption spectra at the SCF level of theory. In principle, these techniques can also
be used to calculate X-ray absorption intensities, although the results differ severely from
experiment. These discrepancies can be explained by the limitations of the models that we
have been using throughout this chapter. The next two chapters will describe the theory
required to adapt our model for the simulation of X-ray absorption spectroscopy.
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Chapter 2

Relativistic Quantum Chemistry

2.1 Introduction
In the formation of bonds, the core electrons typically do not need special considerations,
since they are not easily polarized and thus largely retain their atomic character. Notwith-
standing, the core electrons take center stage in X-ray spectroscopy, which operates at high
enough energies to probe these electrons. The simulation of X-ray spectroscopy is met
with difficulties, because the conventional theory from UV-Vis spectroscopy (see Chapter 1)
cannot accurately reproduce X-ray experiments. At least some of these shortcomings are
rooted in the special characteristics of core electrons. Due to their close proximity to the
nucleus, core electrons experience a much stronger attraction than valence electrons, thus
significantly increasing their velocities (see Fig. 2.1). An analogous effect occurs in the solar
system, where the planet Mercury orbits the sun at much higher velocities than the more
distant planets. In general, the velocity of the electrons increases with higher atom num-
ber. Already for elements of moderate size, the core electrons move so fast that classical
quantum mechanics fails to properly account for their motion. However, for elements in the
lower half of the periodic table, the influences of relativistic effects extend beyond the core,
since the orbitals of all other electrons need to remain orthogonal to the core orbitals, hence
effectively contracting the valence shell. To even obtain a qualitatively correct wave function
of molecules that contain such elements, relativistic effects must be included.[23]

Together with quantum mechanics, special relativity has revolutionized the paradigm of
modern physics. The latter theory requires a drastic re-evaluation of the concepts of space
and time, although it only gains relevance at extremely high energy scales. However, this
theory is classical in the sense that it concerns the deterministic motion of point particles,
whereas quantum mechanics is fundamentally probabilistic in nature. To include the effects
of relativity in our calculations, it has to be extended to the quantum mechanical realm.
Fortunately, this work has already been done for us by Paul Dirac, who formulated a rela-
tivistic extension of the Schrödinger equation.[81] The merits of the Dirac equation are its
more accurate energy values, its natural description of spin and spin-orbit coupling and its
prediction of anti-matter. As alluded to before, the Dirac equation is particularly useful
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when describing properties that depend on the core electrons, such as NMR-,[82, 83, 84]
Mössbauer-[85, 86, 87] or X-ray spectroscopy.[25] In this work, a relativistic approach will
be pursued to properly describe the core electrons. Therefore, this chapter will be devoted
to the methods of relativistic quantum chemistry.

Figure 2.1: schematic representation of the atomic shell model. Compared to the valence electrons
(yellow) the core electrons (orange) move at an elevated speed, thus inducing relativistic effects.

2.2 Special Relativity

2.2.1 The Postulates of Special Relativity

As a point of departure, I will first discuss the theory of special relativity, thus illustrating
the basic principles to understand the more advanced topics that are introduced later in this
chapter. The foundations of this theory are given by the two postulates of special relativity,
the first of which, originally formulated by Galileo, states that the laws of physics are the
same regardless of the inertial frame from which it is described. Here, an inertial frame is
any frame that does not undergo accelerated motion. Therefore, the axis of two inertial
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frames may be oriented differently and move at a constant relative speed. Suppose that we
have two of such frames S and S ′ that are described by parallel axes, where the former is
stationary and the latter is moving with a speed of v in the direction of the positive part
of the x-axis. In the framework of classical mechanics, the coordinates of both systems are
related by the transformation rules

t′ = t (2.1)
x′ = x− vt
y′ = y

z′ = z,

where it has further been assumed that both frames coincide at t = 0. In transformations
of this type, referred to as Galilean transformations, time enters as a parameter that is
universally agreed on. It can be shown straightforwardly that Newton’s second law is indeed
invariant with respect to transformations of this type F = md2r′

dt′2
= m d2

dt2
(r − vt) = md2r

dt2
.

However, the same does not hold true for the Maxwell equations, which govern how
electromagnetic fields are generated from charge- and current densities[40, Chapter 7][41,
Chapter 6]

∇ ·E =
1

ε0
ρ (2.2)

∇×E = −∂B
∂t

∇ ·B = 0

∇×B = µ0J + µ0ε0
∂E

∂t
,

where ρ and J are the charge- and current densities, ε0 the electric constant and µ0 the
magnetic constant. To demonstrate the behaviour under Galilean transformations, the par-
tial derivatives appearing in these equations should be expressed in the coordinates of S ′
using the chain rule. Furthermore, it should be noted that in a moving frame, we may have
additional currents that are not present in the stationary frame. For example, a charge dis-
tribution, ρ0(r) at rest in S, gains velocity in the moving frame S ′, thus creating a current
according to

j ′(r′, t) = −vρ0(r, t). (2.3)
At this point, invariance of the Maxwell equations can be demonstrated if and only if a
substitution can be made

E → E′; B → B′ (2.4)
ρ→ ρ′; j → j ′
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that reduce the equations to their untransformed form. However, for Galilean transforma-
tions, such a substitution does not exist, implying that either something is wrong with the
Maxwell equations or the Galilean transformations. Here, I will assume the latter to be the
case, so in the following, I will lay out a transformation rule that respects the structure of
the Maxwell equations.

However, using aforementioned procedure to find a correct transformation is a rather
lengthy one and does not reveal much of the physics. To obtain a more intuitive picture of
the correct transformation, I will simplify our problem by considering a specific instance of
the Maxwell equations: the homogeneous case

∇ ·E = 0 (2.5)

∇×E = −∂B
∂t

∇ ·B = 0

∇×B = µ0ε0
∂E

∂t
,

which is valid in the absence of charge- and current densities. Although these equations
are less complicated than the inhomogeneous counterparts, it is desirable to further simplify
them by decoupling the electric and magnetic field. This can be achieved by first applying
the cross-product to the second- and fourth equation

∇× (∇×E) = −∂∇×B
∂t

(2.6)

∇× (∇×B) = µ0ε0
∂∇×E

∂t
,

followed by insertion of the identity ∇× (∇× F ) = ∇(∇ · F )−∇2F , yielding the result

∇2E = −µ0ε0
∂2E

∂t2
(2.7)

∇2B = −µ0ε0
∂2B

∂t2
.

These equations can be identified as three-dimensional wave equations with a propagation
speed of c = 1√

µ0ε0
. Possible solutions to these equations are given by the linearly polarized

plane waves from previous chapter (Eqn. (E.1)). The first postulate thus creates a paradox:
the speed of light is expressed in fundamental constants, so it should be the same regardless
of the inertial frame, whereas from the Galilean transformations one would expect the speed
to be c + v if the emitter of light is moving. If we insist that the Galilean transformations
are not entirely correct, we need to introduce the second postulate, stating that the speed
of light is the same regardless of the inertial frame.[88]
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2.2.2 Lorentz Transformations

Based on the two relativistic postulates, I will derive new transformation laws that respect
the structure of the Maxwell equations. For simplicity, I will derive these transformation
rules for the previously introduced frames S and S ′. The universality of the speed of light
can only be explained if the notion of time and space is different depending on the inertial
frame. Therefore, to avoid any prior assumptions, I will ascribe the space-time coordinates
{x, y, z, t} to S and {x′, y′, z′, t′} to S ′.

Suppose that we have a trolley carrying a point-like light source that is following the
origin of S ′. At t = t′ = 0, the light source will start emitting spherical waves which,
according to the second postulate, travel at the speed c regardless of the inertial frame.
Accordingly, to each spatial interval traversed by the light, |r2− r1| in S and |r′2− r′1| in S ′,
we can associate a time interval, t2 − t1 and t′2 − t′1, required for the light to propagate said
regions in space. Therefore, the following relation should hold in both frames

|r2 − r1|
|t2 − t1|

=
|r′2 − r′1|
|t′2 − t′1|

= c. (2.8)

From simple manipulations, we arrive at[88, 89]

(x2−x1)2+(y2−y1)2+(z2−z1)2−c2(t2−t1)2 = (x′2−x′1)2+(y′2−y′1)2+(z′2−z′1)2−c2(t′2−t′1)2 = 0,
(2.9)

which can be further simplified by introducing the compactified notation

∆xµ∆xµ = ∆x′µ∆x′µ = 0. (2.10)

In this expression, the position four-vector is defined as

xµ =


ct µ = 0

x µ = 1

y µ = 2

z µ = 3

; xµ =


−ct µ = 0

x µ = 1

y µ = 2

z µ = 3

, (2.11)

where the zeroth component represents time and the remaining three space. Hereafter, I will
assume that Greek indices represent the index of a four vector, whereas Latin indices repre-
sent its spatial component. Furthermore, according to this convention, raising and lowering
the index switches the sign of the zeroth component. This operation can be represented
tensorially by the Minkowski metric[40]

xµ = ηµνxν ; η = diag(−1, 1, 1, 1). (2.12)

The space-time interval in expression (2.10) is particularly useful to find the class of trans-
formations that preserve the speed of light. Given a transformation between the two frames
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xµ = Λµ
νx
′ν , (2.13)

the speed of light is preserved if the following relation holds

Λρ
µη

µνΛσ
ν = ηρσ, (2.14)

because in this case, we have

∆xµ∆xµ = ∆xνη
νµ∆xµ = ∆x′ρΛ

ρ
νη

νµΛσ
µ∆x′σ = ∆x′ρη

ρσ∆x′σ = ∆x′σ∆x′σ. (2.15)

Transformations of this type form a group and are referred to as Lorentz transformations.
The action of these transformations mixes the space-time coordinates of the two frames.

Lorentz transformations that only mix spatial components (∃i, j s.t. Λj
i 6= 0) can be thought

of as ordinary rotations, whereas translations, or boosts (∃µ s.t. Λµ
0 6= 0 and Λ0

µ 6= 0), are
associated with the admixture of spatial and temporal coordinates and vice versa. In line with
the group properties of Lorentz transformations, two consecutive Lorentz transformation
can generally be decomposed into a rotation and a boost. The admixture of space with
time resulting from boosts does not seem all that unfamiliar, since this also occurs in the
Galilean transformations (Eqn. (2.1)) to describe relative motion between frames. However,
the admixture of time with space seems extremely counter-intuitive and it highlights an
essential feature of special relativity: time is not absolute.

In our specific example we have Λj
i = 0, thus implying that our Lorentz transformation

is a boost, described by the following non-trivial relations[90, chapter 2]

ct = Λ0
1x
′ + Λ0

0ct
′; ct′ = −Λ1

0x+ Λ0
0ct (2.16)

x = Λ1
1x
′ + Λ1

0ct
′; x′ = Λ1

1x− Λ0
1ct.

Using the second postulate of relativity, the coefficients of this linear transformation can
be obtained. In both frames, the spherical wave travels the following distance along the
x/x′-axis

x = ct; x′ = ct′. (2.17)

Substituting these relations into the transformation rule gives

t

t′
= Λ1

1 + Λ1
0;

t′

t
= Λ1

1 − Λ0
1, (2.18)

which can be combined to yield the following equation

(Λ1
1)2 − (Λ1

0)2 = 1. (2.19)

To solve for these elements, we need an additional relation, which can be found by evaluating
the coordinates of S ′ at the origin
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0 = Λ1
1x− Λ0

1ct→
x

t
= v =

cΛ0
1

Λ1
1

. (2.20)

Therefore, the elements read

Λ1
1 =

1√
1− v2

c2

= γ (2.21)

Λ0
1 =

v

c
√

1− v2

c2

= βγ.

From similar manipulations, it can be shown that Λ0
0 = γ, which is hereafter referred to

as the Lorentz factor. From these coefficients we arrive at the final form of the Lorentz
transformations[88]

t = γ(t′ +
v

c2
x′) (2.22)

x = γ
(
x′ + vt′)

y = y′

z = z′.

In this example, we chose to consider a transformation to a frame that is moving along the
x-axis, although these relations can be readily generalized to arbitrary directions.

As alluded to before, the admixture of space and time provided by Lorentz transforma-
tions drastically changes the properties of space-time. For instance, in a relativistic frame-
work, the concept of simultaneity needs re-evaluation. To illustrate this, I have created a
schematic representation of our Lorentz transformation in the form of a space-time diagram
(Fig. 2.2). In such a diagram, time is represented by a coordinate axis that may mix with
the other axes upon transformation, contrary to classical mechanics where time is a universal
parameter.
An important feature of Fig. 2.2 is that the ct′- and x′-axis are tilted towards the speed of
light. In the unprimed frame, all simultaneous events occur in the xy-plane perpendicular
to the ct-axis, whereas all simultaneous events in the primed frame lie in the x′y-plane.
Therefore, two events that are simultaneous in frame S, are not necessarily simultaneous in
frame S ′.

Furthermore, when observed from different intertial frames, length intervals are not equiv-
alent. For example, some interval along the x-axis in frame S

` = x2 − x1, (2.23)

is not the same when evaluated in the moving frame S ′
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Figure 2.2: Left: ordinary rotation of axes, from unprimed (dashed) to primed (full) axes. Trans-
formations of this type are a subgroup of all Lorentz transformations, where only the spatial coordi-
nates are mixed, i.e. ∃i, j s.t. Λji 6= 0 . Here, the ct-axis is left out intentionally. Right: boost i.e.
∃µ s.t. Λµ0 6= 0 and Λ0

µ 6= 0, from unprimed (dashed) to primed (full) axes. Here, the z-axis is left
out and the diagonal black line represents a light ray. Note that in the primed frame, the ct′- and
x′- axis have tilted symmetrically towards the light line, thus leaving the speed of light unchanged in
the transformed frame.

`′ = x′2 − x′1 = γ
(
x2 − vt)− γ

(
x1 − vt) = γ(x2 − x1), (2.24)

which is referred to as length contraction.[91, 92] An analogous phenomenon occurs for time
intervals

∆t =
1

γ
∆t′, (2.25)

referred to as time-dilation.[93, 94] Furthermore, to every moving object, we can associate
the following quantity

dτ =
1

c

√
ηµνdxµdxν =

√
dt2 − dx2

c2
− dy2

c2
− dz2

c2
(2.26)

=

√
1− 1

c2

(
dx2

dt2
− dy2

dt2
− dz2

dt2

)
dt =

1

γ
dt.

In the rest frame of this object, it evaluates to

dτ = dt′, (2.27)

thus describing the passage of time as perceived from this frame. Accordingly, this quantity
is called the proper time.[95] The major advantage of the proper time is its invariance under
Lorentz transformation, thus being independent of the frame from which it is observed.

2.2.3 Potentials and Fields: a Relativistic Formulation

I recall that our initial goal was to find a transformation that leaves the Maxwell equations in-
variant. Before proceeding, I will evaluate whether our transformation obeys this constraint,
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thereby also deriving transformation rules for the electromagnetic fields in the process. Fol-
lowing a similar procedure as before, invariance can be demonstrated by first transforming
the partial derivatives using the chain rule and making the following substitution for the
electromagnetic fields[96]

E ′x = Ex B′x = Bx (2.28)

E ′y = γ(Ey − vBz) B′y = γ(By +
v

c2
Ez)

E ′z = γ(Ez + vBy) B′z = γ(Bz −
v

c2
Ey),

where the (un)primed quantities are evaluated in the (un)primed coordinates. To avoid
clutter of notation, I left out explicit coordinate dependence, although this feature should
not be taken lightly, as it has profound consequences on the nature of the electromagnetic
interactions. However, I will postpone the discussion on the coordinates until we have found
proper transformation rules for the charge- and current densities as well.

Since these distributions are extended objects, they occupy a certain interval in three-
dimensional space, thus implying that their shape will be deformed according to Eqn. (2.24).
The Lorentz contraction, however, will only manifest itself in one direction, thus implying
the following relation between a moving charge, ρ′(r′, t′), and its value at rest, ρ0(r, t)[40,
Section 12.3.4]

ρ′(r′, t′) = γρ0(r, t). (2.29)

Inserting this deformed charge density into Eqn. (2.3), allows us to find an expression for
the transformed current density

j ′(r′, t′) = γvρ0(r, t) = uρ0(r, t); u =
dr

dτ
, (2.30)

where in the second equality, I have expressed the velocity in terms of the proper time.
Comparing these two equations, it follows that we can gather the charge- and current density
in a four vector

ρµ = ρ0u
µ

{
cρ′ µ = 0

j′i µ = 1, 2, 3
, (2.31)

which, in turn, is defined in terms of the four-velocity

uµ =
dxµ

dτ
=

{
γc µ = 0

ui = γvi µ = 1, 2, 3
. (2.32)

However, in above example, I have assumed that the charge is at rest in S, whereas more
general relations can be inferred from the transformation properties of four vectors
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ρ′ = γ(ρ+
v

c2
jx) (2.33)

j′x = γ
(
jx + vρ)

j′y = jy

j′z = jz.

By making the substitutions in Eqn. (2.28) and (2.33), we can thus preserve the structure of
the Maxwell equations. Furthermore, from the four-current, it can be clearly demonstrated
that the continuity equation is Lorentz invariant

∂µj
µ = 0; ∂µ = (−1

c
∂t,∇). (2.34)

What remains to discuss are the coordinate substitutions in the transformed fields and
densities. For example, if we take the second line in Eqn. (2.28) and explicitly write the
coordinate dependence

E ′y(r
′, t′) = γ(Ey(r, t)− vBz(r, t)), (2.35)

the right-hand-side can be written in terms of the primed coordinates by inserting the Lorentz
transformation

E ′y(r
′, t′) = γ

(
Ey
(
γ(x′+vt′), y′, z′, γ(t′+

v

c2
x′)
)
−vBz

(
γ(x′+vt′), y′, z′, γ(t′+

v

c2
x′)
))
. (2.36)

The consequences of this can be better understood by the following example. Suppose that
we are observing a charge distribution from a certain point. Any change in the charge
distribution can be observed from the emitted electromagnetic fields. However, due to the
finite speed of light, it will take some time before this field will reach the observation point,
suggesting that the observed fields in fact display a delayed image of the charge distribution,
also referred to as retardation. Because Lorentz transformations inherently take the finiteness
of the speed of light into account, the effects of retardation are included by making this
coordinate substitution. Another interesting feature of these transformation rules is that
apparently the electric- and magnetic field mix. Similar to the fact that two observers do
not always agree on the notion of space and time, neither will they agree on the definition
of the electric and magnetic fields.

Although the transformation rules in Eqn. (2.28) are completely valid, they are rather
unwieldy. More elegant relations can be derived by considering the potential formulation of
electrodynamics. The central idea to this formulation is the Helmholtz decomposition, which
states that any vector field can be decomposed into a curl free (irrotational) and divergence
free (solenoidal) component, provided that the curl and divergence of this field approach
zero faster than 1

r2 as r → ∞.[97, 98][40, Appendix B] For a vector field, F , to which this
condition applies, the Helmholtz decomposition assumes the form
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F = −∇U + ∇×W , (2.37)

where the scalar function and vector function, U and W , are given by

U(r) =
1

4π

∫
d3r′

D(r′)

|r − r′| ; W =
1

4π

∫
d3r′

C(r′)

|r − r′| (2.38)

with the integrands defined as

D(r) = ∇ · F ; C(r) = ∇× F . (2.39)

Because the curl of every gradient and the divergence of every curl vanishes, it is straight-
forward to demonstrate that the first- and second terms in the decomposition are indeed
irrotational and solenoidal.

According to the third Maxwell equation (Eqn. (2.2)), the magnetic field is always diver-
gence free, suggesting that this field is purely solenoidal.[40, Chapter 10][41, Chapter 6] Its
Helmholtz decomposition thus reads

B = ∇×A, (2.40)

where A is referred to as the vector potential. The electric field, on the other hand, is only
divergence-free in the absence of charge density. In addition, the second Maxwell equation
implies that the electric field is generally not curl-free. However, by substituting Eqn. (2.40)
in the second Maxwell equation, it is possible to obtain an auxiliary vector field that is
irrotational

∇×
(
E +

∂A

∂t

)
= 0, (2.41)

suggesting that it can be expressed as the gradient of a scalar potential

−∇φ = E +
∂A

∂t
→ E = −∇φ− ∂A

∂t
. (2.42)

By inserting Eqs. (2.40) and (2.42) into the Maxwell equations, it is possible to reformulate
them in terms of potentials

∇2φ+
∂

∂t
(∇ ·A) = − 1

ε0
ρ (2.43)(

∇2A− µ0ε0
∂2A

∂t2

)
−∇

(
∇ ·A+ µ0ε0

∂φ

∂t

)
= −µ0j.

Therefore, the potential formulation comes with the benefit of reducing the amount of re-
quired vector components (from six to four), albeit at the cost of more complicated differential
equations.
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The additional complexity of these equations can be somewhat reduced by exploiting
the redundancies of the potential formulation. It can be shown that this formulation is not
unique: we can add the gradient of any real function to the vector potential without changing
the magnetic field

∇× (A+ ∇χ) = ∇×A, (2.44)

because the curl of a gradient always vanishes. The magnetic field is thus invariant under
transformations of the form A→ A+∇χ. However, this does not hold for the electric field

E = −∇φ− ∂A

∂t
− ∂∇χ

∂t
. (2.45)

By extending our definition of our transformation

A→ A+ ∇χ (2.46)

φ→ φ− ∂χ

∂t
,

it can be shown that the electric field is invariant

E = −∇φ+ ∇∂χ

∂t
− ∂∇χ

∂t
− ∂A

∂t
= −∇φ− ∂A

∂t
. (2.47)

Transformations of this type are called gauge transformations and their form should be
kept in mind, because they are applied extensively throughout this thesis.[99] To fix the
additional degrees of freedom provided by gauge transformations, a gauge condition ought
to be imposed. In most quantum chemical applications the condition ∇ ·A = 0 is imposed,
thus implying that it does not have a longitudinal component. From this condition, we
obtain the following equations

∇2φ = − 1

ε0
ρ (2.48)(

∇2A− µ0ε0
∂2A

∂t2

)
− µ0ε0∇

(
∂φ

∂t

)
= −µ0j,

where the solutions of the first equation gives the well-known Coulomb potential. Accord-
ingly, this gauge condition is called Coulomb gauge. However, imposing Coulomb gauge
does not fix all additional degrees of freedom, as this gauge condition indicates a family of
transformations, having the following constraint on the gauge function ∇2χ = 0.

At first sight, it seems that the instantaneous nature of the scalar potential contradicts the
second postulate of relativity. Furthermore, the gauge condition manifestly breaks Lorentz
invariance, as it does not treat space and time on equal footing. However, from careful
analysis, it follows that all effects related to retardation are captured by the vector potential,
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thus respecting relativistic laws.[100] In a relativistic context, the analysis is simplified if the
gauge condition itself is also Lorentz invariant. Therefore, a more suitable condition is given
by the Lorentz gauge

∇ ·A+
1

c2

∂φ

∂t
= 0, (2.49)

providing us with more symmetric equations for the potentials

∇2φ− 1

c2

∂2φ

∂t2
= − 1

ε0
ρ (2.50)

∇2A− µ0ε0
∂2A

∂t2
= −µ0j.

Note that this expression depends on the d’Alembertian

� = ∂µ∂µ = ∇2 − 1

c2

∂2

∂t2
, (2.51)

which is a Lorentz invariant quantity by construction. Using the definition of the current
four vector, these two equations can be combined in one

�Aµ = −µ0J
µ. (2.52)

From the structure of this equation, it can be argued that the four-potential is a valid four-
vector, since the d’Alembertian is Lorentz invariant, whereas the right-hand-side is given
by the four-current. The right- and left-hand-side can only be made consistent if the four-
potential Aµ = (φ/c,A), is indeed a four-vector. Finding transformation rules for the fields
is thus much more efficient by first transforming the potentials and then compute the fields
from these potentials.

For example, let us consider a point charge at rest in S. Being at rest, the vector potential
is zero, while the scalar potential is given by the Coulomb potential. In the moving frame,
S ′, the charge is in motion, thus implying the following potentials

φ′(r′, t′) = γφ(r, t) (2.53)
A′(r′, t′) = γvφ(r, t)

Therefore, the field is purely electric in the rest frame, whereas it gains a magnetic component
in the moving frame. This effect can be identified with magnetic induction, whose discovery
long predates the development of relativistic theory. In Section B.1 of the appendix, it will
be shown that this effect is fundamental to spin-orbit coupling.
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2.2.4 Relativistic Kinematics

Having thus established a coordinate transformation that preserves the Maxwell equations,
one may wonder why the invariance of the Maxwell equations should be favoured over the
invariance of Newton’s second law as prescribed by the Galilean transformations. After
all, Galilean transformations intuitively make sense from everyday experiences. Every train
enthusiast can testify that from the outside of a train, a walking passenger indeed seems
to move at the sum of his/her own speed and the speed of the train. These seemingly
different transformations can be connected by recognizing that the velocity of everyday
objects does not even reach a fraction of the speed of light, thus hinting at the fact that
Galilean transformations are a limiting case of Lorentz transformations. At these velocity
scales, it is safe to assume that the following limit applies c → ∞, hereafter referred to
as the non-relativistic limit. Within this limit, it can be shown that γ → 1 and β → 0,
which gives rise to the Galilean transformation upon substitution in Eqn. (2.15), implying
that these transformations effectively hold true at low speeds. Provided that the speeds
appearing in our system are small enough compared to the speed of light, it is justified to
utilize the familiar concepts of classical kinematics. At elevated speeds, however, we are
forced to generalize these concepts to a relativistic framework.

Using the previously introduced definition of the four-velocity (Eqn. (2.32)), it is possible
to generalize the well-known concept of momentum to the relativistic domain

pµ = m0u
µ =

{
γm0c = mc µ = 0

γm0v
i = mvi µ = 1, 2, 3

. (2.54)

Here, I have defined the rest mass, m0, and the instantaneous mass m = γm0. Using these
relations, it can be argued that massive objects become even heavier when put in motion.
From the structure of the Lorentz factor, γ, it thus follows that at the light-speed, massive
objects gain an infinite mass, thus prohibiting anything except light or any other massless
object to travel at this speed. Although the spatial components of the four-momentum can
be recognized straightforwardly as the relativistic generalizations of classical momentum,
the zeroth component has a less clear meaning. To reveal the physical interpretation of this
component, I will exploit that the square of the four momentum

pµpµ = m2(v2 − c2) = −m2
0c

2 (2.55)

is conserved in time

d(pµpµ)

dτ
= 2pµ

dpµ
dτ

= 0. (2.56)

In this expression we can further identify the four-force

F µ =
dpµ

dτ
=

{
dmc
dτ

µ = 0
dpi

dτ
µ = 1, 2, 3.

(2.57)
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By expanding the dot product from Eqn. (2.56) into its individual components, we arrive at
the following expression

2mu · F − 2mc
dmc

dτ
= 0. (2.58)

Further eliminating the common factors yields the result

dmc2

dτ
= F · v =

F · dr
dτ

=
dE

dτ
, (2.59)

where in the last line, I have used the relation between work and energy. Therefore, we can
make the identification

E = mc2 → p0 = mc =
E

c
, (2.60)

which implies that the zeroth component is energy and even more surprisingly that energy is
equivalent to mass.[101] This relation is particularly useful to describe nuclear decay, where
the total mass of the decay products is slightly smaller than the mass of the original nucleus,
thus implying that the mass difference has been converted into energy. Even though this
difference is often tiny, the factor of c2 implies that possibly a vast amount of energy can be
released in such processes.

From the square of the four-momentum, we can derive an alternative expression for the
relativistic energy that separates the rest energy from the kinetic energy

E = ±
√
c2p2 +m2

0c
4. (2.61)

A cumbersome feature of this equation is that it allows for negative energies. However, in
the current context, the negative energies do not form a problem. After all, the positive and
negative energies are separated by a barrier of 2mc2 and for classical point-particles, energies
can only vary continuously. Therefore, the negative energy solutions can be discarded in a
classical context. The non-relativistic kinetic energy can be obtained by subtracting the
energy at rest and expanding the (positive) square root

E −m0c
2 = m0c

2

√
p2

m2
0c

2
+ 1−m0c

2 =
p2

2m0

− p4

8m3
0c

2
+ · · · , (2.62)

where the zeroth order term can be recognized as the non-relativistic kinetic energy.
In its current form, however, this expression has limited use, as it does not include any

influences of external electromagnetic fields. By minimizing an interaction Lagrangian, as
proposed by Schwarzschild in 1903[102], it follows that the influences of these fields on a
charged particle can be introduced by substituting the four-momentum with the mechanical
four-momentum

pµ → πµ = pµ − qAµ, (2.63)
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which is referred to as minimal substitution.[103] Therefore, the relativistic energy of a point
particle in an electromagnetic field can be expressed as

E = ±
√
m2

0c
4 + c2π2 + qφ; π = p− qA. (2.64)

Based on this classical energy, I will proceed to derive a relativistic wave equation.

2.3 Relativistic Wave Equation

2.3.1 The Dirac Equation and Its Predecessors

The classical description of a point particle is deterministic in the sense that everything
there is to know can be calculated with certainty from the position and momentum of the
particle. In a quantum mechanical framework, however, observable properties are associated
with Hermitian operators that give the probabilities of measurement outcomes when acted
on the wave function. Assuming the position representation, the following substitution has
to be made to promote classical observables to Hermitian operators

E → i~∂t; p→ ~
i
∇. (2.65)

However, applying this procedure to the relativistic energy of a point particle (Eqn. (2.61))
is cumbersome, because defining a square-root operator requires special consideration. A
straightforward solution is to expand the square root (Eqn. (2.62)), truncate it at finite
order and making the aforementioned operator substitutions.[90] To first order, this gives
the Schrödinger Hamiltonian

Ĥs = i~
∂

∂t
=

p̂2

2me

=
(σ · p̂)2

2me

, (2.66)

where in the last equality I have applied the Dirac identity, (σ·A)(σ·B) = A·B+iσ·(A×B).
The validity of the last equality suggests that in the free-particle case, spin is a hidden

degree of freedom, which is revealed by the influence of an external magnetic field. To in-
troduce these fields into our Hamiltonian, the momentum ought to be substituted with the
mechanical momentum (Eqn. (2.63)), which should then be promoted to an operator. It
should be noted that minimal substitution provides a relativistic coupling between particle
and fields, whereas we apply this to a non-relativistic Hamiltonian. However, strictly speak-
ing all magnetic interactions vanish in the non-relativistic limit, as can be inferred from the
Maxwell equations, leaving us with electrostatic interactions.[104] From a pragmatic point
of view, it is completely valid to use this relativistic coupling in this setting. Starting from
the Schrödinger Hamiltonian, minimal substitution gives the following result

Ĥp =

(
σ · (p̂+ eA)

)2

2me

− eφ, (2.67)
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which gives the Pauli Hamiltonian in its more familiar form after applying the Dirac identity

Ĥp =
p̂2

2me

+
e

2me

(p̂ ·A+A · p̂) +
e2A2

2me

+
e~

2me

(σ ·B)− eφ. (2.68)

Here, the field-matter interaction is mediated through five terms. The first two terms are
responsible for the coupling of the electronic motion with the external fields, which can be
combined into a single term ( e

me
A · p̂) if Coulomb gauge is imposed. The third term corre-

sponds to diamagnetic interactions, whereas the fourth term is responsible for the Zeeman
splitting of spin-levels as induced by the external magnetic field. The last term gives an elec-
tric interaction between the scalar potential and the electron charge, which is the Coulombic
attraction if our external fields stem from the nuclei. It is important to note that spin is
introduced ad hoc, because it was an arbitrary decision to use (σ · π) in our Hamiltonian
instead of π.

In its current form, our Hamiltonian does not include relativistic corrections, which can be
taken into consideration by including higher-order terms from Eqn. (2.62) in our Hamiltonian.
The next order to include depends on a fourth power of the momentum, which corrects for
the increase of electron mass for higher velocities. However, unlike the kinetic energy, which
is positive-definite 〈T̂ 〉 = 〈ψ| ~2

2me
p̂2|ψ〉 = ~2

2me
〈p̂ψ|p̂ψ〉 > 0, the fourth-power term is negative-

definite for similar reasons. Any variational procedure that is based on this Hamiltonian is
doomed to fail, because the fourth-power term will draw the energy towards negative infinity.
Nevertheless, it is possible to include the effects of this operator as a perturbation of the
Pauli Hamiltonian. To describe strong relativistic effects, this approach does not seem to be
ideal.

Instead of quantizing the square-root expansion, it might be a better idea to apply this
procedure to the square of the energy,[

� +
(mec

~
)2
]
ψKG(r, t) = 0, (2.69)

leading to the Klein-Gordon equation.[105, 106] Being constructed from the Lorentz in-
variant d’Alembertian operator, this equation seems like a perfectly valid relativistic wave
equation, although it is met with two problematic features: it allows for negative energies
and negative probability densities. The problem of negative energy solutions was to be ex-
pected, since it already manifest itself in the classical case (Eqn. (2.61)). In a quantum
mechanical framework, however, the presence of such solutions cannot be ignored anymore,
because discontinuous jumps in energy are allowed. Upon decaying to lower and lower energy
states, an infinite amount of energy is released. States of negative energy exhibit the addi-
tional paradoxical feature of requiring energy absorption to decelerate their motion, which
has never been observed experimentally.[81] Furthermore, the existence of negative densities
completely breaks down the probabilistic interpretation of the wave function.

Paul Dirac was especially frustrated with the second problem and thus set out to find
an alternative to the Klein-Gordon equation. In his work, he proposed to factorize the
Klein-Gordon equation
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(
p̂0 +α1p̂1 +α2p̂2 +α3p̂3 +mecβ

)(
− p̂0 +α1p̂1 +α2p̂2 +α3p̂3 +mecβ

)
ψ(r, t) = 0, (2.70)

in terms of the quantities {αi} and β.[107] By expanding the two factors

(
− p̂2

0 + α1α1p̂
2
1 + α2α2p̂

2
2 + α3α3p̂3p̂3 +m2

ec
2ββ (2.71)

+(α1α2 + α2α1)p̂2p̂1 + (α1α3 + α3α1)p̂3p̂1

+(α2α3 + α3α2)p̂3p̂2 +mec(α1β + βα1)p̂1

+mec(α2β + βα2)p̂2 +mec(α3β + βα3)p̂3

)
ψ(r, t) = 0,

it can be shown that these quantities need to obey the following algebra in order for the
above expression to reduce to the Klein-Gordon equation

{αi, αj} = 2δij (2.72)
{αi, β} = 0.

Therefore, {αi} and β are non-commutative, implying that they can be represented by
matrices. One possible set of matrices is given by

αi =

(
02 σi
σi 02

)
; β =

(
I2 02

02 −I2

)
, (2.73)

also referred to as the Dirac matrices. We arrive at the following expression for the time-
dependent Dirac equation

(
cα · p̂+mec

2β
)
ψ(r, t) = ĥDψ(r, t) = i~

∂ψ(r, t)

∂t
. (2.74)

The relativistic character of the Dirac equation can be further highlighted by multiplying
from the left by β (

i~γµ∂µ +mec
)
ψ(r, t) = 0; γµ = (β,−βα), (2.75)

where appears the gamma matrices, obeying the algebra

{γµ, γν} = −2ηµνI4. (2.76)

This notation suggests that the gamma matrices form a four-vector(
i~γ′µ∂′µ +mec

)
ψ(r, t) =

(
γρΛ

ρ
νη

νµΛσ
µp̂σ +mec

)
ψ(r, t) = 0, (2.77)
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although this can only hold true if their algebra is conserved upon Lorentz transformations.
Using the algebra of the gamma matrices, this can be confirmed[107]

{γ′µ, γ′ν} = Λµ
ρΛν

σ{γρ, γσ} = −2Λµ
ρη

ρσΛν
σI4 = −2ηρσI4. (2.78)

Although the aforementioned covariant form of the Dirac equation is useful to demonstrate
its transformation properties, it is typically not used in electronic structure theory, where
the point of depart is given by the time-independent Dirac equation. This equation can be
derived by expressing the time-dependent wave function as ψ(r, t) = T (t)ψ(r) and inserting
it into Eqn. (2.74)

ĥDψ(r)

ψ(r)
=

i~
T (t)

∂T (t)

∂t
. (2.79)

However, it should be noted that this separation does not hold for all inertial frames. Within
the special frame where our separation is valid, above equation holds for all values of r and
t, suggesting that it can only be true if both sides equal a constant that can be identified
with the energy. Therefore, the time-independent Dirac equation reads(

cα · p̂+mec
2β
)
ψ(r) = Eψ(r). (2.80)

By applying the minimal substitution procedure and aligning the energy scale with the non-
relativistic energy (such as in Eqn. (2.64)), the latter achieved by the substitution β → β′ =
β − I4, we arrive at the following result(

cα · p̂+mec
2β′ − eφ+ ecα ·A

)
ψ(r) = Eψ(r). (2.81)

Note that all light–matter interactions are mediated by two linear terms, unlike the interac-
tion terms in the Pauli Hamiltonian in Eqn. (2.68) which may also include the spin-Zeeman
term and the quadratic diamagnetic term.

2.3.2 Physical Properties of the Dirac Equation

In our derivation, we have introduced the Dirac matrices from the necessity to have con-
sistent equations. The physical content of these matrices can be revealed in the Heisen-
berg picture, where states are time-independent, whereas observables evolve according to
Ω̂(t) = eiĤt/~Ω̂(0)e−iĤt/~. Using the Heisenberg equation of motion

dr̂

dt
= −i[r̂, ĥD] = cα, (2.82)

it can thus be concluded that the Dirac matrices can be identified as velocity operators.
However, the algebraic properties of the Dirac matrices create a paradox, from which we
have
c2|α|2= 3c2I4, thus contradicting the second postulate of relativity. Fortunately, the same al-
gebraic properties imply that the three components cannot be known simultaneously, similar
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to angular momenta. If one of these three components is completely known, for example cαx,
its eigenvalues ±c imply that the velocity is still much higher than expected from a massive
particle like the electron. It can be demonstrated that the Dirac electron undergoes highly
oscillatory motion (referred to as zitterbewegung in ref. [108]) superimposed on its average
motion. It is the latter type of motion that is more in line with the expected behaviour of
massive particles (see ref. [109, Section 7.3] for a more detailed derivation).

From the structure of the Dirac matrices, it can be further concluded that the Dirac wave
function is a four-component function

ψ(r) =


ψ1(r)
ψ2(r)
ψ3(r)
ψ4(r)

 . (2.83)

Based on the results from previous sections, it almost comes as a reflex to conclude that
everything with four components is a four vector. For the Dirac wave function this is
definitely not the case. Two of the four degrees of freedom are related to spin symmetry,
since the Dirac wave function can be expressed in terms of two Pauli spinors[90, Section 4.5]

ψ(r) =

(
ψL(r)
ψS(r)

)
, (2.84)

where ψL and ψS are conventionally referred to as the large- and small component. In
Section B.1 of the appendix, the validity of this identification is further demonstrated. It
thus remains to explain the origin of the remaining two degrees of freedom, or put in other
words, why we need two Pauli-spinors in our wave function. A straightforward mathematics-
oriented answer to this question is that the matrices should be at least four-dimensional to
obey the algebraic rules from Eqn. (2.72). However, a more satisfying answer can be found
from the operation of charge conjugation.

The action of this operation allows us to relate the solutions of the minimally coupled
time-dependent Dirac equation, to the same equation but with opposite external charges[89,
Section 1.6][90, Chapter 5][110, Section 2.8.1](

cα · p̂+mec
2β + eφ− ecα ·A

)
Ĉψ(r, t) = i~∂tĈψ(r, t). (2.85)

In Section B.2 of the appendix it is demonstrated that the explicit action of charge conju-
gation is given by

Ĉψ(r, t) =


ψSβ∗(r, t)
−ψSα∗(r, t)
−ψLβ∗(r, t)
ψLα∗(r, t)

 , (2.86)

which suggests that this operator consists of a matrix operator that permutes the compo-
nents, and the complex conjugation operator
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Ĉ = K̂0Ûc. (2.87)

Since charge conjugation swaps the role of the large- and small component, it follows that
these two components are needed to accommodate for this symmetry. Furthermore, in the
time-independent case, charge conjugation can be used to relate the solutions of positive-
and negative energies(

cα · p̂+mec
2β + eφ− ecα ·A

)
Ĉψ(r) = −EĈψ(r), (2.88)

where the negative energy sign appears from complex conjugation of the time-dependent wave
function K̂0(e−iEt/~ψ(r)) = eiEt/~K̂0(ψ(r)). Charge conjugation hence reveals the intricate
relation between positrons and negative-energy electronic solutions.

However, before jumping to conclusions, I recall that in a quantum mechanical frame-
work negative energy solutions are a problematic feature. The relativistic hydrogen atom,
for instance, is predicted to decay within nanoseconds if we allow our system to decay to
negative energy solutions. To solve this problem, Dirac proposed that all negative energy
solutions are occupied, which prohibits decay by virtue of the exclusion principle.[81] In its
time, this proposition was highly controversial, since it implies that all space is permeated
by an infinitely dense collection of negative energy particles, more commonly referred to as
the Dirac sea. However, Dirac argued that the negative energy sea will not have a significant
effect on its surroundings, provided that the density of these states is homogeneous enough.
For a completely filled negative energy continuum, this assumption seems to be reasonable.
However, the Dirac sea should induce measurable effects in regions where homogeneity is
broken. When a negative-energy electron is excited from the Dirac sea, such that it now
occupies a positive energy state, a hole is left in the Dirac sea. This hole has the same
physical characteristics as the electron, except that its charge is opposite. Therefore, the
Dirac equation predicts the existence of anti-matter, which was experimentally confirmed
by Anderson through the discovery of the positron.[111] In the presence of charge, inhomo-
geneities are induced in the Dirac sea, also referred to as vacuum polarization, the effects
of which are only measurable at extremely high charges.[110] A more rigorous description
of these effects can be obtained from the theory of quantum electrodynamics. The negative
energy solutions are not present anymore in this theory, but are rather replaced by positive
energy positronic solutions, thus solving the problems associated with the Dirac sea. How-
ever, quantum electrodynamics is far beyond the scope of this thesis and I will rather apply
Dirac’s approach to negative energy solutions.

2.3.3 The Radial Dirac Equation

Having established the main features of the Dirac equation, I now proceed to study this
equation under the influence of a central potential (V (r)), a class of systems that encom-
passes atoms, thus being essential for quantum chemistry. Spherical symmetry provides
one-dimensional radial equations that in some cases are even solvable analytically. This
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section is mainly inspired from the seventh chapter in Introduction to Relativistic Quantum
Chemistry.[90]

In the non-relativistic case, the Hamiltonian commutes with the angular momentum
operator, [Ĥs, ˆ̀], thus implying that in this case the wave function is an angular momentum
eigenstate

ψ`m(r) =
1

r
R(r)Y`m`(θ, φ), (2.89)

where ` and m are the azimuthal and magnetic quantum number. Because spin is not
explicitly present in the non-relativistic Schrödinger Hamiltonian, it follows that

[
Ĥs, ŝ

]
= 0.

However, in a relativistic formulation, these two relations do not hold anymore[
ĥD, ˆ̀

]
= i~

(
cα× p̂

)
;
[
ĥD,

~
2
Σ̂
]

= −i~
(
cα× p̂

)
, (2.90)

where appears the four component spin operator Σ̂ =

(
σ 0
0 σ

)
. Interestingly, these two

equations exactly cancel, suggesting that the total angular momentum

ĵ = ˆ̀+
~
2
Σ̂ (2.91)

commutes with the Hamiltonian [
ĥD, ĵ

]
= 0. (2.92)

Therefore, for central potentials, the corresponding wave functions are rather eigenfunctions
of the total angular momentum. This function is given by a four component spinor, which in
turn can be expressed in terms of two Pauli spinors. To learn more about the structure of the
four component eigenfunctions, it turns out to be useful to start from the two component case.
The two component functions are also total angular momentum eigenfunctions, although the
associated total angular momentum operator is defined in terms of the more conventional
spin operator in terms of the Pauli matrices. The structure of these functions can be found
by applying a Clebsch-Gordan series

|`s; jmj〉 =
∑̀
m`=−`

1
2∑

ms=− 1
2

|`m`sms〉〈`m`sms|`s; jmj〉, (2.93)

in terms of the uncoupled basis, |`m`sms〉 = |`m`〉⊗|sms〉. This basis implies that the result-
ing function is also an eigenfunction of ŝ2 and ˆ̀2, which generally holds for two-component
states, but not for four component spinors. In the current context, it is preferred to express
these states in the position representation
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ξjmj(θ, φ) =
∑̀
m`=−`

1
2∑

ms=− 1
2

〈r̂|`m`sms〉〈`m`sms|`s; jmj〉 =
∑̀
m`=−`

1
2∑

ms=− 1
2

〈`m`sms|`s; jmj〉Y`m` |sms〉,

(2.94)
which defines the spherical spinors. From the rules of the Clebsch-Gordon decompositions,
it follows that the total angular momentum assumes the values ` ± 1

2
. However, from this

result, it can be concluded that j is not a unique label, because at least two combinations
of ` and s can give the same value of j. For example, j = 3

2
, can be obtained from parallel

coupling of ` = 1; s = 1
2
or anti-parallel coupling of ` = 2; s = 1

2
. A more useful quantum

number can be found from the action of the operator

κ̂ = −
(
σ · ˆ̀

)
− ~ =

1

~

(
ˆ̀2 + ŝ2 − ĵ2

)
− ~ (2.95)

onto the spherical spinors

κ̂ξj,mj(θ, φ) =

[
1

~

(
ˆ̀2 + ŝ2 − ĵ2

)
− ~
]
ξj,mj(θ, φ) (2.96)

= ~
(
`(`+ 1)− j(j + 1)− 1

4

)
ξj,mj(θ, φ) = ~κξj,mj(θ, φ). (2.97)

The κ quantum number can assume positive and negative integer values

κ =

{
` for j = `− 1

2

−`− 1 for j = `+ 1
2

. (2.98)

To each of the two combinations of ` and s that yields the same value of j, we can assign an
equal but opposite value of κ, thus resolving the ambiguity associated with j. Therefore, we
arrive at a uniquely labelled expression for the spherical spinors

ξκ,mj(θ, φ) =

 sgn(−κ)

√
κ+ 1

2
−mj

2κ+1
Y`,mj− 1

2√
κ+ 1

2
+mj

2κ+1
Y`,mj+ 1

2

 . (2.99)

In analogy with the non-relativistic hydrogen atom, it can be argued from symmetry
considerations that the four-component hydrogenic wave function assumes the form(

ψL(r)
ψS(r)

)
=

1

r

(
P (r)ξκLmj(θ, φ)
iQ(r)ξκSmj(θ, φ)

)
(2.100)

where the values of κ are intentionally labelled differently for the large- and small component.
Because the wave function is an eigenfunction of total angular momentum, they are either
equal or opposite: κL = ±κS. To find the correct relation between these two quantum
numbers, I will insert this ansatz into the Dirac equation,
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1

r

(
V cσ · p̂

cσ · p̂ V − 2mc2

)(
PξκLmj
iQξκSmj

)
=
E

r

(
PξκLmj
iQξκSmj

)
. (2.101)

and apply the separation of variables procedure. In this equation and the ones that follow,
the radial- and angular dependence have been suppressed.

To facilitate this procedure, I will split the kinetic energy term (σ · p̂) into a radial and
angular part. From the relation (σ · er)(σ · er) = I2, we obtain the following result

σ · p̂ =
1

r
σr(σ · r)(σ · p̂), (2.102)

where appears the radial Pauli matrix

σr = er · σ =

(
cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
. (2.103)

Subsequently, we can obtain the desired separation by inserting the Dirac identity

σ · p̂ =
1

r
σr(r · p̂) +

1

r
σriσ · (r × p̂) = σr(p̂r +

1

r
iσ · ˆ̀) (2.104)

=− iσr(~
∂

∂r
− 1

r
σ · ˆ̀) = −iσr

(
~
∂

∂r
− 1

r
(κ̂+ ~)

)
,

where appears the radial momentum p̂r = er · p̂ and the κ̂ operator. Inserting this result
into the Dirac equation yields the following system of equations

−c
[

1

r
(κS + ~)− ~

∂

∂r

]
1

r
QσrξκSmj =

[
E − V

]
1

r
PξκLmj (2.105)

c

[
1

r
(κL + ~)− ~

∂

∂r

]
1

r
PσrξκLmj =

[
E − V + 2mc2

]
1

r
QξκSmj .

In these equations all angular dependence is contained in the spherical spinors and radial
Pauli matrix, which implies the relations

σrξκSmj = −ξκLmj (2.106)
σrξκLmj = −ξκSmj .

From the identity σrξκmj = −ξ−κmj ,[112] it can thus be concluded that κS = −κL, imply-
ing that the small component is opposite in parity compared to the large component. By
projecting out the spherical spinors, we can isolate differential equations for the radial wave
function
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−c
[

1

r
(κS + ~)− ~

∂

∂r

]
1

r
Q =

[
E − V

]
1

r
P (2.107)

c

[
1

r
(κL + ~)− ~

∂

∂r

]
1

r
P =

[
E − V + 2mc2

]
1

r
Q.

In case of hydrogenic systems, where the potential is given by V (r) = − Ze2

4πε0r
, this equation

is analytically solvable. The solution of these equations is beyond the scope of this thesis
and the reader is referred to refs. [113, Section 3.3] and [114, Chapter 6] for further detail.
A problematic feature of these solutions is their singular behaviour at the origin for |κ|= 1.
However, this singularity can be classified as a weak singularity, because the wave function
can still be normalized. In the calculation of many-electron system, this singularity is avoided
by applying other nuclear distributions than the conventional point-charge distribution, for
example a Gaussian distribution[115] or the Fermi nuclear model.[116]

2.4 Four-Component Relativistic SCF Methods

2.4.1 Similarities and Differences with Non-Relativistic Theory

Here, the findings from previous sections will be extended to many-electron systems. In
a four-component relativistic framework, the Hamiltonian can still be written as the gen-
eral form in Eqn. (1.45), although the integrals are expressed in terms of four-component
orbitals.[117] The one-electron integrals follow straightforwardly from Eqn. (2.81)

hpq =

∫
d3rψ†p

[
cα · p̂+mc2β′ + V

]
ψq. (2.108)

To derive a two-electron interaction operator, one possible route is to establish the rela-
tivistic interaction between two moving classical point charges and quantize this expression.
However, already at the classical level, formulating this expression is complicated. I recall
that from the finiteness of the speed of light, it follows that the electromagnetic interaction
is retarded. The presence of retardation implies that the full history of the point particles
needs to be known to find the interaction between them. For this reason, it is not possible
express this interaction in closed form, thus requiring us to expand it in orders of the 1/c.
At lowest order, this expansion yields the familiar Coulomb repulsion between electrons (see.
Eqn. (1.47)), whereas the next order corresponds to the Breit operator

ĝB(rij) = − e2

8πε0c2rij

(
cαi · cαj +

(cαi · rij)(cαj · rij)
r2
ij

)
(2.109)

which captures effects related to magnetic interactions and retardation.[118] The first- and
second term in this operator are also referred to as the Gaunt and gauge term, the latter of
which depends on the choice of gauge.[119, 120] Here, Coulomb gauge is imposed, whereas
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the Lorentz gauge, for instance, removes the gauge term. Throughout this thesis, I will
neglect such interactions and only consider the Coulomb repulsion between the electrons.

Due to the structural similarities between the relativistic and non-relativistic many-
electron Hamiltonian, most electronic structure theories can be carried over the the rela-
tivistic domain, albeit with the proper assumptions. Indeed, the Hartree-Fock determinant
can be readily generalized to the relativistic domain by defining a Slater determinant con-
sisting of four-component orbitals. A relativistic extension to DFT, however, requires more
elaborate theory. To generalize the fundamental theorems of DFT, it is required to invoke the
theory of quantum electrodynamics, where the negative energy electrons are converted into
positive energy positrons. However, even within this framework, it is difficult to formulate the
Hohenberg-Kohn theorems, since a variational procedure of QED is not as well-established
as in the non-relativistic regime. However, the variational properties of QED can be postu-
lated by the observation that everyday matter (consisting of electrons, protons, atoms etc.)
is stable.[121] Using these results, it can be shown that relativistic DFT is very similar to
its non-relativistic counterpart. In principle, relativistic DFT requires functionals that are
optimized for relativistic calculations, although in practice, functionals from non-relativistic
theory are used, which is justified from a pragmatic point of view.

With the similarities between relativistic and non-relativistic DFT further established,
I can now proceed to define the generator of orbital rotations. In the relativistic case,
rotations involving negative-energy orbitals require consideration as well. The rotations
between negative-energy orbitals do not change the energy, as this quantity is defined in terms
of occupied positive-energy solutions. The negative-energy orbitals can thus be thought of
as an additional type of virtual orbitals. Therefore, in line with Section 1.3, the relativistic
extension of the generator of orbital rotations can be defined as

κ̂ =
∑
ai

[
κa+i+a

†
a+ai+ − κ∗a+i+a

†
i+aa+ + κi+a−a

†
i+aa− − κ∗i+a−a

†
a−ai+

]
. (2.110)

Likewise, when extending this machinery to response theory, it follows that the positive-
negative/negative-positive rotations need to be included to fully relax the perturbed state.
Moreover, in the context of magnetic interactions, it can even be argued that these rotations
correspond to diamagnetic interactions.[122] However, these additional rotations should be
treated with care, to avoid variational collapse towards the negative-energy continuum. In
fact, it has been shown that the energy should be minimized with respect to the positive-
positive rotations and maximized with respect to the positive-negative rotations, thus cor-
responding to a minmax principle.[123]

Alternatively, the relativistic SCF procedure can be understood as an excited state search,
which aims to find the lowest positive energy solution on top of the negative-energy solutions.
Formally, this method can be solved by projecting out the lower states in each iteration, cre-
ating a reduced matrix which is subsequently diagonalized. Although the reduced problem is
bounded from below, this bound can fall below the exact eigenvalue, because in the full prob-
lem the eigenvalue increases due to the interlace theorem. This feature of the Dirac equation
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is conventionally referred to as prolapse.[124] In practice, however, explicit projectors are
seldom used, because the same effect can be achieved by discarding the negative-energy so-
lutions and only use positive-energy solutions to construct the Fock matrix in accordance
with the aufbau principle. This procedure is facilitated by the large energy gap of 2mc2 be-
tween the positive- and negative-energy solutions, which makes it easy to distinguish either
type of solutions at every step of the SCF cycle.

In the special case of atomic symmetry, the relativistic analogue of Eqn. (1.66) can
be solved using grid-based methods. Here, the orbitals assume the general structure of
Eqn. (2.100), where the angular part is fully known from symmetry, whereas the radial
functions are to be determined on the grid. Furthermore, the pseudo-eigenvalue equation
assumes the general form of Eqn. (2.107), with the averaged two-electron interaction from HF
theory, or the exchange-correlation potential from DFT included in the potential.[113] This
procedure will be used in Section 4.3 to generate reference data effectively corresponding to
the complete basis set limit.

2.4.2 Kinetic Balance

We proceed to expand the large- and small component in a set of functions {χi(r)}

ψX(r) =
∑
i

cXi χi(r); X = L, S, (2.111)

and find the coefficients of by following the minmax procedure. However, the first basis set
calculations based on the Dirac equation were met with problems associated to the lower
bounds of the energy.[125] For instance, basis set calculations of the relativistic hydrogen
atom fell much below its corresponding value from a non-relativistic framework.[126] These
problems are rooted in the basis set choice, which was essentially the same for the large-
and small component functions. To better understand the shortcomings of our basis set
expansion, I will write the expansion in a more general form

ψ(r) =

(
χL 0
0 χS

)(
cL

cS

)
; χLi =

(
χLαi
χLβi

)
; χSi =

(
χSαi
χSβi

)
, (2.112)

where the basis functions of the large- and small component are allowed to be expanded
in terms of different functions. Expressed in this basis, the Dirac Hamiltonian assumes the
form

H =

(
V LL cπLS

cπSL V SS − 2mc2SSS

)
, (2.113)

which is constructed from the matrices
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V XX
ij =

∫
d3rχX†i V χXj ; X = L, S (2.114)

πLSij =

∫
d3rχL†i σ · p̂χSj

SXXij =

∫
d3rχX†i χXj .

In matrix form, the eigenvalue problem thus reads

H

(
cL

cS

)
= E

(
SLL 0

0 SSS

)(
cL

cS

)
, (2.115)

which can be decoupled to yield a similar relation as Eqn. (B.3)

TLL =
1

2me

πLS
[
SSS +

ESSS − V SS

2mc2

]−1

πSL ≈ 1

2me

πLSπSL; c� 1. (2.116)

Note that in the non-relativistic limit, above expression should reduce to the non-relativistic
kinetic energy. Let us closer inspect the expression on the right-hand-side of (2.116). In
the complete basis set limit, this term can indeed be related to the non-relativistic kinetic
energy

1

2me

[
πLSπSL

]
ik

=
1

2me

∑
j

∫
d3r

∫
d3r′χL†i (r)σ · p̂χSj (r)χS†j (r′)σ · p̂′χLk (r′) (2.117)

=
1

2me

∫
d3r

∫
d3r′χL†i (r)σ · p̂δ(r − r′)σ · p̂′χLk (r′)

=
1

2me

∫
d3rχL†i (r)(σ · p̂)(σ · p̂)χLk (r)

=
1

2me

∫
d3rχL†i (r)p̂2χLk (r),

implying that the non-relativistic limit can only yield the correct result if a complete basis
set is used. In practice, however, a complete basis set amounts to an infinite set of functions,
which is not feasible in any computational scheme. Let us now suppose that our basis set is
not complete anymore, yielding the expression below

1

2me

[
πLSπSL

]
ik

=
1

2me

∫
d3rχL†i (r)p̂2χLk (r) (2.118)

− 1

2me

∑
j

∫
d3r

∫
d3r′χL†i (r)σ · p̂χCj (r)χC†j (r′)σ · p̂′χLk (r′).
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Here the functions {χCi } form the orthogonal complement of {χSi } whose union {χCi }∪{χSi }
is complete. If we express the small component functions in the basis[127, 128, 129, 130]

χSi = σ · p̂χLi , (2.119)

the second term in Eqn. (2.118) reduces to zero by orthogonality

1

2me

∑
j

∫
d3r

∫
d3r′χL†i (r)σ · p̂χCj (r)χC†j (r′)σ · p̂′χLk (r′) (2.120)

=
1

2me

∑
j

∫
d3r

∫
d3r′χS†i (r)χCj (r)χC†j (r′)χSk (r′) = 0.

The choice of small component space in Eqn. (2.119), referred to as restricted kinetic balance, thus
restores the deficit in the kinetic energy.[131] As implied by Eqn. (2.119), the condition of restricted
kinetic balance requires a two-component basis. Expressed in a scalar basis, Eqn. (2.119) translates
to the weaker condition of unrestricted kinetic balance φSxi = ∂jφ

Lx
i ; x = α, β, which has the

undesirable feature of introducing spurious solutions. It is possible, however, to combine restricted
kinetic balance with a scalar basis, but this requires an alternative scheme based on the so-called
modified Dirac equation, which is the preferred method in this thesis. However, I will not delve
into further details, because the aim of this section is to outline the main idea of kinetic balance.
The interested reader is referred to refs. 37, 132. Regardless of the specifics, the kinetic balance
procedure allows basis set calculations to be performed at the four-component relativistic level of
theory, especially providing a drastic improvement for heavy-element compounds.

2.4.3 Symmetry Reductions from Time-Reversal Symmetry
However, these improvements in accuracy are met with elevated computational costs, since the
wave function consists of four components, contrary to the one or two components appearing in
non-relativistic calculations. Several approximations to the Dirac Hamiltonian are known that aim
to reduce the amount of components, such as the exact two-component relativistic Hamiltonian
(X2C),[133, 134, 135, 136] the zeroth-order regular approximation (ZORA)[137, 138, 139] and the
Douglas-Kroll-Hess (DKH)[140, 141, 142] Hamiltonians. However, the discussion of these Hamilto-
nians is beyond the scope of this thesis and the reader is referred to ref.117 for more details. Instead
of approximating the Dirac equation, I will discuss how the computational costs can be reduced
using the time-reversal symmetry of the Dirac equation.

Let us first consider some general features of this symmetry. I will define K̂ as the time-reversal
operator, which is anti-linear and anti-unitary

K̂(aψ1 + bψ2) = a∗K̂ψ1 + b∗K̂ψ2 (2.121)

〈K̂ψ1|K̂ψ2〉 = 〈ψ1|ψ2〉∗ = K̂〈ψ1|ψ2〉.

In general, any anti-unitary operator can be expressed as
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K̂ = ÛT K̂0, (2.122)

where K̂0 is the complex conjugation operator introduced in Eqn. (2.87), and ÛT a unitary operator,
whose representation depends on the form of the wave function, i.e. two- or four-component (see
Section B.3 for an explicit representation in the four component case). Systems are time-reversal
symmetric, if the Hamiltonian commutes with the time-reversal operator

[
K̂, Ĥ

]
= 0, which is

generally the case for systems with an even amount of electrons in the absence of an external
magnetic field. For such systems, Kramers theorem states that the action of the time-reversal
operator defines pairs of functions (Kramers partners)[143]

K̂ψ = ψ̄; K̂ψ̄ = −ψ, (2.123)

that are degenerate

Eψ = 〈ψ|Ĥ|ψ〉 = 〈ψ|K̂−1K̂ĤK̂−1K̂|ψ〉 = 〈ψ̄|Ĥ|ψ̄〉 = Eψ̄. (2.124)

Kramers partners are not exclusive to relativistic formulations, since the two possible spin functions
are related by time-reversal

K̂|α〉 = |β〉; K̂|α〉 = −|β〉, (2.125)

thus forming a pair of Kramers partners. However, it should be kept in mind that spin symmetry is
much more restrictive, because for any spin-free operator, Ô, the matrix elements between functions
of opposite spin are necessarily zero

〈φαp |Ô|φβq 〉 = 0; ∀p, q (2.126)

|φαp 〉 = χp(r)|α〉; |φβq 〉 = χq(r)|β〉

implying a block-diagonal structure of the matrix representation

Ω =

(
Ωαα 0

0 Ωββ

){
Ωαα
pq = 〈φαp |Ω̂|φαq 〉

Ωββ
pq = 〈φβp |Ω̂|φβq 〉.

. (2.127)

Furthermore, from the structure of the spin-orbitals, it can be shown that these two blocks are
identical

Ωαα
pq =

∫
d3rχ∗pΩ̂χq = Ωββ

pq . (2.128)

Therefore, only one sub-matrix is needed in this simple example, thus reducing the computational
cost roughly by a factor of four.

For general Kramers partners, however, these reductions are not as impressive. Let us construct
the matrix representation of a general time-reversal symmetric operator, i.e. Ω̂ = K̂−1Ω̂K̂, in a
basis of Kramers parters

Ω =

(
〈ψp|Ω̂|ψq〉 〈ψp|Ω̂|ψ̄q〉
〈ψ̄p|Ω̂|ψq〉 〈ψ̄p|Ω̂|ψ̄q〉

)
(2.129)
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Here, the off-diagonal blocks only vanish if the two functions in the matrix element are Kramers
partners

〈ψ̄p|Ω̂|ψp〉 = 〈ψp|Ω̂|ψ̄p〉 = 0. (2.130)

However, some symmetry gains can be achieved by relating the off-diagonal and on-diagonal blocks
through time-reversal

K̂〈ψp|Ω̂|ψq〉 = 〈K̂ψp|K̂Ω̂K̂−1|K̂ψq〉 = 〈ψ̄p|Ω̂|ψ̄q〉 = 〈ψp|Ω̂|ψq〉∗ (2.131)

K̂〈ψ̄p|Ω̂|ψq〉 = 〈K̂ψ̄p|K̂Ω̂K̂−1|K̂ψq〉 = −〈ψp|Ω̂|ψ̄q〉 = 〈ψ̄p|Ω̂|ψq〉∗,

yielding the expression

Ω =

(
A B
−B∗ A∗

){
Apq = 〈ψp|Ω̂|ψq〉
Bpq = 〈ψp|Ω̂|ψ̄q〉.

(2.132)

In this expression, the blocks A and B are unique, suggesting that only these two blocks need to be
stored for calculations. Throughout each SCF cycle, it is thus desirable to preserve the structure
in Eqn. (2.132). Maintaining this structure can either be achieved by expressing the generator of
orbital rotations in terms of Kramers replacement operators,[144] or by employing the quaternion
scheme.[145] In this work, the quaternion scheme is preferred, because it simultaneously allows
for the efficient treatment of point-group symmetry. In Appendix B.3 the quaternion scheme is
discussed more thoroughly.

Moreover, the treatment of transition moments benefits heavily from the structure provided
by time-reversal symmetry. If our interaction operator is time-reversal symmetric, it follows that
the property gradient assumes the same form as Eqn.(2.132). Operators that are anti-symmetric
with respect to time-reversal, T̂A, can be made time-reversal symmetric by extracting an imaginary
phase, i.e. T̂A = −i(iT̂A) = −iT̂S , although the hermiticity of the operator is now inverted. By
exploiting both the structure provided by time-reversal and hermiticity, it can be shown that the
property gradient assumes the structure[146]

EΩ =



C
D
−D∗
C∗

hC∗

hD∗

−hD
hC


{
Cia = 〈ψi|Ω̂|ψa〉
Dia = 〈ψi|Ω̂|ψ̄a〉.

. (2.133)

where h is (−1), 1 for (anti-)Hermitian operators. From the structure of the response equations,
which generally preserve time-reversal symmetry, it follows that the solution vectors can be expressed
in a similar form[146]
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Xn =



Vn
Wn

−W ∗
n

V ∗n
hV ∗n
hW ∗

n

−hWn

hVn


(2.134)

Vn;ai = Zn;ai + hYn;ai; Wn;ai = Zn;āi + hYn;āi (2.135)

Transition moments calculated from such vectors thus read

X†nEΩ =

{
= 4Re[C†Vn] + 4Re[D†Wn] if hEhX = 1

= 0 if hEhX = −1
, (2.136)

which vanishes for opposite hermiticity of both vectors and gives rise to real transition moments for
the same hermiticity.

Using the tools described in this chapter, we are in a position to generalize all findings from
Chapter 1 to the relativistic domain, thus enabling us to properly describe relativistic effects in our
simulations of X-ray spectroscopy. However, there is still much room left for improvements in our
model. In particular, based on the large discrepancy between the wave length and the extent of the
system, I have applied the dipole approximation. However, in the X-ray domain, this approximation
might not hold anymore. Therefore, in the following chapter, these assumptions will be challenged.
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Chapter 3

Light–Matter Interactions Beyond the
Dipole Approximation

3.1 Introduction
We have come a long way since we started our discussion about the basic principles of SCF linear-
response theory, followed by relativistic quantum chemistry. With the theoretical tools of the
preceding chapters in place, we are almost ready to discuss some practical examples. However,
before proceeding I need to address one key assumption made in Chapter 1. I recall that in the
UV-Vis regime, the spatial extent of the target molecule is typically much smaller than the wave
length of light. For that reason, it is justified to apply the dipole approximation, according to which
the electromagnetic fields can be approximated by a uniform field. However, in the X-ray regime,
this approximation comes into question because the wave length is of comparable size relative to the
molecule. Figure 3.1 depicts a similar situation as in Figure 1.1, although in this case, the benzene
molecule is interacting with X-rays, having a much shorter wavelength (λ = 2.6 nm).

Considering that the dipole approximation essentially boils down to the first order multipole
expansion of the electromagnetic fields, there are generally two methods to correct for the short-
comings of this approximation. The first and most straightforward method avoids a multipole
expansion altogether and bases its interaction on the exact electromagnetic fields, thus retaining
their sinusoidal character in the interaction operator. Using the full interaction operator, all non-
dipolar effects are exactly included, although the formalism is somewhat more complicated due to
the frequency dependence of this operator.

Alternatively, the multipole expansion can be truncated beyond first order, thus taking higher-
order multipole moments into account. Multipole moments can be understood as idealizations of
charge- and current distributions. For example, the electric-dipole moment is a vectorial quantity
that gives the overall direction in which the charge distribution is polarized. The electric-quadrupole
moment, on the other hand, describes the overall broadness of a charge distribution, akin to the
variance of statistical distributions. Further inhomogeneities of the distributions are described by
higher-order multipole moments, which, in Cartesian form, are defined as

Q
[n]
j1···jn =

∫
d3rrj1rj2 · · · rjnρ(r, t); m

[n]
j1···jn−1;i =

n

n+ 1

∫
d3rrj1rj2 · · · rjn−1

(
r × j(r, t)

)
i
. (3.1)
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Figure 3.1: Schematic representation of benzene molecule interacting with X-rays (λ = 2.6 nm),
consisting of an electric (violet) and magnetic (grey) component. Note that in this figure, the wave
length is comparable in size to the benzene molecule, suggesting that it is affected by the curvature of
the light. The mathematical expressions describing the electromagnetic fields are given at the bottom
of the box. The propagation- and polarization direction are described by the unit vectors ek and ε,
respectively, with the latter being defined by the relation ek = c

ωk.

By including the contributions of all multipole moments, the charge- or current distributions can
be recovered exactly. However, in practice, this is often not necessary, because typically the most
dominant contributions stem from the lowest-order multipole moments. Complicated charge- or
current distributions can thus be simplified by only considering these dominant contributions. This
approach turns out to be particularly useful when describing intermolecular interactions.[147] In
the current context, however, I will use this machinery to approximate light–matter interactions.

Using either the full- or truncated light–matter interaction, I will describe two types of spec-
troscopy: near-edge X-ray absorption fine structure (NEXAFS) and X-ray natural circular dichroism
(XNCD). NEXAFS can straightforwardly be calculated from the absorption cross-section derived
from linearly polarized light. The calculation of XNCD, however, is slightly more complicated, as
it involves the difference between the absorption cross-section of left- and right-handed circularly
polarized light

∆σ(ω) = σL(ω)− σR(ω). (3.2)

From considerations of parity inversion, it can be argued that the circular dichroism of isotropic
samples, e.g. gases and solutions, is non-zero only for chiral molecules (see Section C.1).[148] In
fact, for enantiomers, the circular dichroism is equal but opposite, thus making circular dichroism
one of the few spectroscopic techniques to distinguish enantiomers. Similar effects can be achieved
for non-chiral systems by either imposing anisotropic conditions,[149] such as in crystals, or by
applying an additional external magnetic field. However, the latter suggestion creates a different
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type of interaction, also referred to as X-ray magnetic circular dichroism.[34]
Leaning on the results from the previous chapter, all derivations will be performed in a four-

component relativistic framework. These derivations are mainly based on articles with my co-
authorship (see. refs. 1, 2, 3 for more detail). Alternatively, it is also possible to derive a similar
formalism in a non-relativistic framework, although it is more complicated, due to the many terms
required to describe the light–matter interaction. Therefore, the non-relativistic formalism will not
be further pursued here. For more details see refs. 31, 32, 150. Furthermore, unless stated otherwise,
I will use notation from exact-state theory throughout my derivations, since the generalization to
SCF theory follows straightforwardly from the procedure outlined in Section 1.3.3.

3.2 General Expressions for Monochromatic Light
To derive interaction operators that correct for the shortcomings of the dipole approximation, we
have to start from the solutions of the homogeneous Maxwell equations. I would like to emphasize the
versatility of these equations. On one hand they are indispensable in the formulation of relativistic
theory, whereas in current context, they serve as a starting point to derive more accurate light–
matter interaction operators. The most general expression for monochromatic light is given below

E(r, t) = E1ε1 sin(k · r − ωt+ δ1) + E2ε2 sin(k · r − ωt+ δ2); E1 = E cos θ; E2 = E sin θ (3.3)

B(r, t) =
E1

c
ε2 sin(k · r − ωt+ δ1)− E2

c
ε1 sin(k · r − ωt+ δ2); E =

√
E2

1 + E2
2 ,

where the fields now have two sinusoidal components, each of which having a distinct phase shift,
δ1 and δ2, amplitude, E1 and E2 and polarization direction, ε1 and ε2. The relative size of the
amplitudes can be parametrized by the angle θ. Furthermore, the polarization vectors span a right-
handed coordinate system together with the wave vector, i.e. ε1 × ε2 = c

ωk = ek. In passing, I
note that due to the linear nature of the homogeneous Maxwell equations, any linear combination
of two or more solutions is itself also a solution, allowing the possibility of complicated fields. The
interaction of non-standard fields with molecules has been explored in ref. 151. Here, I will restrict
myself to the more simple monochromatic case.

By imposing that the phases differ by an integer multiple of π, i.e. δ2 = δ1 +mπ; m ∈ Z, we
obtain expressions for linearly polarized light

E(r, t) = Eε sin(k · r − ωt+ δ); B(r, t) =
E
ω
k × ε sin(k · r − ωt+ δ), (3.4)

in which appears the polarization vector

ε = cos θε1 + (−1)m sin θε2. (3.5)

Therefore, the parameter θ defines the polarization direction. Figure 3.2 shows a graphical repre-
sentation of linearly polarized light.
Circularly polarized light can be obtained by setting θ = 1

4π (which implies that |ε1| = |ε2| = 1√
2
ε),

while simultaneously imposing that the difference between the phases is a half-integer multiple of
π, i.e. δ2 = δ1 + 1

2π +mπ; m ∈ Z
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Figure 3.2: Snapshot of linearly polarized light traced out over space, in terms of its electric (red)
and magnetic (blue) component, at an angle θ.

E(r, t) =
1√
2
Eε1 sin(k · r − ωt+ δ) + (−1)m

1√
2
Eε2 cos(k · r − ωt+ δ) (3.6)

B(r, t) =
E
c
√

2
ε2 sin(k · r − ωt+ δ)− (−1)m

E
c
√

2
ε1 cos(k · r − ωt+ δ).

When observed against its propagation direction, the polarization vector traces a circle, hence
its name. Because of this, circularly polarized light is generally shaped as a helix (see Figure
3.2). Therefore, this type of light is chiral, which implies that it cannot be superimposed onto its
mirror image. Consequently, a distinction has to be made between right- and left-handed circularly
polarized light. According to the IUPAC convention, the handedness is defined by the direction of
rotation of the electric field vector at−ωt+δ = 0 against the propagation direction.[152] Accordingly,
circularly polarized light is right-handed if the vector rotates anti-clockwise and vice versa. It turns
out that the integer m determines the handedness: even for left-handedness and odd for right-
handedness.

Besides its polarization, another important feature of electromagnetic radiation is its intensity,
which can be calculated by time-averaging the magnitude of the Poynting vector over a full oscillation

I = 〈S〉T ; S =
1

µ0
E ×B. (3.7)

The Poynting vector expresses the energy transfer that is carried by the fields. By inserting the
general definition of monochromatic light into this vector, we obtain
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(a) Right handed circularly polarized light (b) Left handed circularly polarized light

Figure 3.3: Electric component of right- (m odd) and left handed (m even) circularly polarized light,
traced out over space at a fixed position and phase (t = 0 and δ = 0).

S =
E2

1

cµ0
ek sin2(k · r − ωt+ δ1) +

E2
2

cµ0
ek sin2(k · r − ωt+ δ2), (3.8)

which, upon time-averaging, yields the following expression for the intensity

I =
1

T

∫ T

0
dtS =

1

2
cε0E2, (3.9)

thus reflecting that the intensity is independent of the polarization type.

3.3 Full Semi-Classical Light–Matter Interaction
To derive an interaction operator based on these fields, we first have to convert them to potentials
and then couple these potentials to the Hamiltonian using minimal substitution. As explained in
Section 2.2.3, a Helmholtz decomposition should be applied to convert the fields from Eqn. (3.3) into
potentials. I recall that the Helmholtz theorem holds for fields that go to zero faster than 1

r2 , which
is clearly not the case for the sinusoidal fields in Eqn. (3.3). However, in this case, a weaker condition
applies, stating that any differentiable vector field can be decomposed in terms of a solenoidal and
irrotational part, although these two components are not described in terms of D(r) and C(r)
(Eqn. (2.38)).[40, Appendix B] As outlined in Section 2.2.3, potentials are defined up to a gauge
transformation, suggesting that we have to impose a gauge condition to construct our potentials.
Here, I will impose Coulomb gauge, which implies that the vector potential is purely solenoidal.
Furthermore, by virtue of the first and third homogeneous Maxwell equation, i.e. ∇ · E = 0 and
∇ ·B = 0, the fields are purely solenoidal as well. It thus follows that they can be expressed as
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E = −∂A
∂t

; B = ∇×A, (3.10)

where the scalar potential term, ∇φ, necessarily vanishes, because it is purely irrotational by con-
struction. Therefore, the scalar potential can assume any constant value, thus implying that we can
set it to zero.

From comparison of Eqn.(3.10) and Eqn.(3.3) it follows that the potentials in the Coulomb
gauge assume the form

A(r, t) = −E1

ω
ε1 cos(k · r − ωt+ δ1)− E2

ω
ε2 cos(k · r − ωt+ δ2); φ(r, t) = 0. (3.11)

By inserting these potentials into the Dirac Hamiltonian, the following interaction operator can be
derived

V̂ (t) = − e
ω
E1(cα · ε1) cos(k · r − ωt+ δ1)− e

ω
E2(cα · ε2) cos(k · r − ωt+ δ2). (3.12)

As demonstrated in Section 1.2, the frequency components of this operator

V̂ (ω) = − eE
2ω

(cα · ε̃)eik·r; ε̃ = ε1 cos θeiδ1 + ε2 sin θeiδ2 . (3.13)

can be used to find the absorption-cross section

σfull(ω) =
2πω

~I
|〈f | eE

2ω
(cα · ε̃)eik·r|i〉|2f(ω;ωfi, γfi) =

πω

ε0~c
|〈f | e

ω
(cα · ε̃)eik·r|i〉|2f(ω;ωfi, γfi),

(3.14)
where in the second equality the field-strength dependency was eliminated by inserting Eqn. (3.9).
In practice, however, the dimensionless oscillator strength is preferred over the absorption cross-
section. The former can be obtained from the latter by removing the linewidth function and applying
the prefactor substitution πω

ε0~c →
2meω
~e2 . The oscillator strength thus reads

ffull(ω) =
2meω

~e2
|〈f | e

ω
(cα · ε̃)eik·r|i〉|2. (3.15)

Therefore, we need to calculate transition moments from the following effective interaction operator

T (ω) = 〈f |T̂ (ω)|i〉; T̂ (ω) =
e

ω
cαeik·r. (3.16)

However, this operator has neither a well-defined hermiticity, nor is it time-reversal symmetric (α is
time-reversal anti-symmetric), thus suggesting that the simplifications described in Section 2.4.3 do
not apply. Nonetheless, it is possible to decompose this operator in a Hermitian and anti-Hermitian
component through the relation

T̂ (ω) =
1

2

(
T̂ + T̂ †

)
+

1

2

(
T̂ − T̂ †

)
= T̂H + T̂A, (3.17)

yielding the following result
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T̂H =
e

ω
cα cos(k · r) (3.18)

T̂A =
e

ω
icα sin(k · r).

Even though T̂A has the desirable properties of being time-reversal symmetric and anti-Hermitian,
T̂H is anti-symmetric upon time-reversal. The Hermitian component can be made time-reversal
symmetric by extracting an imaginary phase

〈f |T̂H |i〉 = −i〈f |iT̂H |i〉 (3.19)

and inserting it back at the end of the calculation.
Due to the generality of the polarization vector, Eqn. (3.15) applies both to the absorption of

linearly polarized light

ffull(ω) =
2meω

~e2
|ε · T (ω)|2=

2meω

~e2
|ε · iTH(ω)|2+

2meω

~e2
|ε · TA(ω)|2 (3.20)

and circularly polarized light

ffullL/R(ω) =
2meω

~e2
|εL/R · T (ω)|2; εL/R =

1√
2

(ε1 ± iε2) = ε∗R/L, (3.21)

where the polarization vector, ε, is defined in Eqn. (3.5). Using the definition of circular dichroism
(Eqn. (E.13)), we arrive at the compact expression below

∆ffull(ω) =
2meω

~e2

{
(εL · T )(εR · T ∗)− (εL · T ∗)(εR · T )

}
(3.22)

=
2meω

~e2
(εL × εR) · (T × T ∗) = −i2meω

~e2
ek · (T × T ∗) =

4meω

~e2
ek · (iTH × TA),

which is a relativistic extension of the previously reported result by Hansen and Avery.[153] In the
second equality, the identity (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) has been applied.

I stress again that this operator contains all non-dipolar corrections, from order zero to infinity.
It can be connected to the electric-dipole approximation by applying the limit kr � 1

T (ω) = 〈f | e
ω
cαeik·r|i〉 kr�1−−−→Q[1] = 〈f | e

ω
cα|i〉, (3.23)

where Q̂[1]
is the electric-dipole moment operator in the velocity representation. This representation

deserves its name due to the velocity interpretation of the Dirac matrices, as prescribed by the
Heisenberg equation of motion (Eqn. (2.82)). In addition, this relation can be used to make a
connection with the electric-dipole operator in its more conventional form introduced in Eqn. (E.10)

〈f | e
ω
cαp|i〉 = − i

~
〈f | e

ω

[
rp, ĥD

]
|i〉 = −i〈f |Q̂[1]

p |i〉, (3.24)
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where I have assumed exact-state conditions, i.e. Ĥ|n〉 = En|n〉. It is common convention to
refer to Q̂[1]

and Q̂[1] as the velocity- and length gauge. However, this nomenclature is rather
misleading because it suggests the existence of some special gauge condition, whereas the Coulomb
gauge is imposed for the velocity representation and multipolar gauge (see section 3.5) for the
length representation. Therefore, I will insist to refer to them as representations. The velocity
representation has its non-relativistic analogue, since we have

〈f | e
ω
cαq|i〉 limc→∞−−−−−→ 〈fnr|

e

ωme
p̂q|inr〉, (3.25)

which can be converted to the length representation using an equivalent commutator relation

p̂q
me

= − i
~
[
rq, Ĥs

]
. (3.26)

Here, the left-hand-side can be identified with the non-relativistic velocity operator, thus further
establishing the analogies between relativistic and non-relativistic theory. As a final note, it should
be stressed that in its current form, the above conversion only works under exact-state conditions. Its
generalization to approximate state-theory requires special considerations, which will be discussed
in section 3.6.2.

The electric-dipole moment operator introduces selection rules, because transition moments are
only non-vanishing if the integrand contains at least one totally symmetric component. It can
thus be concluded that this operator only allows transitions that transform as one of the Cartesian
coordinates

Q[1] = Q[1]
x ex (Γx) (3.27)

+Q[1]
y ey (Γy)

+Q[1]
z ez (Γz).

These limitations, however, do not apply to the full interactions operator. The symmetry content
of this operator can be revealed by applying the plane wave expansion

eik·r = 4π
∞∑
`=0

∑̀
m=−`

i`j`(kr)Y
m
` (ek)Y

m∗
` (er). (3.28)

This expansion contains contributions from all possible symmetries of the full rotation group, since
the spherical harmonics can be thought of as position space irreps (irreducible representations) of
this group. However, the overall symmetry of the full interaction operator is also influenced by the
Dirac matrices, which transform as Cartesian coordinates. Therefore, the symmetries generated
from the plane wave expansion need to be combined with the Cartesian symmetry stemming from
the Dirac matrices. From this procedure, which is discussed in more detail in Section C.2, it follows
that the full interaction contains contributions from all symmetries, except the totally symmetric
irrep of the full rotation group. The lack of this symmetry can be understood from the directionality
imposed by the Dirac matrices. In lower point groups, which are subgroups of the full rotation group,
different irreps may coalesce. In the context of molecular calculations, it proves to be particularly
useful to express this operator in terms of the irreps of the D2h group
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e±ik·r = cos(kxx) cos(kyy) cos(kzz) (Γ0) (3.29)
− sin(kxx) sin(kyy) cos(kzz) (ΓRz)

− sin(kxx) cos(kyy) sin(kzz) (ΓRy)

− cos(kxx) sin(kyy) sin(kzz) (ΓRx)

∓ i sin(kxx) sin(kyy) sin(kzz) (Γxyz)

± i cos(kxx) cos(kyy) sin(kzz) (Γz)

± i cos(kxx) sin(kyy) cos(kzz) (Γy)

± i sin(kxx) cos(kyy) cos(kzz) (Γx),

which again demonstrates how the full interaction operator allows for more symmetries than the
electric-dipole moment operator.

Exactly which of the symmetry components contributes to the oscillator strength depends on
the orientation of the molecular system with respect to the light. In these examples, however, it is
assumed that the molecular orientation is fixed in space, whereas in more realistic samples, such as
gases and liquids, molecules can tumble freely, hence inducing isotropic conditions. These effects
will be discussed in detail in Section 3.7, but for now it suffices to assume that all components of
either Eqn. (3.27) or Eqn. (3.28) contribute under isotropic conditions.

From this analysis it thus follows that within the electric-dipole approximation, isotropic oscilla-
tor strengths are non-vanishing if the transition transforms as one of the Cartesian coordinates. The
full interaction operator, however, is much less restrictive, as it only forbids transitions of spherical
symmetry, i.e. j = 0→ j = 0. Furthermore, in a relativistic framework, spin-selection rules do not
apply anymore, implying that most of the conventional selection rules derived in the non-relativistic
electric-dipole approximation are abolished. However, these selection rules are still useful to make
global predictions about the relative intensities of transitions. A dipole-forbidden transition, for
instance, is expected to be less intense than a dipole-allowed transition.

We thus have the machinery at our disposal to either calculate transitions within the electric-
dipole approximation, or include all non-dipolar effects exactly. However, we may also want to
describe these interactions at an intermediate level.

3.4 Truncated Light–Matter Interactions: Generalized
Velocity Representation

3.4.1 Origin Independence
The general strategy to derive such a formalism is to expand the full interaction with respect to the
wave-vector and truncate it at some finite order

T̂ (ω) ≈
N∑
n=0

T̂ [n](ω); T̂ [n](ω) =
1

n!

e

ω
cα(ik · r)n. (3.30)

However, truncated expansions of this kind inherently introduce origin dependence in the interaction
operator. By shifting the origin according to O → O + a, we have
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T̂ [n](ω;O)→ T̂ [n](ω;O + a) =

n∑
m=0

1

m!
(ik · a)mT̂ [n−m](ω;O). (3.31)

This origin-dependency is problematic because spectroscopic quantities, such as the absorption
cross-section, should not depend on the choice of origin, which is a mathematical artifact. It should
be noted, however, that this origin is not necessarily the same as the origin of the coordinate
system. For example, the authors from Refs. 154 and 155 cleverly make use of this distinction to
derive origin-independent magnetic properties. To avoid confusion, I will hereafter designate the
former as gauge-origin and the latter as coordinate-origin.

For the full interaction operator, this dependence on gauge-origin does not pose a problem

T̂ (ω;O)→ T̂ (ω;O + a) =
e

ω
cαeik·reik·a, (3.32)

because the gauge-origin dependence of this operator manifests itself as a phase factor, which does
not contribute to the oscillator strength. Therefore, we should proceed cautiously when deriving
observable quantities from truncated expansions.

Inserting the operator from Eqn. (3.30) into the oscillator strength yields the result

ffull(ω) =
2meω

~e2

∞∑
n=0

∞∑
m=0

T [n](ω)T [m]∗(ω); T [n](ω) = 〈f |ε̃ · T̂ [n](ω)|i〉. (3.33)

Having two indices, the elements in this summation can be thought of as the elements of a matrix.
It turns out to be beneficial to use the fact that we can sum these terms in any order that we want.
In the following, I will extensively use techniques that exploit the freedom in choice of summation
index. These techniques are explained in full detail in Section C.3.

In its current form, the elements are summed column-wise, whereas it would be completely
valid to sum these terms along the anti-diagonals of this matrix. A summation of this type is
particularly useful because along the anti-diagonal, all terms are of the same order in the wave
vector. Eqn. (3.33) can hence be rewritten as such a sum by using n + m as an index for the
anti-diagonals, as it assumes a distinct positive integer value along each anti-diagonal

ffull(ω) =
∞∑
n=0

f [n](ω); f [n](ω) =
2meω

~e2

n∑
m=0

T [n−m](ω)T [m]∗(ω). (3.34)

It has been shown by Bernadotte et al.[27] that for each order, the oscillator strength is independent
on the gauge-origin. To explicitly demonstrate this, I will follow an alternative approach that is
being proposed in ref. 1.

As a starting point, I will insert definition of the shifted operators (Eqn. (3.31)) into the n-th
order oscillator strength

f [n](ω;O + a) =
2meω

~e2

n∑
m=0

T [n−m](ω;O + a)T [m]∗(ω;O + a) (3.35)

=
2meω

~e2

n∑
m=0

n−m∑
p=0

m∑
q=0

(−1)q

p!q!
(ik · a)p+qT [n−m−p](ω;O)T [m−q]∗(ω;O).
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If we think of the first two summation indices as matrix indices, it can be argued that the cor-
responding summations fill the upper left diagonal of a matrix. Using similar machinery as in
Eqn. (3.34), the summation can be carried out over the anti-diagonal, thus requiring us to redefine
the summation according to the index y = m+ p

f [n](ω;O + a) =
2meω

~e2

n∑
y=0

y∑
m=0

m∑
q=0

(−1)q

(y −m)!q!
(k · a)y−m+qT [n−y](ω;O)T [m−q]∗(ω;O). (3.36)

Subsequently, I will make the substitution y → u = n− y, yielding the result below

f [n](ω;O+a) =
2meω

~e2

n∑
u=0

n−u∑
m=0

m∑
q=0

(−1)q

(n− u−m)!q!
(ik ·a)n−u−m+qT [u](ω;O)T [m−q]∗(ω;O). (3.37)

Here, the second and third summation fill the lower triangle and the diagonal of a matrix. Along
the diagonal and each sub-diagonal, the index v = m− q is constant and assumes a distinct value.
By using v as a summation index, we can thus write the n-th order oscillator strength as

f [n](ω;O + a) =
2meω

~e2

n∑
u=0

n−u∑
v=0

T [u](ω;O)T [v]∗(ω;O)
(ik · a)n−u−v

(n− (u+ v))!
M. (3.38)

Here, the factor

M =

n−(u+v)∑
q=0

(
n− (u+ v)

q

)
(−1)q = (1− 1)n−(u+v) (3.39)

is only non-zero if n− (u+ v) = 0, yielding the end result

f [n](ω;O + a) =
2meω

~e2

n∑
u=0

T [u](ω;O)T [n−u]∗(ω;O), (3.40)

which is clearly equivalent to Eqn. (3.34) upon relabelling of the summation indices. Therefore,
order-by-order the oscillator strength is gauge-origin independent because the origin-dependent
terms cancel exactly. It thus follows that the n-th order oscillator strength is a meaningful physical
quantity, unlike, for example, the individual transition moments that are used to construct this
quantity.

3.4.2 Simplifications from Time-Reversal Symmetry
Although Eqn. (3.30) makes sense physically, there is still much room for improvement. By ex-
ploiting time-reversal symmetry of the interaction operators, it can be shown that some orders in
Eqn. (3.30) vanish. For these purposes, I will re-express the transition moments

T [n] = (−i)n−1T [n](ω) = 〈f | 1
n!

e

ω
ε̃ · icα(k · r)n|i〉, (3.41)
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such that the operator inside the integral is time-reversal symmetric. From the results of Section
2.4.3, it thus follows that the corresponding transition moments are real. The simplifications that
follow from this property, are generally different for absorption of linearly polarized light and circular
dichroism. Therefore, I will start to analyze the former case. Expressed in these redefined transition
moments, the n-th order oscillator strength reads

f [n](ω) = in
2meω

~e2

n∑
m=0

(−1)mT [n−m](ω)T [m]∗(ω). (3.42)

It should be noted that the terms in this summation come in pairs. To further pursue this idea, it
proves to be useful to separate the even- from the odd-order terms

f [2n](ω) = (−1)n
2meω

~e2

2n∑
m=0

(−1)mT [2n−m](ω)T [m]∗(ω) (3.43)

f [2n+1](ω) = (−1)ni
2meω

~e2

2n+1∑
m=0

(−1)mT [2n+1−m](ω)T [m]∗(ω)

Let us start by closer inspecting the terms of even order, which can be expressed as

f [2n](ω) =
2meω

~e2
T [n](ω)T [n]∗(ω) (3.44)

+ (−1)n
2meω

~e2

n−1∑
m=0

(−1)mT [2n−m](ω)T [m]∗(ω)

+ (−1)n
2meω

~e2

2n∑
m=n+1

(−1)mT [2n−m](ω)T [m]∗(ω).

The two summations have common terms, although their summation indices do not agree. Both of
these two summations can be grouped together by redefining these indices. The first summation
will be redefined such that the summation order is reversed, whereas the latter summation will be
shifted such that the index starts at zero. These change can be achieved by redefining the first- and
second summation according to m→ n−m and m→ m− n, which yields the following result

f [2n](ω) =
2meω

~e2

n∑
m=0

(−1)m(2− δm0)Re[T [n+m](ω)T [n−m]∗(ω)]. (3.45)

For odd orders, the oscillator strength can be expressed as

f [2n+1](ω) = (−1)ni
2meω

~e2

n∑
m=0

(−1)mT [2n+1−m](ω)T [m]∗(ω) (3.46)

+ (−1)ni
2meω

~e2

2n+1∑
m=n+1

(−1)mT [2n+1−m](ω)T [m]∗(ω).
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Similar to the results for even-order terms, the above expression can be simplified by redefining the
first- and second summation according to m→ n−m and m→ m− n− 1,

f [2n+1](ω) = (−1)n
2meω

~e2

n∑
m=0

(−1)n−m2Im
[
T [n+1−m](ω)T [n−m]∗(ω)

]
= 0, (3.47)

which always vanishes, because the transition moments are real.
However, these results do not generally hold for circular dichroism, which at n-th order assumes

the form

∆f [n](ω) = f
[n]
L (ω)− f [n]

R (ω) = −in+1 2meω

~e2

n∑
m=0

(−1)mek · (T [n−m](ω)× T [m]∗(ω)) (3.48)

T [n](ω) = 〈f | 1
n!

e

ω
icα(k · r)n|i〉

It again turns out to be useful to separate even from odd contributions

∆f [2n](ω) = (−1)n+1i
2meω

~e2

2n∑
m=0

(−1)mek · (T [2n−m](ω)× T [m]∗(ω)) (3.49)

∆f [2n+1](ω) = (−1)n
2meω

~e2

2n+1∑
m=0

(−1)mek · (T [2n−m+1](ω)× T [m]∗(ω)).

Following a similar strategy as previous case, the even-order contributions can be expressed as

∆f [2n](ω) = −i2meω

~e2
ek · (T [n](ω)× T [n]∗(ω)) (3.50)

+ (−1)n+1i
2meω

~e2

n−1∑
m=0

(−1)mek · (T [2n−m](ω)× T [m]∗(ω))

+ (−1)n+1i
2meω

~e2

2n∑
m=n+1

(−1)mek · (T [2n−m](ω)× T [m]∗(ω)),

which can be simplified by applying the substitutions m→ n−m and m→ m− n to the first- and
second summation

∆f [2n](ω) = −i2meω

~e2
ek · (T [n](ω)× T [n]∗(ω))− 2meω

~e2

n∑
m=1

(−1)mek · i(T [n+m](ω)× T [n−m]∗(ω))

(3.51)

+
2meω

~e2

n∑
m=1

(−1)mek · i(T [n+m]∗(ω)× T [n−m](ω)) = 0.
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This expression again vanishes by virtue of the realness of the transition moments. Likewise, the
odd-order contributions can be rewritten as

∆f [2n+1](ω) = (−1)n
2meω

~e2

n∑
m=0

(−1)mek · (T [2n−m+1](ω)× T [m]∗(ω)) (3.52)

+ (−1)n
2meω

~e2

2n+1∑
m=n+1

(−1)mek · (T [2n−m+1](ω)× T [m]∗(ω)),

which yields the end results upon the index substitutions m → n −m and m → m − n − 1 in the
first- and second summation

∆f [2n+1](ω) =
2meω

~e2
ek ·

n∑
m=0

(−1)m2Re
{
T [n+m+1](ω)× T [n−m]∗(ω)

}
. (3.53)

Therefore, for circular dichroism, only odd contributions are relevant, whereas the even terms only
contribute to the absorption of linearly polarized light.

3.4.3 Electric and Magnetic Contributions
We have thus derived the working equations to describe a truncated light–matter interaction at
arbitrary order. However, at first sight, there does not seem to be a relation with the truncated
interaction operators appearing in Eqn. (3.34) and the multipole moments introduced at the be-
ginning of this chapter. To be more precise, in its current form, the oscillator strength does not
distinguish between electric and magnetic components. In the following, I will demonstrate how
such a decomposition can be achieved.

As a starting point, I will rewrite the n-th order interaction operator in the following manner

T̂ [n](ω) =
1

(n+ 1)!

e

ω
i(ε̃ · cα)(k · r)n +

n

(n+ 1)!

e

ω
i(ε̃ · cα)(k · r)n. (3.54)

The reason for this decomposition becomes more clear in the subsequent step, where I will insert
the identity

(k × ε̃) · (r × cα) = (cα · ε̃)(k · r)− (r · ε̃)(k · cα) (3.55)

which yields the result

T̂ [n](ω) =
1

(n+ 1)!

e

ω

(
(ε̃ · icα)(k · r) + n(r · ε̃)(k · icα)

)
(k · r)n−1 (3.56)

+
n

(n+ 1)!

e

ω
(k × ε̃) · (r × icα)(k · r)n−1 = kj1kj2 · · · kjn ε̃pX̂

[n]
j1···jn;p(ω).

In the last line, I have introduced the multipole moment operator in component form

X̂ [n]
j1···jn;p(ω) =

1

(n+ 1)!
Q̂[n+1]
j1···jn;p −

i

ω

1

n!
m̂

[n]
j1···jn−1;rεrjnp (3.57)
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which is expressed in terms of the two operators

Q̂[n+1]
j1···jn;p =

ie

ω
rj1 · · · rjn−1(cαprjn + ncαjnrp) (3.58)

and

m̂
[n]
j1···jn−1;r =

n

n+ 1
rj1 · · · rjn−1(r × ĵ)r; ĵ = −ecα. (3.59)

Because this operator yields the velocity representation electric-dipole moment (Eqn. (3.23)) at
zeroth order, Eqn. (3.57) is referred to as the generalized velocity representation. In this represen-
tation, the second operator can straightforwardly be recognized as a magnetic operator, due to its
similarities with the magnetic multipole moments introduced in Eqn. (E.12). It should be noted
that the compact form of the current density operator is a special feature of relativistic theory,
since the non-relativistic current density may also contain explicit contributions depending on the
external field and the electron spin. Having established that the second operator in Eqn. (3.57) is
magnetic in nature, it seems only logical to conclude that the first operator, Q̂[n+1]

j1···jn;p, is an electric
multipole moment operator. However, before jumping to conclusions, it should be confirmed that
this operator is indeed purely electric in character.

For this proof, it is more suitable to start from V̂ [n](ω) rather than T̂ [n]

V̂ [n](ω) = −E
2
in−1kj1kj2 · · · kjn ε̃pX̂

[n]
j1···jn;p(ω) (3.60)

= −E
2
in−1kj1kj2 · · · kjn ε̃p

1

(n+ 1)!
Q̂[n+1]
j1···jn;p +

E
2
in−1kj1kj2 · · · kjn ε̃p

i

ω

1

n!
m̂

[n]
j1···jn−1;rεrjnp.

Furthermore, it is useful to express the electromagnetic fields in terms of their frequency components

E(r, t) = E(r, ω)e−iωt +E(r,−ω)eiωt; B(r, t) = B(r, ω)e−iωt +B(r,−ω)eiωt (3.61)

and evaluate their n-th order derivatives at r′ = 0

∂nE(r′, ω)

∂r′j1 · · · ∂r′jn

∣∣∣∣
r′=0

= in
E
2i
ε̃kj1kj2 · · · kjn ;

∂nB(r′, ω)

∂r′j1 · · · ∂r′jn

∣∣∣∣
r′=0

= in
E
2i

1

ω
(k × ε̃)kj1kj2 · · · kjn . (3.62)

By comparing Eqn. (3.62) with Eqn. (3.60), it follows that

V̂ [n](ω) =

(
− i

(n+ 1)!

∂nEp(r
′, ω)

∂r′j1 · · · ∂r′jn

∣∣∣∣
r′=0

Q[n+1]
j1···jn;p +

1

n!

∂n−1Br(r
′, ω)

∂r′j1 · · · ∂r′jn−1

∣∣∣∣
r′=0

m
[n]
j1···jn−1;r

)
, (3.63)

in which Q[n+1]
j1···jn;p couples with the n-th order derivative of the electric field, whereas m[n]

j1···jn−1;r

couples with the (n − 1)-th order derivative of the magnetic field. Therefore, the two operators in
Eqn. (3.57) are indeed electric and magnetic in nature.

By expressing the n-th order oscillator strength in terms of Eqn. (3.57)
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f [n](ω) = in
2meω

~e2

(
ω

c

)n n∑
m=0

(−1)mε̃pε̃qek;j1ek;j2 · · · ek;jn〈f |X̂
[n−m]
j1···jn−m;p(ω)|i〉〈f |X̂ [m]

jn−m+1···jn;q(ω)|i〉∗

(3.64)
it is possible to isolate a purely electric contribution

f
[n]
QQ(ω) = in

2meω

~e2

(
ω

c

)n n∑
m=0

(−1)mε̃pε̃qek;j1ek;j2 · · · ek;jn (3.65)

× 〈f | 1

(n−m+ 1)!
Q̂[n−m+1]
j1···jn−m;p|i〉〈f |

1

(m+ 1)!
Q̂[m+1]
jn−m+1···jn;p|i〉∗,

a mixed electric-magnetic contribution

f
[n]
QM (ω) = in

2meω

~e2

(
ω

c

)n n∑
m=0

[
(3.66)

(−1)mε̃pε̃qek;j1ek;j2 · · · ek;jn〈f |
1

(n−m+ 1)!
Q̂[n−m+1]
j1···jn−m;p|i〉〈f |−

i

ω

1

m!
m̂

[m]
jn−m+1···jn−1;rεrjnp|i〉∗

+ (−1)mε̃pε̃qek;j1ek;j2 · · · ek;jn〈f |−
i

ω

1

(n−m)!
m̂

[n−m]
j1···jn−m−1;rεrjn−mp|i〉〈f |

1

(m+ 1)!
Q̂[m]
jn−m+1···jn;p|i〉∗

]
,

and a purely magnetic contribution

f
[n]
MM (ω) = in

2meω

~e2

(
ω

c

)n n∑
m=0

(−1)mε̃pε̃qek;j1ek;j2 · · · ek;jn (3.67)

〈f |− i
ω

1

(n−m)!
m̂

[n−m]
j1···jn−m−1;rεrjn−mp|i〉〈f |−

i

ω

1

m!
m̂

[m]
jn−m+1···jn−1;sεsjnp|i〉∗

I stress that each of these contributions is dependent on the choice of gauge-origin, unlike the
accumulated value of these three components. By changing from one origin to the other, we are
effectively shifting the weight of the contribution, while keeping their sum constant. However, this
should not be confused with the mixing of electric and magnetic fields upon Lorentz transformation
(Eqn. (2.28)).[150] Here, the electric and magnetic fields rather mix because a truncated expansion
can only describe the interaction locally. It can thus be argued that this decomposition does make
little sense physically, since it inherently depends on the choice of gauge-origin.[33] For centro-
symmetric systems, such as atoms or metal complexes, it is possible to define a unique origin at
the center. For general systems, however, such a symmetry may not exist, implying that this
decomposition should be used with caution or avoided altogether.

3.5 Truncated Light–Matter Interactions: Generalized
Length Representation

In the previous section, I have shown how in the generalized velocity representation, multipole
moments appear in a rather unusual form. A formalism can be derived that is based on multipole
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moments in their more conventional form by imposing multipolar gauge. To derive an appropriate
gauge condition, I will follow the procedure described by Bloch,[156] although there is a variety of
alternative methods to reach this goal.[157, 158, 159] The approach that is treated here starts from
the Taylor expansion of the potentials centered around the expansion point a

φ̃(r, t) =
∞∑
n=0

1

n!

[
(δa ·∇′)nφ̃(r′, t)

]∣∣∣∣
r′=a

; δa = r − a (3.68)

Ã(r, t) =
∞∑
n=0

1

n!

[
(δa ·∇′)nÃ(r′, t)

]∣∣∣∣
r′=a

,

where I applied a compactified notation that avoids the excessive use of indices. Note that the
relation ∇φ̃ = −E − ∂

∂tÃ can be inserted in the expansion of the scalar potential

φ̃(r, t) = φ̃(a, t)−
∞∑
n=1

1

n!

[
(δa ·∇′)n−1δa ·E(r′, t)

]∣∣∣∣
r′=a

− ∂

∂t

∞∑
n=1

1

n!

[
(δa ·∇′)n−1δa · Ã(r′, t)

]∣∣∣∣
r′=a

.

(3.69)
Interestingly, this expression resembles a gauge transformation

φ̃(r, t) = φa(r, t)− ∂tχa(r, t), (3.70)

with the time-derivative term corresponding to the gauge function. Isolating φa, thus enables us to
express the scalar potential completely in terms of the electric field

φa(r, t) = φ̃(a, t)−
∞∑
n=1

1

n!

[
(δa ·∇′)n−1δa ·E(r′, t)

]∣∣∣∣
r′=a

. (3.71)

Accordingly, the gauge function is defined as

χa(r, t) =
∞∑
n=1

1

n!

[
(δa ·∇′)n−1

(
δa · Ã(r′, t)

)]∣∣∣∣
r′=a

. (3.72)

To derive an expression for the vector potential, we use the partner relation

Ã(r, t) = Aa(r, t) + ∇χa(r, t). (3.73)

thus requiring us to evaluate the gradient of the gauge function

∇χ =
∞∑
n=0

1

(n+ 1)!

[
(δa·∇′)nÃ(r′, t)

]∣∣∣∣
r′=a

+
∞∑
n=1

n

(n+ 1)!

[
(δa·∇′)n−1∇′

(
δa·Ã(r′, t)

)]∣∣∣∣
r′=a

. (3.74)

The transformed vector potential reads
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Aa(r, t) =

∞∑
n=0

1

n!

[
(δa ·∇′)nÃ(r′, t)

]∣∣∣∣
r′=a

(3.75)

−
∞∑
n=0

1

(n+ 1)!

[
(δa ·∇′)nÃ(r′, t)

]∣∣∣∣
r′=a

−
∞∑
n=1

n

(n+ 1)!

[
(δa ·∇′)n−1∇′

(
δa · Ã(r′, t)

)]∣∣∣∣
r′=a

=
∞∑
n=1

n

(n+ 1)!

[
(δa ·∇′)n−1

{
(δa ·∇′)Ã(r′, t)−∇′

(
δa · Ã(r′, t)

)}]∣∣∣∣
r′=a

.

As a finishing touch, I will apply the identity

δa ×B(r′, t) = δa × (∇′ × Ã(r′, t)) = ∇′
(
δa · Ã(r′, t)

)
− δa ·∇′Ã(r′, t), (3.76)

allowing us to express the vector potentials in terms of the magnetic field

Aa(r, t) = −
∞∑
n=1

n

(n+ 1)!

[
(δa ·∇′)n−1

(
δa ×B(r′, t)

)]∣∣∣∣
r′=a

. (3.77)

Therefore, multipolar gauge provides a unique separation of electric and magnetic interactions.
An intriguing feature of multipolar gauge is that it appears to eliminate gauge freedom, since we

can apply any gauge transformation to (φ̃, Ã) without altering the structure of (φa,Aa). However,
the additional degrees of freedom associated to gauge transformations now reside inside the choice of
expansion point, suggesting that potentials corresponding to different expansion points are related
by gauge transformations. To further validate this idea, I will introduce the potentials (φb,Ab)
which are expressed in multipolar gauge with the expansion point centred at b. Starting from
the potentials, (φa,Aa), the potentials (φ̃, Ã) can be obtained through the relations Eqs. (3.70)
and (3.73). Provided that we do not truncate our expansion, we are allowed to freely choose the
expansion point in Eqs. (3.68), thus suggesting that we can make the following connection

φ̃(r, t) = φb(r, t)−
∂

∂t
χb(r, t) (3.78)

Ã(r, t) = Ab(r, t) + ∇χb(r, t).

By combining both gauge transformations, we can relate (φa,Aa) to (φb,Ab)

φa(r, t) = φb(r, t)− ∂tχa→b (3.79)
Aa(r, t) = Ab(r, t) + ∇χa→b,

with the gauge function defined as

χa→b = χb − χa =
∞∑
n=1

1

n!

([
(δb ·∇′)n−1

(
δb · Ã(r′, t)

)]∣∣∣∣
r′=b

−
[
(δa ·∇′)n−1

(
δa · Ã(r′, t)

)]∣∣∣∣
r′=a

)
.

(3.80)
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(φ̃, Ã)

(φa,Aa) (φb,Ab)

χb−χa

χa→b

1

Figure 3.4: graph that represents the two consecutive gauge transformations that are required to
transform (φa,Aa) to (φb,Ab).

In Figure 3.5, the procedure outlined above is represented schematically.
However, I stress that the relations from Eqs. (3.78), which form an essential step in the transforma-
tion, are only valid if we do not truncate our expansion. Upon truncation, our gauge transformation
breaks down, since we have

N∑
n=0

1

n!

[
(δa ·∇′)nφ̃(r′, t)

]∣∣∣∣
r′=a

6=
N∑
n=0

1

n!

[
(δb ·∇′)nφ̃(r′, t)

]∣∣∣∣
r′=b

(3.81)

N∑
n=0

1

n!

[
(δa ·∇′)nÃ(r′, t)

]∣∣∣∣
r′=a

6=
N∑
n=0

1

n!

[
(δb ·∇′)nÃ(r′, t)

]∣∣∣∣
r′=b

,

for some finite order N . Therefore, different expansion points are only connected by a gauge trans-
formation if the expansion is not truncated. The inequivalence of two expansion points effectively
implies that we have a gauge-origin dependence, similar to Eqn. (3.31). This inherent origin depen-
dence will haunt us throughout the rest of this chapter.

Using the potentials from Eqs. (3.71) and (3.77), the following interaction operator can be
derived

V̂a(t) = e
∞∑
n=0

1

(n+ 1)!

[
(δa·∇′)n

(
δa·E(r′, t)

)]∣∣∣∣
r′=a

−ec
∞∑
n=1

n

(n+ 1)!

[
(δa·∇′)n−1

(
δa×B(r′, t)

)
·cα
]∣∣∣∣

r′=a

,

(3.82)
where I left out the constant term in the scalar potential, as it does not contribute to transition
moments due to the orthogonality of states. However, for certain approximative schemes, such as
STEX (see Section 5), this assumption might not hold. By inserting the definition of the electromag-
netic fields (Eqn. (3.3)) and isolating the resulting frequency components, we obtain the following
operator

V̂a(ω) = eik·ae
E
2i

(δa · ε̃)
∞∑
n=0

1

(n+ 1)!
(iδa ·k)n−eik·aec E

2i

(
δa×(

1

ω
k× ε̃)

)
·cα

∞∑
n=1

n

(n+ 1)!
(iδa ·k)n−1.

(3.83)
If we then write the dot-products in component form, we can isolate a multipole moment operator

V̂a(ω) = − E
2i

(
Q̂[1]
p ε̃p +

∞∑
n=1

inε̃pkj1kj2 · · · kjnX̂
[n]
j1···jn;p

)
, (3.84)
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which is expressed as

X̂
[n]
j1···jn;p =

1

(n+ 1)!
Q̂

[n+1]
j1···jn;p −

i

ω

1

n!
m̂

[n]
j1···jn−1;rεrjnp, (3.85)

in terms of the electric multipole moment operator

Q̂
[n+1]
j1···jn;p = −erj1 · · · rjnrp (3.86)

and the magnetic multipole moment operator (Eqn. (3.59)). At first order, Eqn. (3.85) yields the
length representation (Eqn. (3.24)) and is thus referred to as the generalized length representation.

Before proceeding with the derivation of oscillator strengths, let us first appreciate the similari-
ties between the generalized length- and velocity representation. Similar to the previous section, we
arrive at some multipole moment operator that is decomposed into an electric and magnetic compo-
nent. Indeed when inserting the frequency component derivatives of the fields (Eqn. (3.62)) into the
interaction operator expressed in multipolar gauge (Eqn. (3.82)), the same result as in Eqn. (3.63)
can be obtained. However, in multipolar gauge, these manipulations are not entirely necessary,
because the separation of electric- and magnetic components could also have been inferred from the
structure of the potentials (Eqs. (3.71) and (3.77)), thus reflecting how this separation is inherent
to multipolar gauge.

Due to the similarities between both representations, the n-th order oscillator strength in the
generalized length representation is almost identical to Eqn. (3.64)

f [n](ω) = in
2meω

~e2

(
ω

c

)n n∑
m=0

(−1)mε̃pε̃qek;j1ek;j2 · · · ek;jn〈f |X̂
[n−m]
j1···jn−m;p(ω)|i〉〈f |X̂ [m]

j1···jm;q(ω)|i〉∗,

(3.87)
with the only difference being the definition of the multipole moment operator. Furthermore, from
considerations of time-reversal symmetry it follows that the absorption of linearly polarized light
only contains even-order contributions, whereas circular dichroism only depends on the odd-order
ones, in accordance with the results from Section 3.4.2. However, an important distinction between
the two representation is that at face-value, the n-th order oscillator strength in the generalized
length representation is not origin independent. The arguments proposed in Section 3.4.1, do not
necessarily apply to Eqn. (3.87), due to the structure of the generalized length representation. At
order n, the electric multipole moment is constructed from n + 1 position operators, whereas the
magnetic multipole moment contains n position operators. This in contrast to the generalized ve-
locity representation where both operators contain the same amount of position operators, resulting
in the simple origin dependence provided by Eqn. (3.31). The more complicated origin dependence
of the generalized length representation prohibits the exact cancellation between origin dependent
terms, as described in Section 3.4.1. It has been shown by Lindh et al. that gauge-origin inde-
pendence can be achieve by using Eqn. (3.24) (or Eqn. (3.26) in a non-relativistic framework) to
convert the current density operator in the magnetic multipole moment into a position operator,
which is referred to as the ’correct length gauge’ by the authors.[30, 150] However, they also note
that although the result is indeed origin independent, the integrals required for these calculations
are rather cumbersome, which renders this approach impractical.
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3.6 Connecting the Generalized Length- and Velocity Rep-
resentation

At this point it seems that the generalized velocity representation is preferred over the generalized
length representation, due to the gauge-origin independence of the former. However, in this section,
I will show that the two representations are two sides of the same coin, although their equivalence
only holds in an exact-state formalism. Indeed when applying approximate methods, such as SCF
theory, both representations may give different results. Therefore, this section will be devoted
to the connection between both representations. In other words, I will find the conditions that
dictate when both representations produce the same oscillator strengths. In previous sections, the
distinction between exact- and approximate-state theory is less relevant, as the results are equally
valid in both cases. However, in the current section, this distinction becomes essential. I will thus
divide this section into two parts: the first one being devoted to exact-state theory and the second
to approximate-state theory.

3.6.1 Exact-State-Formalism: a Gauge Theoretical Approach
As a starting point, I recall that the potentials corresponding to the generalized length representation
are expressed in multipolar gauge, whereas the potentials are expressed in Coulomb gauge for the
generalized velocity representation. On a classical level, we know that both sets of potentials
yield the same fields, since they are related by a gauge transformation. In a quantum mechanical
framework, a similar effect can be achieved by the action of local unitary operators[99, 160, 161]

U(r, t) = e
i
~ eχ(r,t); U †(r, t)U(r, t) = Î (3.88)

where χ is the same gauge function as the one from classical theory. This operator is local in the
sense that for every point in space, a different unitary transformation is defined that is connected
continuously to its local neighbourhood.

Inserting the identity operator into the time-dependent Dirac equation(
ĥD − i~∂t

)
U †(r, t)U(r, t)ψ(r, t) = 0, (3.89)

and multiply on the left with Û(r, t) thus allows us to transform this equation according to our
local unitary operator (

ĥD − i~∂t
)
ψ(r, t) = 0→

(
ĥ′D − i~∂t

)
ψ′(r, t) = 0, (3.90)

where appears the transformed wave function

ψ′(r, t) = U(r, t)ψ(r, t) (3.91)

and the transformed Hamiltonian

ĥ′D = UĥDU
† − i~U∂t(U †) = UĥDU

† − e∂tχ(r, t). (3.92)
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Using the Baker-Campbell-Hausdorf expansion, introduced in Eqn. (1.57), the transformed Hamil-
tonian can be expressed as

ĥ′D = ĥD − e∂tχ(r, t) + e
i

~
[
χ(r, t), ĥD

]
+

e2

2~2

[
χ(r, t), [χ(r, t), ĥD]

]
+ · · · . (3.93)

Using the commutator identity [p̂, f(r)] = −i~∇f(r), it can be shown that the first commutator
term in this expansion evaluates to

e
i

~
[
χ(r, t), ĥD

]
= −ecα ·∇χ(r, t). (3.94)

This relation also implies that any higher-order commutator vanishes, as this expression commutes
with any multiplicative operator. Therefore, the transformed Hamiltonian reads

ĥ′D = βmec
2 + cα ·

(
p̂+ e(A−∇χ(r, t))

)
− e(φ+ ∂tχ(r, t)), (3.95)

which is equivalent to substituting with gauge-transformed potentials. As a main advantage, this
procedure allows us the track the changes of the wave function induced by the transformation of the
potentials. This derivation could also have been carried out in a non-relativistic framework, which
yields the same end result, although the commutators vanish at third order and higher.

Because these transformations only affect the interaction operator, we can re-express Eqn. (3.93)
as

V̂ ′(t) = V̂ (t)− e∂tχ(r, t) + e
i

~
[
χ(r, t), ĥD

]
, (3.96)

which can be decomposed in terms of frequency components

V̂ ′(ω) = V̂ (ω) + eiωχ(r, ω) + e
i

~
[
χ(r, ω), ĥD

]
. (3.97)

What thus remains is to assess how transition moments change upon this gauge transformation.
The two states involved in transition moments are stationary states of the zeroth order Hamilto-
nian, which does not depend on the light–matter interaction and is hence unaffected by this gauge
transformation. From these considerations it can thus be concluded that gauge transformations
leave transition moments unchanged, since we have

〈f |eiωχ(r, ω)|i〉+ 〈f |e i
~
[
χ(r, ω), ĥD

]
|i〉 = 〈f |eiωχ(r, ω)|i〉+ e

iEi
~
〈f |χ(r, ω)|i〉 (3.98)

− eiEf
~
〈f |χ(r, ω)|i〉 = 0,

where I have assumed exact-state- and resonance (ω = ωfi) conditions.
When transforming the interaction operator from the Coulomb gauge to multipolar gauge, we

have to use the gauge function provided by Eqn. (3.72). In this derivation, I will set a = 0, implying
the following frequency component of the gauge function

χ(r, ω) = − E
2ω

∞∑
n=0

1

(n+ 1)!
(ir · k)n(r · ε̃) =

E
2eω

∞∑
n=0

in

(n+ 1)!
ε̃pkj1kj2 · · · kjnQ̂

[n+1]
j1···jn;p, (3.99)
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where in the last equality, I have inserted the definition of the generalized length representation
electric-multipole moments. Using this gauge function, Eqn. (3.97) assumes the form

V̂a(ω) = −E
2

∞∑
n=0

in−1kj1kj2 · · · kjn ε̃p
[
X̂ [n]
j1···jn;p(ω) +

1

(n+ 1)!
Q̂

[n+1]
j1···jn;p +

1

~ω
1

(n+ 1)!

[
Q̂

[n+1]
j1···jn;p, ĥD

]]
,

(3.100)
where the commutator evaluates to

1

~ω
[
ε̃pkj1 · · · kjnQ̂

[n+1]
j1···jnp, ĥD

]
= −ε̃pkj1 · · · kjnQ̂

[n+1]
j1···jnp. (3.101)

Upon insertion of this operator into the transformed operator, we obtain

V̂a(ω) = −E
2

∞∑
n=0

in−1kj1kj2 · · · kjn ε̃pX̂
[n]
j1···jn;p(ω), (3.102)

which is equivalent to Eqn. (3.82) up to a phase factor.
It should be noted that this transformation only affects the electric multipole moment, whereas

the magnetic multipole moment remains unchanged. As a shortcut to these lengthy manipulations,
we can combine Eqs. (3.98) and Eqn. (3.101), which directly relates the electric-multipole moments
in the two representations

〈f |ε̃pkj1 · · · kjnQ̂
[n+1]
j1···jnp|i〉 =

1

~ωfi
〈f |
[
ĥD, ε̃pkj1 · · · kjnQ̂

[n+1]
j1···jnp

]
|i〉 = 〈f |ε̃pkj1 · · · kjnQ̂

[n+1]
j1···jnp|i〉.

(3.103)
The gauge transformation and the commutator identity shown above can be used interchangeably
to convert transition moments, since they are derived from the same principles. Even though the
above results demonstrate that we can replace gauge transformations with commutator relations,
such as Eqn. (3.103), the converse is not always the case. For example, the ’correct length gauge’,
as discussed by Lindh et al., transforms operators through commutator identities, although it is not
directly related to a gauge transformation.[30, 150]

Starting from the n-th order oscillator strength in the generalized length representation (Eqn. (3.87)),
Eqn. (3.103) can be used to convert it into the generalized velocity representation using the above
relation. From the fact that the latter is origin-independent, it thus follows that the former shares
this feature. However, similar to Eqn. (3.85), these relations are only valid for exact states, whereas
special considerations are needed for approximate state theories. In the following section, I will
connect the generalized length- and velocity representations for SCF theory. Instead of using the
gauge transformation outlined above, I will directly use Eqn. (3.103), thus significantly simplifying
the derivation. For a conversion based on explicit gauge transformations, the reader should consult
ref. 162.

3.6.2 Conversion at the SCF Level
In this section, I will demonstrate that the generalized length and velocity representation can be
interconverted at the SCF linear-response level of theory. Besides the necessity of a complete basis
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set, the conversion generally depends on the level of theory, requiring special considerations for
each electronic structure method. For truncated cluster expansions, for example, the two represen-
tations are not equivalent, as demonstrated by Pedersen and Koch.[163] This conversion has been
carried out successfully at the TD-HF,[46] non-hybrid TDDFT[162] and MCSCF[164] level of the-
ory. However, all these derivations assume the electric-dipole approximation, whereas here, I will
extend it for electric-multipole moments to arbitrary order and for that matter, any multiplicative
operator. To keep the derivation as general as possible, I will make the following substitutions:
Ω̂ = ε̃pkj1 · · · kjnQ̂

[n+1]
j1···jnp and Γ̂ = ε̃pkj1 · · · kjnQ̂

[n+1]
j1···jnp. Furthermore, I will treat the TD-HF and

TDDFT case separately, as it turns out that slightly different conditions apply to these two cases.
For approximate methods, the second equality in Eqn. (3.103) does not always hold. In the

basis set approximation, operators are represented as matrices and commutators of such matrices
are only equal to the exact commutator in the complete basis set limit (more precise conditions are
given in Ref.165). Furthermore, approximate states are not eigenstates of the exact Hamiltonian,
hence implying that the first equality in Eqn. (3.103) does not apply either. This falsely suggests
that in the complete basis set limit, transition moments in the length and velocity representation
should not be equal at the SCF level of theory. In practice, however, it has been observed that
electric dipole transition moments in the two representations become nearly equal for large basis
sets.[29, 30, 33, 1] Assuming that the complete basis-set limit applies, I will demonstrate under
which conditions these representations are strictly equivalent at the SCF level of theory. I will start
with TD-HF theory, since the discussion of this theory is less complicated than TDDFT.

Let us first multiply Eqn. (1.121) with the eigenvalue of the solution vector of the generalized
eigenvalue problem (Eqn. (1.114)) and insert the square of the generalized metric

~ωfiX†EΩ = ~ωfiX†S[2]S[2]EΩ. (3.104)

We can now substitute the generalized eigenvalue equation in this expression

~ωfiX†EΩ =
(
Z† Y T

)( A B
B∗ A∗

)(
gΩ

−g∗Ω

)
. (3.105)

After working out the matrix multiplications and grouping together the various commutators we
obtain

~ωfiX†EΩ =
∑
ai

(
Z∗ai〈Φa

i |
[
Ĥ, Ω̂ov

]
|Φ0〉+ Yai〈Φ0|

[
Ĥ, Ω̂ov

]
|Φa
i 〉
)
, (3.106)

where appears the reduced operator

Ω̂ov = Ωaiâ
†
aâi + Ω∗aiâ

†
i âa (3.107)

in which occupied-occupied (oo) and virtual-virtual (vv) blocks of Ωpq are zero. In the following, it
will be shown that in Eqn. (3.106) the reduced operator can be replaced with the full operator Ω̂.
For these purposes, let us first consider the commutator of the Hamiltonian and the full operator
and recognize that it assumes the structure[

Ĥ, Ω̂
]

= hΩ
pqa
†
paq +

1

4
LΩ
pq,rsa

†
pa
†
rasaq, (3.108)

where the one-index transformed integrals are defined as
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hΩ
pq = Ωpthtq − hptΩtq

LΩ
pq,rs = ΩptLtq,rs − Lpt,rsΩtq + ΩrtLpq,ts − Lpq,rtΩts

(3.109)

in terms of the anti-symmetrized two-electron integrals

Lpq,rs = (pq|rs)− (pr|qs). (3.110)

To assess whether the full and reduced operator give the same result, I will proceed to compute
the matrix elements from Eqn. (3.108) which is constructed from the full operator. These matrix
elements can be conveniently expressed in terms of the Fock matrix and the anti-symmetrized
two-electron integrals

〈Φa
i |
[
Ĥ, Ω̂

]
|Φ0〉 =

∑
t

[
ΩatFti − FatΩti + ΩjtLai,tj − Lai,jtΩtj

]
. (3.111)

Here one should note that in the complete basis set limit resolution of the identity,
∑

t |t〉〈t| = 1,
gives equivalence with the commutator

[
Ĥ, Ω̂

]
in first quantization. Next, due to the variational

condition, i.e. Fia = 0, the terms depending on the oo and vv block of Ω̂ vanish

〈Φa
i |
[
Ĥ, Ω̂

]
|Φ0〉 =

∑
j

ΩajFji −
∑
b

FabΩbi +
∑
jb

[
ΩjbLai,bj − Lai,jbΩbj

]
. (3.112)

The remaining terms thus depend only on the occupied-virtual/virtual-occupied blocks of Ω̂. I have
thereby demonstrated the equivalence of matrix elements 〈Φa

i |
[
Ĥ, Ω̂

]
|Φ0〉 and 〈Φa

i |
[
Ĥ, Ω̂ov

]
|Φ0〉.

However, this is only valid if the summation in Eqn. (3.107) is complete over these blocks, which
is not always the case when certain approximation schemes are employed. In Section C.4, I will
describe the restricted excitation window approach, which is an important example that violates
this condition.

In conclusion, I have made the following identification

~ωfiX†EΩ = X†E[H,Ω] = X†EΓ, (3.113)

where E
[1]
[H,Ω] and E

[1]
Γ are the property gradients derived from the operators [Ĥ, Ω̂] and Γ̂, respec-

tively. Note that the second equality only holds in the complete basis set limit.
When extending this derivation to the TDDFT domain, there seems to be one major obstacle:

DFT is not expressed in terms of the exact Hamiltonian (see Section 1.3). A first guess to circumvent
this problem, would be to replace the Hamiltonian operator in Eqn. (3.103) with the Kohn-Sham
Fock operator. In the canonical case, that is, F̂KS |φp〉 = εp|φp〉, we do find that

〈ϕa|
[
F̂KS , Ω̂

]
|ϕi〉 = (εa − εi)〈ϕa|Ω̂|ϕi〉. (3.114)

However, if we select −i~Ω̂ = r, the commutator
[
F̂KS , Ω̂

]
not only gives the velocity operator, p̂/m

in the non-relativistic case, but for hybrid functionals also an exchange contribution, as observed
already by Fock in the context of HF theory.[166] Notwithstanding, observing that the above differ-
ence of eigenvalues of the Kohn-Sham Fock operator appear in the diagonal blocks of the electronic
Hessian in the canonical case together with the exchange contribution
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Aai,bj = δijδab(εa − εi) + (ai|jb)− γ(ab|ji) +Wxc;ai,jb, (3.115)

hints at a fortuitous cancellation of terms, as realized by Starace[167] and Harris[168] in the context
of TDHF. The following section is largely based on their derivations.

As a first step, I will rewrite the electronic Hessian (Eqn. (1.109)) as

Aai,bj = 〈0|
[
− a†iaa,

[
a†baj , F̂

KS

]]
|0〉+Wxc;ai,jb + (ai|jb)− γ(ab|ji) (3.116)

Bai,bj = 〈0|
[
a†iaa,

[
a†jab, F̂

KS

]]
|0〉+Wxc;ai,bj + (ai|bj)− γ(aj|bi).

Following a similar procedure as in the previous paragraph, the eigenvalue equation of this Hessian
(Eqn. (3.104)) can be inserted into the TDDFT transition moments, yielding the following expression

~ωn0X
†EΩ = Z∗ai〈Φa

i |
[
F̂KS , Ω̂ov

]
|Φ0〉+ Yai〈Φ0|

[
F̂KS , Ω̂ov

]
|Φa
i 〉 (3.117)

+Z∗aiWxc;ai,jbΩbj + Z∗ai(ai|jb)Ωbj − γZ∗ai(ab|ji)Ωbj

−Z∗aiWxc;ai,bjΩ
∗
bj − Z∗ai(ai|bj)Ω∗bj + γZ∗ai(aj|bi)Ω∗bj

+YaiWxc;jb,iaΩbj + Yai(jb|ia)Ωbj − γYai(ib|ja)Ωbj

−YaiWxc;bj,iaΩ
∗
bj − Yai(bj|ia)Ω∗bj + γYai(ij|ba)Ω∗bj .

Furthermore, it can be demonstrated straightforwardly that the reduced operator can be replaced
with the full operator if the variational condition applies, i.e. FKSai = 0

〈Φa
i |
[
F̂KS , Ω̂

]
|0〉 = FKSat Ωti − ΩatF

KS
ti = FKSab Ωbi − ΩajF

KS
ji . (3.118)

However, it is less clear what we should do about all these additional terms involving the exchange-
correlation kernel and the two-electron integrals. As alluded to before, some of these terms may
cancel with the additional contributions stemming from the commutator involving the Kohn-Sham
Fock operator. To verify this, I will closer inspect this commutator in the limit of a complete
basis set. By virtue of this assumption, the operators expressed in second quantization become
equivalent to the corresponding first-quantized operator. Furthermore, the commutator of these
two operators evaluates to a one-electron operator, reducing the many-body integral to an orbital
integral according to the Slater-Condon rules

〈Φa
i |
[
F̂KS , Ω̂

]
|0〉 =

∫
d3rφ†a(r)

[
F̂KS , Ω̂

]
φi(r). (3.119)

This commutator can be further simplified by recognizing that the local terms inside F̂KS commute
with Ω̂, thus leaving us with the following two non-vanishing terms

∫
d3rφ†a(r)

[
F̂KS , Ω̂

]
φi(r) =

∫
d3rφ†a(r)

[
T̂s, Ω̂

]
φi(r)− γ

∫
d3rφ†a(r)

[
K̂, Ω̂

]
φi(r), (3.120)
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where appears the exchange operator, K̂, which is a non-local operator defined as

K̂φp(r) =
∑
j

φj(r)

∫
d3r′

φ∗j (r
′)φp(r

′)

|r − r′| . (3.121)

The first of these commutators gives the same result as Eqn. (3.103), whereas the latter term
contains the exchange contributions discussed earlier. Expanding the latter commutator yields the
following result

− γ
∫
d3rφ†a(r)

[
K̂, Ω̂

]
φi(r) = γ

∫
d3r

∫
d3r′φ†a(r)φj(r)

Ω̂− Ω̂′

|r − r′|φ
†
j(r
′)φi(r

′). (3.122)

Using an approach inspired by the work of Harris[168], it can be shown that this expression cancels
with exchange terms in Eqn. (3.117). For these purposes, consider the third violating term in this
equation

(ab|ji)Ωbj = (ji|ab)Ωbj =

∫
d3r

∫
d3r′

∫
d3r′′φ†j(r)φi(r)

1

|r − r′|φ
†
a(r
′)φb(r

′)φ∗b(r
′′)Ω̂′′φj(r

′′).

(3.123)
The resolution of the identity can be inserted in the summation over the virtual orbitals,∑

i

φi(r
′)φ†i (r

′′) +
∑
a

φa(r
′)φ†a(r

′′) = δ(r′ − r′′), (3.124)

yielding the result

(ab|ji)Ωbj =

∫
d3r

∫
d3r′φ†j(r

′)φi(r
′)

Ω̂

|r − r′|φ
†
a(r)φj(r)− (ji|ak)Ωkj . (3.125)

Likewise, the sixth violating term in Eqn. (3.117) can be rewritten as

(aj|bi)Ω∗bj =

∫
d3r

∫
d3r′φ†j(r

′)φi(r
′)

Ω̂′

|r − r′|φ
†
a(r)φj(r)− (ki|aj)Ωjk. (3.126)

Subtracting these two terms and relabelling some summation indices, gives

(aj|bi)Ω∗bj − (ab|ji)Ωbj =

∫
d3r

∫
d3r′φ†j(r

′)φi(r
′)

Ω̂′ − Ω̂

|r − r′|φ
†
a(r)φj(r), (3.127)

which exactly cancels the additional exchange terms appearing from the commutator with the
Kohn-Sham Fock operator. Therefore, all violating terms in Eqn. (3.117) containing γ cancel. The
remaining terms cancel amongst each other, provided that the orbitals are real. Therefore, at
the TDDFT level of theory, the generalized length- and velocity representation are equivalent if
simultaneously the basis set is complete and the orbitals are real, which is not generally the case in
relativistic calculations due to the presence of spin-orbit coupling.

The findings of this section suggest that with a sufficiently large basis set, the generalized
length representation should be origin-independent, because in that case the transition moments
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are equivalent to the generalized velocity representation. However, in its current formulation, ori-
gin dependence of the former has never been observed. Typically, for gauge-origins close to the
coordinate origin, the two representations become equivalent with increasing basis set size, whereas
equivalence is lost when the gauge-origin is displaced from the coordinate origin. At the displaced
origin, the transition moments are equivalent if the following relation holds

1

~ωfi
〈f |
[
ĥD, ε̃pkj1 · · · kjnQ̂

[n+1]
j1···jnp(O + a)

]
|i〉 = 〈f |ε̃pkj1 · · · kjnQ̂

[n+1]
j1···jnp(O + a)|i〉, (3.128)

where the length representation electric multipole moment transforms as

ε̃pkj1 · · · kjnQ̂
[n+1]
j1···jnp(O)→ ε̃pkj1 · · · kjnQ̂

[n+1]
j1···jnp(O+a) =

n∑
m=0

1

m!
(k·a)mε̃pkj1 · · · kjn−mQ̂

[n−m+1]
j1···jn−mp(O),

(3.129)
thus implying that lower-order commutation relations should also hold to connect both represen-
tations. It is very demanding for a given basis set to obey all these commutators simultaneously,
inducing small differences between the transition moments in both representations, which prohibit
cancellation between the origin-dependent terms in the oscillator strength. It appears that ori-
gin independence in the length representation is only possible if alternative schemes are employed,
based on either London orbitals[169] or a singular value decomposition of the rotational strength
tensor[170, 171] (see Eqn. (3.152) for a definition of this tensor).

3.7 Rotational Averaging
Until now it has been tacitly assumed that the relative orientation between our molecule and the
electromagnetic field is fixed in space. Such a model can be related experimentally to an ensemble of
non-interacting molecules that are not moving and all pointing in the same direction. However, this
situation is rather artificial, as molecules are allowed to rotate and tumble freely in more realistic
samples such as gases and liquids (see Fig. 3.7). Therefore, due to this motion, the absorption
measured from experiment is an average of all possible orientations. From a mathematical point of
view, this is completely equivalent to fixing a molecule in space and averaging over every possible
polarization and propagation direction of light.

Figure 3.5: Schematic representation of an ensemble of freely moving water molecules.
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The fixed molecular frame is spanned by the unit vectors (ex, ey, ez). For convenience the wave
vector is aligned with the radial unit vector

ek = er = ex sin θ cosφ+ ey sin θ sinφ+ ez cos θ, (3.130)

which is defined in terms of the angles θ and φ (see Fig. 3.7).

Figure 3.6: fixed molecule with variable propagation direction of light, represented by the blue line
and parametrized by the angles θ and φ.

Furthermore, the polarization vectors ε1 and ε2 lie in the orthogonal plane to this vector and can
thus be expressed as a linear combination of the unit vectors

eθ = ex cos θ cosφ+ ey cos θ sinφ− ez sin θ (3.131)
eφ = −ex sinφ+ ey cosφ.

Within this basis, the polarization vectors can be conveniently parametrized using a third angle, χ

ε1 = cosχeθ + sinχeφ; ε2 = cosχeφ − sinχeθ. (3.132)

Using the definition of these unit vectors, the oscillator strength can be expressed as a function
of these three angles. In general, the rotational average of any function depending on these three
angles can be calculated according to the formula

〈f(θ, φ, χ)〉θ,φ,χ =
1

8π2

∫ π

0
dθ

∫ 2π

0
dφ

∫ 2π

0
dχ sin θf(θ, φ, χ). (3.133)

In the following I will discuss separately how these concepts apply to the full- and truncated oscillator
strength. Furthermore, I will separately treat the absorption of linearly polarized light and circular
dichroism.

3.7.1 Full Oscillator Strength
I will start off with deriving an expression for the isotropically averaged absorption of linearly
polarized light using the full interaction operator. Using the parametrization from the previous
section, the isotropic oscillator strength reads
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ffulliso (ω) =
2meω

~e2

〈
〈εpεq〉χ〈f |

e

ω
cαpe

ik(θ,φ)·r|i〉〈f | e
ω
cαqe

ik(θ,φ)·r|i〉∗
〉
θ,φ

, (3.134)

where the averaging over χ can be factorized outside of the transition moment and hence evaluated
analytically

〈εpεq〉χ =
1

2
(δpq − er;per;q). (3.135)

The averaging over the two other angles is more cumbersome, because the exponential form of the
full interaction operator prohibits the angular dependence to be factorized outside of the transition
moment. In practice, the averaging over θ and φ is carried out using Lebedev quadrature, which is
a scheme to handle 2D angular integrals numerically.[172, 173, 174, 175, 176, 177] For this type of
quadrature an angular grid is defined that preserves octahedral symmetry. Accordingly, the integral
is approximated by a weighted sum of the function evaluated on the grid points

〈f〉θ,φ ≈
∑
ij

wijf(θi, φj), (3.136)

where the weights are found by enforcing that this scheme exactly integrates all spherical harmonics
up to a given order. These weights are then tabulated, implying that we only need to know the
function at a certain amount of grid points to approximate the integral.

The rotational averaging of circular dichroism follows a very similar approach, although there
is one major difference: Eqn. (3.22) does not depend on χ

∆f(ω) = −i2meω

~e2

〈
ek;i(θ, φ) · εijk〈f |

e

ω
cαje

ik(θ,φ)·r|i〉〈f | e
ω
cαke

ik(θ,φ)·r|i〉∗
〉
θ,φ

. (3.137)

The independence of this expression on the angle χ reflects the helical symmetry of circularly
polarized light (Fig. 3.2). As was the case for the absorption of linearly polarized light, the rotation
over θ and φ is performed using Lebedev quadrature.

3.7.2 Truncated Oscillator Strength
The true strength of the truncated approach becomes apparent when evaluating the rotational
average, which can be carried out analytically. This procedure assumes the same form for the
generalized length- and velocity representation. Therefore, I will limit myself to the latter case,
although it should be kept in mind that these techniques apply to both representations. For the
absorption of linearly polarized light, the isotropic average assumes the form

f
[2n]
iso (ω) =

2meω

~c2

(
ω

c

)2n n∑
m=0

(−1)m(2− δm0)

〈
〈εpεq〉χek;j1ek;j2 · · · ek;j2n

〉
θ,φ

(3.138)

×Re
[
〈f |X̂ [n+m]

j1···jn−m;p(ω)|i〉〈f |X̂ [n−m]
jn−m+1···j2n;q(ω)|i〉∗

]
,
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where the angular terms completely factorize outside of the transition moment. Therefore, the

rotational averaging hinges on the calculation of the tensor
〈
〈εpεq〉χek;j1ek;j2 · · · ek;j2n

〉
θ,φ

, where

the χ-dependent part assumes the same form as Eqn. (3.135)

〈
〈εpεq〉χek;j1ek;j2 · · · ek;j2n

〉
θ,φ

=
1

2
δpq

〈
ek;j1ek;j2 · · · ek;j2n

〉
θ,φ

− 1

2

〈
er;per;qek;j1ek;j2 · · · ek;j2n

〉
θ,φ

(3.139)

=
1

8π
δpq

∫ 2π

0
dφ

∫ π

0
dθ sin θek;j1ek;j2 · · · ek;j2n −

1

8π

∫ 2π

0
dφ

∫ π

0
dθ sin θer;per;qek;j1ek;j2 · · · ek;j2n .

Therefore, we need to find expressions for integrals of the form

Euvw =
1

8π

∫ 2π

0
dφ

∫ π

0
dθ sin θeuk;xe

v
k;ye

w
k;z; u+ v + w = 2n, (3.140)

where the indices u, v and w accumulate the powers of ek;i. In passing, it should be noted that a
similar tensor is required to rotationally average the truncated circular dichroism

∆f [2n+1] =
2meω

~c2

(
ω

c

)2n+1 n∑
m=0

(−1)m
〈
ek;j1ek;j2 · · · ek;j2n+1ek;i

〉
θ,φ

(3.141)

× εipq2Re
{
〈f |X̂ [n+m+1]

j1···jn+m;p(ω)|i〉〈f |X̂ [n−m]
jn+m+1···j2n+1;q(ω)|i〉∗

}
.

The integral in Eqn. (3.140) can be made more manageable by first rewriting it as

Euvw =
1

8π

∫ 2π

0
dφ cosu φ sinv φ

∫ π

0
dθ sin θ sinu+v θ cosw θ (3.142)

and then applying the relations

∫ π

0
dθ cosp θ sinq θ =

(
1 + (−1)p

) ∫ π/2

0
dθ cosp θ sinq θ (3.143)∫ 2π

0
dφ cosp φ sinq φ =

(
1 + (−1)p

)(
1 + (−1)q

) ∫ π/2

0
dφ cosp φ sinq φ,

such that the integral only needs to be evaluated in the (+,+,+) octant of Euclidian space

Euvw =
1

8π

(
1+(−1)u

)(
1+(−1)v

)(
1+(−1)w

) ∫ π/2

0
dφ cosu φ sinv φ

∫ π/2

0
dθ cosu+v θ sinw θ. (3.144)

Therefore, this integral vanishes if any of the indices is odd. Further manipulations show that this
integration factor can be expressed in terms of the trivariate beta function

Euvw =
1

32π

(
1 + (−1)u

)(
1 + (−1)v

)(
1 + (−1)w

)
B(

u+ 1

2
,
v + 1

2
,
w + 1

2
), (3.145)
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which in turn can be expressed in terms of the gamma functions

B(a, b, c) =
Γ(a)Γ(b)Γ(c)

Γ(a+ b+ c)
; Γ(a) = 2

∫ ∞
0

dxe−x
2
x2a−1. (3.146)

The gamma function is readily available in math libraries, thus allowing straightforward imple-
mentation. As a final remark, it should be stressed that the method outlined above is much more
practical than the traditional procedure based on linear combinations of fundamental Cartesian
isotropic tensors.[178, 179, 180, 181, 182, 183]

It is illuminating to consider the rotationally averaged oscillator strengths to lowest orders. At
n = 0, the absorption of linearly polarized light reads

f
[0]
iso(ω) =

2meω

~c2

〈
〈εpεq〉χ

〉
θ,φ

Re

[
〈f |Q̂[0]

p |i〉〈f |Q̂[0]
q |i〉∗

]
, (3.147)

where the rotational factor assumes a particularly simple form〈
〈εpεq〉χ

〉
θ,φ

=
1

3
δpq, (3.148)

thus yielding the result

f
[0]
iso(ω) =

2meω

3~c2
Q[0] ·Q[0]. (3.149)

Likewise, to first order, the circular dichroism reads

∆f
[1]
iso =

4meω

3~c2

(
ω

c

)
εipq〈f |X̂ [1]

i;p (ω)|i〉〈f |Q̂[0]
q |i〉∗ =

8meω

3~c2

(
ω

c

)−i
ω
m[1] ·Q[1] = R

[1]
iso, (3.150)

which is more commonly referred to as the rotational strength. In a non-relativistic framework, it is
customary to assess the effectiveness of a certain method by applying the so-called sum rules. For
example, it can be argued that the sum of the dipole oscillator strengths over all possible excitations
should equal the amount of electrons in the system, which is referred to as the Thomas-Reiche-
Kuhn sum-rule.[184, 185, 186] Likewise, the sum of all rotational strengths should vanish.[187, 188]
However, the derivation of these rules hinges on two key steps: the insertion of the resolution of
the identity and the canonical commutation relation. The first step is problematic in a relativistic
framework, as the resolution of the identity also includes negative-energy states. The second step
can be made because one of the two dipole moments in Eqn. (3.147) is converted into the velocity
representation, which is the momentum operator in the non-relativistic limit. However, in the
relativistic case, the velocity representation is given by the Dirac matrices, which do not have the
same commutation properties as the momentum operator. For these reasons, it is until this day
unknown whether these sum rules even apply in a relativistic framework. Hence, they will not be
further pursued in this thesis.
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3.7.3 Angular Dependence of Truncated the Differential Oscillator
Strength

In the previous section, it was shown how the anisotropic oscillator strength can be expressed as a
function of the propagation- and polarization direction, which allowed us to evaluate the isotropic
average. However, explicit knowledge about the angular dependence can also be used to identify
directions in which the signal is unusually large, or small. Depending on the symmetry of the
angular distribution, the different multipolar contribution may be isolated and identified. This
information is especially relevant for ECD, where the presence of isotropic condition determine
whether the signal vanishes for achiral systems, as demonstrated in Section C.1. Furthermore, due
to its independence of χ, the ECD signal for all possible directions can be mapped out on the surface
of a sphere. In particular, the angular dependence of the first-order truncated differential oscillator
strength can be expressed in a straightforward manner

∆f [1](θ, φ) = ek;iR
[1]
ij ek;j (3.151)

= R
[1]
iso +

1

2
(R[1]

zz −R[1]
iso)(3 cos2 θ − 1)

+
1

2
(R[1]

xz +R[1]
zx) sin 2θ cosφ+

1

2
(R[1]

yz +R[1]
zy) sin 2θ sinφ

+
1

2
(R[1]

xx −R[1]
yy) sin2 θ cos 2φ+

1

2
(R[1]

xy +R[1]
yx) sin2 θ sin 2φ

where I have introduced the rotational strength tensor R[1]
ij (cf. Ref. 189)

R
[1]
ij =

4meω
2

~ce2

(
X

[1]
j ×X[0]

)
i
; R

[1]
iso =

1

3
(R[1]

xx +R[1]
yy +R[1]

zz ). (3.152)

From Eqn. (3.151) it can be seen that the anisotropic part of ∆f [1](θ, φ) is a linear combination
of d-orbitals weighted by the relevant elements of the rotatory strength tensor. This can be made
more explicit by rewriting the first-order differential oscillator strength as

∆f [1](θ, φ) =
√

15R
[1]
isos+

√
3
(
R[1]
zz −R[1]

iso

)
dz2 +

(
R[1]
xx −R[1]

yy

)
dx2−y2

+
(
R[1]
xz +R[1]

zx

)
dxz +

(
R[1]
yz +R[1]

zy

)
dyz +

(
R[1]
xy +R[1]

yx

)
dxy, (3.153)

where I have used a common normalization for all solid harmonics.
From Eqn. (3.141) it is observed that rotational strength tensors can be generalized to arbitrary

odd orders. It will also be seen that the differential oscillator strength ∆f [2n+1] contains products
of 2(n+ 1) components of the unit wave vector and is therefore spanned by spherical harmonics of
even ` = 0, 2, . . . , 2(n+ 1). The explicit equations of these distributions in terms of these spherical
harmonics is rather complicated and thus will not be shown explicitly.

Having gathered all the theoretical tools to describe X-ray spectroscopies beyond the dipole
approximation, we have thus reached the end of this chapter. In the following, I will proceed to
demonstrate how these techniques can be applied in practice and what are the possible pitfalls
associated with them.
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Applications

4.1 Implementation
In contemporary quantum chemistry, the formulation of theory is only half the work, since an
efficient implementation is crucial to make quantum chemical calculations feasible, which often
involve many tedious mathematical operations. For that reason, this section will be devoted to
the implementation of both the full- and truncated light–matter interaction operator. Both of
these developments have been carried out in Dirac, which is a quantum chemical code adapted to
four-component relativistic calculations.[190, 37] The implementation of these interactions is still
a work in progress, so below follows a statement of all the available functionalities. It is possible
to carry out intensity calculations using the full- and truncated interaction operators, both under
isotropic and anisotropic conditions. However, in the current implementation, ECD calculations
can only be carried out using the full interaction operator, whereas the truncated ECD is still under
development. The truncated ECD reported in Section 4.5, was calculated using an external script
with the transition moments from Dirac as input. In the following, I will give a brief overview
of the implementation of the full- and truncated interaction, highlighting their unique features. In
the upcoming section and the ones that follow, this part of the code will be referred to as the
BED implementation, where the abbreviation stands for beyond the electric-dipole approximation.
Although this abbreviation does not necessarily apply to ECD, which at first order is already beyond
this approximation, it will be used regardless for brevity’s sake.
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4.1.1 Full Interaction

Figure 4.1: flow chart the full light–matter interaction part of the BED implementation. Rectangular
boxes indicate an operation or modules, whereas the arrows and the symbols besides them indicate
the output or input. Xn and ω are the solution vector and frequency obtained from Eqn. (1.114).
The property gradient, ET , is defined according to Eqn. (1.103) and (3.16).

Figure 4.1 depicts a flow chart of the BED implementation responsible for the calculation of the
full oscillator strength. In the isotropic case, the code starts with a loop over the points on the
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Lebedev grid, thus sampling the various propagation directions of the incoming light. The same
code applies to the anisotropic case, although in that case the loop contains only one grid point in
a user-defined direction. The property integrals need to be defined on each grid point, due to the
angular dependence of the full interaction operator Eqn. (3.134). These integrals are provided by
the HERMIT integral package,[191] which is based on a scalar Cartesian Gaussian basis

Gαijk = Nα
ijkx

iyjzke−αr
2
; l = i+ j + k (4.1)

where Nα
ijk is a normalization constant. Using this basis, the integrals of the full interaction assume

the form

∫
d3rGα1

i1j1k1
eik·rGα2

i2j2k2
= Nα1

i1j1k1
Nα2
i2j2k2

(4.2)

×
∫ ∞
−∞

dxxi1+i2e−(α1+α2)x2
eikxx

∫ ∞
−∞

dyj1+j2e−(α1+α2)y2
eikyy

∫ ∞
−∞

dzzk1+k2e−(α1+α2)z2
eikzz,

which can be identified with the Fourier transform of a Gaussian function. This identification has
been realized independently in several works, e.g. ref. 31 and 192, the latter of which in the context
of dynamic structure factors. This expression can be simplified by relabelling the exponents and
discarding the normalization constants:

∫
d3reik·rxiyjzke−ar

2
=

∫ ∞
−∞

dxeikxxxie−ax
2

∫ ∞
−∞

dyeikyyyje−ay
2

∫ ∞
−∞

dzeikzzzke−az
2

(4.3)

a = α1 + α2; i = i1 + i2; j = j1 + j2; k = k1 + k2

Because this integral is equivalent for each Cartesian component, it suffices to only treat the x-
component. For these purposes, it proves to be useful to start with the special case i = 0, which
readily evaluates to ∫ ∞

−∞
dxe−ax

2
eikxx = e−

k2
x

4a

√
π

a
. (4.4)

Starting from above equation, the general case, i.e. i 6= 0, can be obtained by differentiation under
the integral sign

∫ ∞
−∞

dxeikxxxne−ax
2

= (−i)n d
n

dknx
[e−

k2
x

4a

√
π

a
] = (−i)n 2

√
π

(4a)
n+1

2

dn

dQn
[e−Q

2
] = (−i)n 2

√
π

(4a)
n+1

2

e−Q
2Hn(Q),

(4.5)
where I have introduced the physicist’s definition of the Hermite polynomials

Hn(Q) = (−1)ne−Q
2 dn

dQn
[eQ

2
]. (4.6)

in terms of the dimensionless variable

Q =
kx

2
√
a
. (4.7)
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Therefore, the full property integral evaluates to∫
d3reik·rxiyjzke−ar

2
=

(−i)i+j+k8π 3
2

(4a)
i+j+k+3

2

e−
ω2

4c2aHi
(
kx

2
√
a

)
Hj
(
ky

2
√
a

)
Hk
(
kz

2
√
a

)
. (4.8)

Expressed in this form, these integrals can be readily evaluated using existing analytic schemes
such as McMurchie-Davidson.[31] Lindh et al. demonstrated an alternative scheme bases on Gauss-
Hermite quadrature.[33]

One main obstacle in the implementation of these integrals is their frequency dependency. Due
to the exponential shape of the interaction operator, this dependency cannot be factorized outside
of the integral, thus requiring the output of a response calculation to define these integrals (see
Fig. 4.1). Lindh et al. avoided the necessity to calculate all the frequencies by employing an
interpolation scheme.[35]

In the next step of the algorithm, the property gradient

gTp;ai = 〈φLa |cσpeik·r|φSi 〉+ 〈φSa |cσpeik·r|φLi 〉, (4.9)

is obtained by transforming the property integrals to MO basis

gTp;ai = cL∗µa〈χLµ |cσpeik·r|χSν 〉cSνi + cS∗µa〈χSµ |cσpeik·r|χLν 〉cLνi, (4.10)

where the implicit summation convention has been applied and the small component basis is gen-
erated according to kinetic balance (see Section 2.4.2). From the property gradient, transition mo-
ments can be computed according to Eqn. (1.121). Depending on the user input, these transition
moments are then inserted in Eqn. (3.20), Eqn. (3.22) or both, yielding the anisotropic (differential)
oscillator strength corresponding to the specific grid point. This result is accumulated with the
grid weight, such that we end up with the isotropic (differential) oscillator strength once the loop
terminates.
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Figure 4.2: code flow chart of the implementation of the truncated light–matter interaction. The
boxes indicate an operation or module, whereas the arrows and the symbols besides them indicate
the output or input. Here, the operator Ŷ [n] denotes the multipole operators in either represen-
tation (Eqn. (3.57) and (3.85)) stripped of its frequency prefactors. Xn and ω are the solution
vector and frequency obtained from Eqn. (1.114). The property gradient, EΩ, is defined according
to Eqn. (1.103) with Ŷ [n] as the operator.
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4.1.2 Truncated Interaction
In Figure 4.2, the flowchart of the truncated BED implementation is depicted. Similar to previous
case, the starting point of this chart is the generation of the property integrals. Regardless of its
type, the multipole moments generally require the following integrals

∫
d3rGα1

i1j1k1
xuyvzwGα2

i2j2k2
= Nα1

i1j1k1
Nα2
i2j2k2

(4.11)

×
∫
dxxi1+i2+ue−(α1+α2)x2

∫
dyyj1+j2+ve−(α1+α2)y2

∫
dzzk1+k2+we−(α1+α2)z2

,

which essentially boils down to solving integrals of the form∫ ∞
−∞

dxxie−ar
2

=
(
1 + (−1)i

) ∫ ∞
0

dxxie−ar
2
, (4.12)

where the right-hand-side can be related to the gamma function, introduced in previous section
(Eqn. (3.146)). Therefore, the multipole integrals can be expressed as

∫
d3rxiyjzke−ar

2
=

1

8
(1 + (−1)i)(1 + (−1)j)(1 + (−1)k)a−

3+i+j+k
2 Γ

(
1 + i

2

)
Γ

(
1 + j

2

)
Γ

(
1 + k

2

)
,

(4.13)
where I have left out the normalization constants and relabelled the powers and the exponents. In
practice, however, this relation is seldom used, as these integrals can be obtained recursively using,
for example, the McMurchie-Davidson scheme. Using a similar approach as in Eqn. (4.10), the
property gradient can be obtained from the associated integrals, although the exact transformation
depends on whether the operator in question is diagonal or off-diagonal with respect to the large-
and small component. Contrary to the full interaction, these property integrals are independent
of the frequency, although the response module is still needed to compute transition moments and
provide the frequency-dependent prefactor of the oscillator strength.

These transition moments are all stored in the same one-dimensional array. A hierarchical
ordering is applied to this array, which principally sorts the multipole moments based on their type,
then their order and then the combinations of Cartesian powers. In the following, I will consider
the simplest example of the generalized length representation electric multipole moments, although
this storage scheme can straightforwardly be generalized to other types of multipole moments. For
these purposes, I will index this multipole moment in an alternative manner

Q
[L]
ab = 〈f |−exL−aya−bzb|i〉, (4.14)

which can be used to generate only the unique multipole moments of a given order. Furthermore,
a and b can be understood as matrix indices that fill the lower triangle (see Fig. 4.3). Instead
of explicitly storing a two-dimensional matrix, the multipole moments can be stored in a one-
dimensional array, where the element (a, b) in the matrix corresponds to element i = b+ (a−1)(a−
2)/2 in the array.
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x2

xy xz

y2 yz z2



 x2 xy xz y2 yz z2

( )

Figure 4.3: Storage of the 3-th order electric-length multipole moments. This scheme can be readily
generalized for other types of multipole moments. For a given order, the unique multipole moments
can be stored in a lower-triangular matrix (left), which can be represented as a one-dimensional
array (right).

As can be inferred from Figure 4.2, the code proceeds differently if either isotropic or anisotropic
conditions are imposed. Under anisotropic conditions, the transition moments are contracted with
the wave- and polarization vectors, thus yielding Eqn. (3.64) or (3.87). The contracted transition
moments are then used to construct the anisotropic oscillator strength. It should be noted that the
subroutines written for these purposes hold for arbitrary order, thus implying that the anisotropic
absorption cross-section can be calculated to arbitrary order.

To calculate the isotropic oscillator strength, however, a slightly more complicated scheme is
required, because it involves the contraction between transition moments and the tensor,
〈〈εpεq〉χek;j1ek;j2 · · · ek;j2n〉θ,φ (Eqn. (3.138)). A brute-force approach would involve a distinct sub-
routine for each order of σ[n], whereas current approach uses a single subroutine for all orders.
This feature is achieved by applying recursive subroutines, which can be defined in a self-referential
manner. In Figure 4.4, a code snippet is given containing an example of a recursive loop.

At first sight, this subroutine does not seem to be all that special, since its main function is to fill
up an array for a specific index value. However, upon closer inspection, it can be observed that this
routine calls itself for negative outcomes of the if-statement. When the routine calls itself, the index
of the array is shifted by one unit and the process is repeated until the final index is reached. What
effectively happens, is that an array of a certain dimension is filled with all possible combinations of
one, two and three. These values represent all possible index values of 〈〈εpεq〉χek;j1ek;j2 · · · ek;j2n〉θ,φ.
When the final index is reached, a specific element of this tensor is calculated, contracted with
the transition moments and accumulated. At the end of the line, we are left with the isotropic
truncated oscillator strength. As alluded to before, the generality of this subroutine allows the
truncated isotropic oscillator strength to be accumulated to arbitrary order.

4.2 Convergence of the Multipole Expansion
Having a fully functional implementation at our disposal that can compute oscillator strengths be-
yond the electric-dipole approximation, we can proceed with our first calculations. For any newly
developed functionality it is always good practice to proceed cautiously and start with calculations
on simple test systems, which facilitates the identification of bugs and unanticipated results. There-
fore, this section will mainly focus on the UV-Vis and X-ray absorption spectra of the radium atom,
whose spherical symmetry will significantly simplify the problem at hand.
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r e c u r s i v e subrout ine bedloop (m, k2 , i nd i c e s , iterm , jterm ,FOSC,ATMPPF,OMEGA)
#inc lude "dgroup . h"
#inc lude "dcbxpp . h"
r e a l ∗8 : : FOSC(MAXEXC,NBSYM) , ATMPPF(MAXEXC,NPPAPT,NBSYM) ,OMEGA(MAXEXC,NBSYM)
i n t e g e r : : i n d i c e s ( k2 ) , ind (3 ) , k2

i f (m==k2 ) then
do i =1,3
i n d i c e s (m) = i
c a l l rotfac_bed ( i nd i c e s , k2 , iterm , jterm ,FOSC,ATMPPF,OMEGA)

enddo
return

e l s e
do i =1,3

i n d i c e s (m) = i
c a l l bedloop (m+1,k2 , i nd i c e s , iterm , jterm ,FOSC,ATMPPF,OMEGA)

enddo
end i f
END SUBROUTINE BEDLOOP

Figure 4.4: code snippet from the file src/prp/bed_osc.F90 in Dirac. The array FOSC contains the
nth order oscillator strength for a given excitation and symmetry, ATMPFF contains the transition
moments for a given excitation, operator and symmetry, while OMEGA denotes the frequencies.
When the if statement is not met, a loop over 1,2 and 3 is initiated that fills the array INDICES
at location m. In this loop the subroutine calls itself, while the index m is shifted by one, thus
repeating the process for the next entry of INDICES. As a result, this subroutine will fill INDICES
with all possible combinations of 1,2 and 3, until it has reached the final index of INDICES. At this
point, the subroutine will call ROTFAC_BED, which creates the rotational tensor for that specific
index combination and contracts it with the relevant transition moments. The recursive loop repeats
this for all possible combinations in INDICES, thus accumulating the isotropic truncated oscillator
strength iteratively.
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Furthermore, this symmetry induces selection rules for multipole transitions. Presumably,
the main characteristics of the spectra will be described by the electric-dipole oscillator strength
(Eqn. (3.149)), whereas finer details are given by contributions depending on the magnetic-dipole
and electric-quadrupole. In Section C.2, the relevant selection rules will be derived in detail. Here
I will rather briefly summarize them:

• electric-dipole: ∆j = 0,±1; ∆m = 0,±1; (j = 0 9 j = 0)

• magnetic-dipole: ∆j = 0,±1; ∆m = 0,±1; (j = 0 9 j = 0)

• electric-quadrupole: ∆j = 0,±1,±2; ∆m = 0,±1,±2; (j = 0 9 j = 0)

• full interaction: (j = 0 9 j = 0).

In the following, I will put these rules to practice and calculate absorption intensities of the radium
atom in both the core- and valence regions. The results from this section are taken from ref. 1.

4.2.1 Computational Details
Unless otherwise stated the data reported in this section have been obtained with a development
version of the Dirac electronic structure code[190] (Figure 4.5: revision 52c65be; Table 4.1; Figure
4.6: revision 5a7d81c).

Using the full interaction, the valence- and core spectrum of the radium atom were calculated at
the TDDFT[79] level of theory using the PBE0[193, 194] exchange-correlation functional, based on
the Dirac–Coulomb Hamiltonian and within the restricted excitation window (REW) approach (see
Section C.4). In these calculations the (SS|SS) integrals are replaced by an interatomic SS energy
correction.[195] For technical reasons that become clearer later, the calculations involving truncated
interactions were restricted to the ns1/2 → 7p1/2; n = 1, 2, · · · , 7 excitations of the radium atom
and carried out at the TD-HF level of theory. Furthermore, in these calculations integral screening
was turned off and the (SS|SS) integrals included. For both series of calculations, the dyall.ae3z
basis set is used.[196, 197]
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4.2.2 Full Light-Matter Interaction

6d3/2
6d5/2

7p1/2

7p3/2

8s1/2

8p3/2

8p1/2

5f5/2

5f7/2

7p3/2

7p1/2
8p1/2

8p3/2

a) b)

Figure 4.5: Non-dipolar effects on electronic absorption of radium: (a) the valence and (b) K-edge
spectra for Ra within and beyond the ED approximation (ED and BED, respectively) at the 4c-
TD-PBE0/dyall.ae3z level of theory, using Coulomb gauge (velocity representation) for the former
and the full interaction operator in Eqn. (3.134) and an 86-point (Lmax = 12) Lebedev grid for
the latter. The labels indicate the character of the receiving orbital. Note the differences in scales
on the axes in the valence and X-ray region. Oscillator strengths are summed over contributions
from transitions within each degenerate (same ∆J components) and near-degenerate (different ∆J
components) set, and the sticks have been convoluted with a Lorentzian lifetime broadening of 1000
cm−1. The experimental 1s ionization energy is 103922± 7.2 eV.[198]

Figure 4.5 shows the valence and K -edge spectra of Ra within and beyond the ED approximation,
the latter computed with the full light-matter interaction operator. The energy range of the K -
edge spectrum well exceeds the 1s1/2 ionization energy (see caption Fig. 4.5), which presumably
can be attributed to the lack of core-hole relaxation effects in these calculations. Expectedly, all
ED forbidden transitions, except for excitations associated with ∆J = 0 change in total angular
momentum quantum number, gain intensity upon going beyond the ED approximation. In the
valence region, however, they remain several orders of magnitude smaller than the ED counterparts,
such that ED and BED spectra are essentially identical. In the X-ray region, the main contributions
from the 1s1/2 → 6d manifold corresponds to ∆J = 2 transitions, while the ED allowed ∆J = 1
transitions dominate for the 1s1/2 → 7/8p manifold. Note that the small energy differences between
different ∆J components in a given set makes them indiscernible in the spectrum, and their oscillator
strengths were thus combined in Figure 4.5. Upon inclusion of non-dipolar effects, intensity is
primarily redistributed from the 1s1/2 → 7/8p3/2 sets (a ∼20% reduction compared to ∼13% for
the 1s1/2 → 7/8p1/2 excitations) to the 6d transitions.
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However, even if the spectral broadness is sufficiently small to fully distinguish the peaks, the
corrections to the dipole-allowed transitions are rather modest. Non-dipolar effects are expected to
gain importance if either the wave length of light is small, or the spatial extent of the system is
large. For the radium atom, these effects are suppressed due to the compactness of the 1s1/2 orbital.
In the Section 4.4, I will discuss an example of a system with symmetry equivalent centers, where
the core transition is delocalized over the centers, thus enhancing non-dipolar effects.

4.2.3 Truncated Light-Matter Interaction
When carrying out equivalent calculations using the truncated light-matter interaction formula-
tions, both in the velocity and the length representation, nonsensical results were obtained for
core excitations. Rather than reporting these numbers, I will illustrate and analyze this behavior
using a simpler computational setup. Table 4.1 reports anisotropic oscillator strengths for radium
ns1/2 → 7p1/2 (n = 1, .., 7) excitations at various orders in the generalized velocity representation as
well as obtained using the full light-matter interaction. The orbital rotation operator, Eqn. (1.85),
is restricted to the ns1/2 and the 7p1/2 orbitals of the selected excitation, and I only report results
for the B1u irreducible representation of the D2h point group. To avoid issues of numerical inte-
gration I have performed TD-HF rather than TDDFT calculations. Furthermore, to avoid possible
numerical noise due to rotational averaging, I have chosen an oriented experiment, with the wave
and polarization vectors oriented along the y- and z-axes, respectively.

It is observed that for the 7s1/2 → 7p1/2 excitation, the electric-dipole approximation holds
since the zeroth-order oscillator strength f [0] reproduces the oscillator strength ffull, using the full
interaction, to within the reported digits. For other excitations, the second-order oscillator strength
f [2] has to be included in order to get reasonable agreement with the full interaction. For the
1s1/2 → 7p1/2 transition, however, higher-order contributions to the oscillator strength blow up. A
similar behavior, but to a lesser degree, is observed for the 2s1/2 → 7p1/2 transition. Also, it should
be noted that the oscillator strength for the 3s1/2 → 7p1/2 transition, accumulated to 12th order,
is negative. Very similar behavior is observed for multipolar gauge (data not shown). In Table 4.1
the corresponding norm k = ω/c of the wave vector is listed for each excitation. Interestingly, the
apparent divergence in the expansion of the full light-matter interaction occurs when k ≈ 1 a−1

0 .
Indeed, if it is not assumed that ω = ωfi, where ~ωfi is the excitation energy, and instead ω is
treated as a variable, so as to artificially vary k appearing in the interaction operator, it is found
that the oscillator strengths for all excitations blow up around k = 1 a−1

0 (Figure 4.6). It seems
reasonable that the convergence behaviour of an expansion of oscillator strengths in orders of the
norm of the wave vector should change when k ≈ 1 a−1

0 . However, this conclusion requires some
caution, since k is not a dimensionless quantity. The proper expansion parameter is rather the
dimensionless quantity kr and the above observations suggest that the effective radius r ≈ 1 a0.
For the valence 7s1/2 → 7p1/2 excitation the effective radius r is more diffuse, which explains why
the apparent divergence sets in for k < 1 a−1

0 , as seen in Figure 4.6.
The oscillator strengths of given (even) order are calculated according to Eqn. (3.64) or (3.87).

I have also investigated to what extent transition moments over effective interaction operators T̂ [n]
full

of order n in the wave vector, Eqn. (3.30), sum up to transition moments over the full interaction
operator and again find apparent divergences for core excitations. Again, when treating ω as a
variable and not setting it equal to ωfi, we find that these apparent divergences occur for all
ns1/2 → 7p1/2 excitations when k > 1 a−1

0 . Going deeper in our analysis, I note that transition
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a) b)

c) d)

e) f)

g)

c c

1s1/2 7p1/2
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3s1/2 7p1/2
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2s1/2 7p1/2
712.885
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Figure 4.6: Convergence behavior of the oscillator strengths for ns1/2 → 7p1/2 transitions of radium
at various orders (colored lines) in the wave vector within the Coulomb gauge (velocity represen-
tation) : (a)–(g) correspond to n = 7, 6, . . . , 1. Except for the valence transitions, the oscillator
strengths seem to diverge after ω = c, which is indicated by a vertical dashed line. Excitation
energies (ωfi) are in a.u.
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moments are obtained by contracting the property gradient of the selected operator with the solution
vector for the selected excitation, Eqn. (1.121). Due to the restrictions on the orbital rotation
operator in our particular case, the scalar product is reduced to the multiplication of two numbers.
It can be found that an expansion of the property gradient of the full interaction in orders of the
wave vector displays the same apparent divergence for core excitations as was observed for both
oscillator strengths and transition moments. Again, by artificially varying k, we find that these
apparent divergences occur when k > 1 a−1

0 for all excitations.
With our particular orientation of the experiment, the full and truncated effective interaction

operators at order n are given by

T̂ full (ω) =
e

ω
cαze

+iky; T̂ [n](ω) =
e

ω

in

n!
cαz (ky)n . (4.15)

Elements of the property gradient of the truncated effective interaction operator are accordingly
given by

gT [n];ai = − e
ω

(ik)n
{
〈ϕLa |cσz

yn

n!
|ϕSi 〉+ 〈ϕSa |cσz

yn

n!
|ϕLi 〉

}
(4.16)

where superscripts L and S refer to the large and small components of molecular orbital ϕp, re-
spectively. As discussed in Section 4.1.1, the property gradient is compounded from products of
Cartesian Gaussian-type orbitals (see Eqn. (4.1)) with two expansion coefficients on the form

c∗µa〈χµ|c
yn

n!
|χν〉cνi, (4.17)

with the factor outside the curly brackets in Eqn. (4.16) multiplied on at the end. In the present case,
the coefficients are real due to symmetry.[145] For n = 12 it is found that the largest contribution,
in terms of magnitude, to the property gradient comes from a small component py function with
exponent α1 = 1.56556662(−02) a−2

0 combined with a large component py function with exponent
α2 = 1.24964369(−02) a−2

0 . These are the most diffuse s and p functions, respectively, of the large
component dyall.ae3z basis set. The resulting AO-integral has a value −1.19437467(+6) a.u. and is
multiplied with a coefficient c1 = −4.55940113(−8) from 1s1/2 and a coefficient c2 = −0.844080786
from 7p1/2. By calculating AO-integrals with high precision using Mathematica,[199] the above
AO-integrals, provided by the HERMIT integral package, are found to be very stable. On the
other hand, the very small c1 coefficient is at the limits of the precision one can expect from the
diagonalization of the Fock matrix, in particular given its ill-conditioning due to the presence of
negative-energy solutions. I have, however, investigated the sensitivity of our results with respect to
the HF convergence (in terms of the gradient) and find that they are quite stable at tight thresholds.

In the test case analyzed in Section 4.2.3, the wave k and polarization ε vectors are oriented along
the y- and z-axes, respectively, such that the full and truncated effective interaction operator at
order n are given by Eqn. (4.15). In the following, the convergence will be studied of the underlying
AO-integrals over the truncated interaction towards the corresponding AO-integral over the full
interaction. These involve only the scalar parts of the operators, so in practice I will work with the
expression

〈χµ|e+iky|χν〉 =

∞∑
n=0

(ik)n

n!
〈χµ|yn|χν〉, (4.18)

where χµ and χν are scalar basis functions. I shall limit attention to py functions (Gα010) since the
largest integrals in this study involved such basis functions with diffuse exponents.
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The final step of our analysis is to study the convergence of the AO-integrals over the trun-
cated interaction towards the corresponding integral over the full interaction operator. Restricting
attention to our particular case in Eqn. (4.15) and Gaussian py functions we have

〈Gα1
010|T̂ full(ω)|Gα2

010〉 =
∞∑
m=0

〈Gα1
010|T̂ [2m](ω)|Gα2

010〉. (4.19)

After eliminating the factors on both sides related to the x- and z-integration, it can be shown that

〈Gα1
1 |e+iky|Gα2

1 〉y =

∞∑
n=0

(ik)n

n!
〈Gα1

1 |yn|Gα2
1 〉y; Gαj = Nα

j y
je−αy

2
, (4.20)

where the left-hand-side can be evaluated using the results from previous section (Eqn. (4.5))

〈Gα1
1 |e+iky|Gα2

1 〉y = Nα1
1 Nα2

1

√
π

α1 + α2

(
i

2
√
α1 + α2

)2

e−Q
2
H2 (Q) . (4.21)

Using Eqn. (4.13), we obtain for the right-hand-side integral

〈Gα1
1 |yn|Gα2

1 〉y = Nα1
1 Nα2

1

1

2

[
1 + (−1)(2+n)

]
(α1 + α2)−(n+3)/2 Γ

(
n+ 3

2

)
. (4.22)

It thus follows that this integral vanishes unless it is even-valued, i.e. n = 2m. Again, eliminating
common factors yields the following expression

− (4Q2 − 2)e−Q
2

=

∞∑
m=0

(−1)m am; am = Q2m (2m+ 2) (2m+ 1)

(m+ 1)!
(4.23)

in terms of the dimensionless parameter Q (Eqn. (4.7)) The right-hand expression has the form of
an alternating series, which converges according to the Leibniz criterion provided that lim

m→∞
am = 0

and the absolute value of the coefficients, |am|, decreases monotonically. The first condition follows
readily from Eqn. (4.23), whereas the second condition holds, if we have am+1

am
< 1; ∀m. This

fraction evaluates to

am+1

am
= Q2 (2m+ 3)

(m+ 1)(2m+ 1)
, (4.24)

which, depending on the specific order and the value of Q, is not always smaller than one. Eventually
at elevated orders, this fraction necessarily becomes smaller than one, implying monotonic decrease
after that order. For that reason, I will split this series in two parts

mc∑
m=0

(−1)mam +

∞∑
n=mc

(−1)nan, (4.25)

such that the second summation is monotonically decreasing. The first of these summation converges
because it consists of a finite amount of terms, whereas the second summation obeys the Leibniz
criterion. Therefore, the total summation should converge as well. For the 1s1/2 → 7p1/2 excitation
and the above choice of exponents we find that mc ≈ Q2 = 6998.7. For this value of Q, the
left-hand-side of Eqn. (4.23) is essentially zero, whereas the right-hand side converges extremely
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slowly towards this value. In fact, using Mathematica,[199] no convergence was observed even after
summing 10000 terms. Considering instead the 2s1/2 → 7p1/2 excitation, for which mc ≈ 240,
reasonable convergence is found after summing 282 terms. The sheer amounts appearing in this
expansion thus renders the schemes based on truncated interactions impractical at high excitation
energy.

4.2.4 Conclusion
In summary it was found that for increasing excitation energies, the use of truncated light-matter
interaction becomes increasingly problematic because of the slow convergence of such expansions.
This is not a basis set problem which can be alleviated by increasing the basis set, since this slow
convergence was observed at the level of the individual underlying AO-integrals. In particular,
for core excitations, extremely slow convergence was observed for integrals involving Cartesian
Gaussian-type orbitals with diffuse exponents. This can be understood, since such diffuse functions
will be less efficient than tight ones in damping the increasing Cartesian powers appearing in an
expansion of the full light-matter interaction in orders of the norm of the wave vector (Eqn. (4.18)).
This in turn suggests that the use of Slater-type orbitals, which have slower decay than Gaussian-
type orbitals, will be even more problematic. This is indeed the case, as shown in the appendix of
ref. 1.

4.3 Basis Set Convergence
A proper choice of basis set is key to reach quantitative accuracy in quantum chemical calculations.
Especially in the current context, where unconventional interaction operators are being used, it is
important to give special considerations to the choice of basis set. Therefore, in this section, it
will be assessed whether conventional basis sets are flexible enough to satisfy the demands of these
interaction operators.

Conventional basis sets are constructed by choosing a set of functions that minimize the energy.
Typically, more energy is gained by adding tight functions than diffuse functions.[62] Because of
this, energy-optimized basis sets saturate the core region faster than the tail-region. The full and
truncated light–matter interaction may require addition of further basis functions. A problem
in this respect is the lack of a variational principle for transition moments. Alternatively, basis
sets for use beyond energies can be constructed using the equivalent core approximation,[200, 201]
Slater’s rule[202, 203] or the completeness-optimization scheme.[204, 205] Another strategy is to
systematically increase the basis set size, until the property of interest has become stable.

Sørensen et al. performed such a series in a non-relativistic framework using the full and trun-
cated interaction operator, the latter limited to second order, expressed with the ANO-RCC basis
sets.[29, 33] Even though the series did not fully converge for the larger basis sets, their results
indicated that the full interaction operator is more stable with respect to basis set choice. In ad-
dition, Sørensen et al. argued that each multipole moment requires different basis sets, making it
exceedingly difficult to construct basis sets that can describe the truncated interaction at higher
orders. They concluded that the full interaction operator should be the standard for calculations
involving non-dipolar effects. For zeroth- and first-order interactions, the length representation
seems to be the preferred choice in the literature, although there is not a concise answer as to which
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representation has a superior basis set convergence.[206, 207, 150, 208]
Another strategy to gauge the quality of a basis set is to compare with a reference value. In this

section, the basis set requirements for non-dipolar effects are assessed by comparing calculations
using Gaussian basis sets and the molecular code Dirac[37] to equivalent finite-difference calcula-
tions using the atomic code GRASP.[209] If the grid size of the latter is chosen sufficiently large, the
results effectively correspond to the complete basis set limit, thus forming a suitable reference to
the basis set calculations. For these purposes, I will study the 1s1/2 → 7p1/2 and the 7s1/2 → 7p1/2

transitions in the radium atom, representative of core and valence excitations, respectively. This
section is based on ref. 3, so the reader is referred to this article for more details.

4.3.1 Radial Transition Moment Distributions
Due to the spherical symmetry of the radium atom, its orbitals assume the general structure given
in Eqn. (2.100), where the functions P (r) and Q(r) can either be calculated on a numerical grid,
or from basis set calculations. Inserting these orbitals into the transition moments thus enables us
to compare basis set calculations with a numerical reference. However, the alert reader may note
that the transition moments from Eqn. (1.121) contain contributions from many orbitals, whereas
the numerical approach gives single orbitals (see Section 2.4.1). For that reason, the restricted
excitation window approach is applied to reduce Eqn. (1.121) to an orbital-orbital transition, i.e.
1s1/2 → 7p1/2 and 7s1/2 → 7p1/2.

Since the s1/2 and p1/2 orbitals in the finite basis approximation are constructed exclusively
from s- and p-exponents, the basis set considerations boil down to finding what additional diffuse
or tight s/p-functions are required to converge intensities. In general, diffuse and tight functions
improve the description of the outer and inner regions of the wave function. To examine which
regions need improvement, we visualize the transition moment densities as radial distributions

RΩ(r) =

∫ 2π

0
dφ

∫ π

0
dθ r2 sin θ Ωfi(r); Ωfi(r) = φ†ni,κi,mi(r)Ω̂φnf ,κf ,mf (r) (4.26)

where Ωfi(r) is the density that integrates to the transition moment, TΩ.
For the specific transition studied in this chapter, the quantum numbers of the two orbitals

read: ni = 1, 7,κi = −1, mi = mf = 1
2 , nf = 7 and κf = 1, whereas the relevant operators

are Ω = T,Q,m,Q (see Eqs. (3.16) (3.57) (3.85)). From parity it follows that only odd electric
and even magnetic multipoles contribute. We have chosen a frame in which the wave vector k is
aligned with the z-axis and the polarization vector ε with the y-axis. The radial distribution for
the electric-length multipoles then becomes

R
[2n+1]
Q (r) =

er2n+1

(2n+ 1)(2n+ 3)
(P7,1Pni,−1 +Q7,1Qni,−1), (4.27)

the electric-velocity

R
[2n+1]
Q (r) =

−ecr2n

ω(2n+ 1)(2n+ 3)
((2n− 1)P7,1Qni,−1 − (2n+ 3)Q7,1Pni,−1) (4.28)

and the magnetic multipole distribution

R
[2n]
M =

iec2n(2n− 1)r2n+1

√
2(2n+ 1)2(2n+ 3)

(P7,1Qni,−1 +Q7,1Pni,−1) , (4.29)
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where the r-dependence of the radial functions P and Q have been suppressed. The radial distri-
bution associated with the full interaction reads

RT (r) =
iec

3ω

((
j0(kr)− j2(kr)

)
P7,1Qni,−1 + 3j0(kr)Q7,1Pni,−1

)
, (4.30)

where j0(kr) and j2(kr) are the zeroth and second order spherical Bessel functions, given by

j0(kr) =
sin kr

kr
; j2(kr) =

(
3

(kr)2
− 1

kr

)
sin kr − 3

(kr)2
cos kr. (4.31)

The spherical Bessel functions appear in these expression as a consequence of the plane wave ex-
pansion (Eqn. (3.28)). For small values of kr, the limiting forms of the spherical Bessel functions
are[210]

lim
kr→0

j`(kr) ∼
(kr)`

(2`+ 1)!!
. (4.32)

This relation implies that all Bessel functions except j0 are zero at the origin. We can use this result
to obtain

lim
kr→0

RT (r) =
iec

3ω

(
P7,1Qni,−1 + 3Q7,1Pni,−1

)
= iR

[1]
Q (r). (4.33)

Therefore, the electric-dipole approximation is correctly retrieved in the long wavelength limit of
Eqn. (4.30).

Without performing any calculation, the shape of Eqs. (4.27)–(4.30) already tells us useful
information about the basis set requirements of the interaction operators. For example, the radial
distributions corresponding to the multipole moments (Eqs. (4.27)–(4.29)) all contain a prefactor
depending on a power of the radial distance. This prefactor is in competition with the terms
associated with the atomic radial functions: the former tends towards infinity for large distances,
whereas the latter decays to zero. Because the atomic functions decay exponentially, the transition
moments are finite. From these considerations it follows that the multipole moments with increasing
order sample regions farther and farther away from the nucleus and thus we expect that they may
require additional diffuse functions for their proper description. This is in sharp contrast with the
full interaction, Eqn. (4.30). Instead of the radial powers, this distribution depends on the spherical
Bessel functions, which assume the following asymptotic form[210]

lim
kr→∞

j`(kr) ∼ (kr)−1 sin

(
kr − 1

2
`π

)
. (4.34)

Therefore, the spherical Bessel functions decay to zero for kr → ∞, which implies that the radial
distribution of the full interaction will decay much faster than the multipole distributions. Conse-
quently, the full interaction is expected to require fewer diffuse basis functions than the multipole
moment operators.

4.3.2 Computational Details
To compare basis set effects in both the valence and core regions, the 7s1/2 → 7p1/2 and the
1s1/2 → 7p1/2 transition of the radium atom were studied. The transitions were constrained to
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occur between single orbitals to facilitate the comparison between the Gaussian-type-orbital calcu-
lations in Dirac[190, 37] and the numerical reference calculations in GRASP.[209] Since GRASP
only computes occupied orbitals, the orbitals were optimized, using average-of-configurations (AOC)
Hartree–Fock,[211] with respect to excited-state determinants, i.e., [Rn]7s1

1/27p1
1/2 for the valence

transition and [Ra]1s−1
1/27p1

1/2 for the core transition. Even though the 7p1/2 orbital is formally
occupied in these configurations, I treat it as a virtual orbital to construct transition moments.
In the case of GRASP these were obtained by inserting the Pnκ and Qnκ radial functions into
Eqs. (4.27)–(4.30). Since transition moments are only determined up to a complex phase, I defined
them such that all radial distributions are real and have a positive maximum value. Since the
radial functions from GRASP are calculated on a numerical grid and thus effectively correspond to
the complete basis set limit, the GRASP transition moments were used as reference. In the case
of Dirac, I applied overlap selection to prevent the core-excited state to collapse during the SCF
cycles.[212, 213, 214] I then used the orbitals of the excited state calculations in a ground state
four-component time-dependent Hartree–Fock (4c-TD-HF) calculation within the linear response
regime.[79] The restricted excitation window method[215, 216] was invoked to only consider one
amplitude in Eqn. (1.85). The radial distributions were then divided by this remaining ampli-
tude to compare the results of the basis set calculations with the numerical reference values. In
Dirac the radial distributions were calculated on a radial grid with the visualization module, which
performs the angular integration on a Lebedev grid (Lmax = 64). Due to the quaternion symmetry
scheme[145] in Dirac, all transition moments are real by default (see Section 2.4.3).

The basis set calculations were carried out at the Hartree–Fock level of theory using the Dirac–
Coulomb Hamiltonian and the dyall.aeXz (X=2,3,4) basis sets.[196, 217] These basis sets are con-
structed from uncontracted Cartesian Gaussian basis functions which are designed for correlated
calculations and hence contain basis functions of high orbital angular momentum. I trimmed off
the g, h and i functions because for atomic systems they will only contribute to the space of virtual
orbitals. The small component basis sets were generated according to the condition of restricted ki-
netic balance[128, 127, 131, 218] and the (SS|SS) integrals were treated exactly, for consistency with
the numerical calculations. Furthermore, I found that with the default linear dependence threshold
(10−6 and 10−8 for the large and small component space, respectively), several basis functions were
deleted. Especially the small component of the 1s1/2 was susceptible to the deletion of functions.
This deteriorates the quality of the results, so for all calculations, the linear dependence threshold
was set to 10−9 and 10−10 for the large and small component space, respectively. In Section D.1,
the problems associated with linear dependence are further discussed.

4.3.3 Results and Discussion
We start by comparing the radial distributions of the core and valence excitations within the electric-
dipole approximation (velocity representation; Figure 4.7). To illustrate their radial extent, the
expectation value of the radial distance for different s orbitals are indicated. A striking observation
is that the radial distribution for the core transition is much more localized around the nucleus than
that of the valence transition. This follows from the locality of the core orbital. Furthermore, the
valence distribution oscillates considerably more than the core distribution, and one can see that the
oscillations follow the shell structure of the atom. The electric transition dipole distribution is stable
with respect to the choice of basis set, since all basis set calculations overlap with the numerical
reference. The relative deviations (depicted in the right corner of Figure 4.7) further confirm this.
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Figure 4.7: Radial distribution of the electric-velocity dipole moment (R
[1]
Q ) for the 1s1/2 (top panel)

and 7s1/2 → 7p1/2 (bottom panel) transitions. Expectation values of the radial position for the
relevant s orbitals are indicated as vertical sticks where the labels represent the index of the s orbital,
i.e. nis1/2 (ni = 1, . . . , 7). The percentages in the upper right corner of each box are the relative
errors of the transition moments, i.e. |Tbas−TnumTnum

|×100%.

Therefore, for both transitions, the dyall.ae2z basis set is sufficient to properly describe electric
transition dipole moments.

To gauge the importance of non-dipolar effects, the electric-velocity dipole distributions are
compared to those of the full interaction in Figure 4.8. The basis set convergence of the full
interaction appears to be similar as the electric-dipole moment, since the full interaction is unaffected
by the choice of basis set. For the valence transition, the electric-dipole distributions basically
coincide with the full interaction, which confirms the validity of the electric-dipole approximation
in this energy regime. Even, for the core transition, the difference between the distributions of the
electric-dipole and full interaction is modest. The electric-dipole approximation breaks down if the
wavelength of the electromagnetic field is small compared to the spatial extent of the transition.
Though the wavelength for the core transition falls in the hard X-ray regime, the compactness of the
radium 1s1/2 orbital reduces the importance of non-dipolar effects. In the next two sections, I will
discuss systems with symmetry equivalent centers, for which the core transitions are delocalized,
thus increasing the importance of non-dipolar effects.

The oscillatory behavior in Figures 4.7 and 4.8, or the lack thereof, can be understood by
considering the radial part of the atomic orbitals involved in the core and valence transition (Figures
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Figure 4.8: Radial distribution of the full interaction (RT ) for the 1s1/2 (top panel) and 7s1/2 →
7p1/2 (bottom panel) transitions. To assess the validity of the electric-dipole approximation, the
numerical reference curve from the full interaction (GRASP BED) is compared with the reference
curve from the electric-velocity dipole (GRASP ED). Expectation values of the radial position are
shown for the relevant s orbitals. The labels represent the index of the s orbital, i.e. nis1/2 (ni =
1, . . . , 7). The percentages in the upper right corner of each box are the relative errors of the transition
moments, i.e. |Tbas−TnumTnum

|×100%.

4.9 and 4.10, respectively). Note that the 7p1/2 orbitals are, as expected, not identical for the
two transitions, since the orbitals have been optimized in different excited configurations. For all
orbitals, the basis set calculations nearly coincide with the numerical reference, which makes it
difficult to assess the performance of each basis set. Therefore, the error curves in Figures 4.9 and
4.10 need to be analyzed to properly assess the basis set convergence. From the analytical formulas
in Eqs. (4.27)-(4.29), it is expected that the basis set error is most relevant at large radial distances.
For that reason, I will investigate the error at much larger distances than the range of the radial
functions (bottom row subfigures).

To some extent, all error curves in these plots are oscillatory, reflecting the incompleteness of
the basis set. In general, the amplitude of the oscillations diminish with larger basis sets, although
the frequency increases. This trend can clearly be observed in Figures 4.9 and 4.10: the small error
associated with the dyall.ae2z basis is even further reduced by using the dyall.ae3z basis set, at the
expense of a higher frequency of the oscillations, while the dyall.ae4z set flattens most of the error
curves. However, the additional improvement introduced by the dyall.ae4z basis set is marginal for
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Figure 4.9: Radial functions of the large and small component of the 7s1/2 (〈r〉 = 4.365a0) and 7p1/2

orbital (top row) and their deviations from the numerical reference (bottom row). These orbitals were
taken from the radium atom with [Rn]7s1

1/27p1
1/2 configuration. The basis set orbitals were calculated

at the 4c-HF level using Dirac, while the numerical reference was calculated with GRASP. Note
that the scaling is different for each individual box and that the error curves are plotted in a different
range than the radial functions.

the Q1,−1 function, and the dyall.ae4z curve seems to oscillate more compared to the dyall.ae3z
curve.

It has proven to be challenging to completely eliminate the error of the Q1,−1 function, as it
is highly susceptible to problems associated with linear dependence. As explained in Section D.1
of the appendix, the first attempts to calculate the radial distributions of the magnetic multipole
moments were met with difficulties. In these calculations, the default linear dependence threshold
was in place, further accentuating the oscillations of the Q1,−1 function, which in turn caused
severe oscillations in the radial distributions of the magnetic multipole moments. Although it may
seem straightforward in hindsight, finding the reason for these oscillations has been a problem that
significantly halted the progress of this project. Only after extensive experimentation, I found
almost accidentally that changing the linear dependence threshold ameliorated the problem. By
increasing the linear dependence threshold, I could significantly reduce the deviations from the
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Figure 4.10: Radial functions of the large and small component of the 1s1/2 (〈r〉 = 0.01454 a0)
and 7p1/2 orbital (top row) and their deviations from the numerical reference (bottom row). These
orbitals were taken from the radium atom with [Ra]1s−1

1/27p1
1/2 configuration. The basis set orbitals

were calculated at the 4c-HF level using Dirac, while the numerical reference was calculated with
GRASP. Note that the scaling is different for each individual box and that the error curves are
plotted in a different range than the radial functions.

reference, although the basis set convergence of the Q1,−1 function is still not completely smooth.
The minute differences between numerical and basis set orbitals suggest the radial distributions of
the multipole moments should be stable across basis sets series.

In practice, this is, however, not completely true. Figures 4.11 and 4.12 depict the radial distri-
butions of the electric-length multipoles, Q̂[2n+1], for the valence and core transitions, respectively.
In both figures, the peak of the reference curve appears close to the origin and moves farther away
at higher orders. Additionally, the peak height and the integrated value of these curves seems to
rise upon increase of the order. The same trend can be observed in the error curves, which are most
pronounced in the regions far from the nucleus. In the following, I will define an error below 1%
as acceptable convergence. Therefore, the dyall.ae2z basis set is an acceptable choice for multipole
moments below order 2. For 2 < n < 5, the dyall.ae3z is needed to reduce the error below 1%. Even
with the largest basis set, the accuracy goal is not reached for the highest two orders. These trends
are even more pronounced in the case of the core transition (Figure 4.12). For this transition, the
largest dyall.ae4z basis set is already needed at n > 3. In general, the overall error increases with
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the order of the multipole moments. These findings can be understood by considering the form of
the radial distribution in Eqn. (4.27). The multiplication by the power of the radial distance of
increasing orders blows up the moderate deviations in radial densities (Figures 4.9 and 4.10).
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Figure 4.11: Valence transition (7s1/2 → 7p1/2): radial distributions of electric multipole moments
in the generalized length representation, Q̂[2n+1], n ∈ [0, 6]. In each box, the upper panel contains the
radial distribution, while the lower panel contains the deviation with the numerical reference. Note
that each subfigure has different scales. The percentages in the upper right corner of each box are
the relative errors of the transition moments, i.e. |Tbas−Tnum

Tnum
|×100%.

Figure 4.13 contains the radial distributions of the magnetic multipole moments m̂[2n] for the
valence transition. For the lowest two orders, these distributions have distinct shapes, whereas
their shapes start to be reminiscent of the electric multipole distributions in Figures 4.11 and 4.12
for higher orders. Likewise, the peaks of the radial distributions move away from the origin and
become higher upon increasing the order. The overall errors indicate that the dyall.ae3z basis set is
preferable for 2 < n < 5, whereas the dyall.ae4z basis set should be used at higher orders. However,
for n = 6 and n = 7, the dyall.ae4z basis does not reduce the overall error below 1%. The magnetic
multipole moments for the core transition (Figure 4.14) follow the same trend, although the higher
order multipole moments tend to converge with more difficulties towards the numerical reference.
Already at n = 4, the dyall.ae4z basis set is not enough to reduce the error below 1%. In general,
the basis set convergence of the magnetic multipole moments seem to follow the same trends as the
electric-length multipole moments, although the convergence of the former is much more demanding.
Furthermore, note that the dyall.ae4z curve has two peaks for n = 5, whereas the reference curve
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Figure 4.12: Core transition (1s1/2 → 7p1/2): radial distributions of electric multipole moments in
the generalized length representation, Q̂[2n+1], n ∈ [0, 6]. In each box, the upper panel contains the
radial distribution, while the lower panel contains the deviation with the numerical reference. Note
that each box has a different scale. The percentages in the upper right corner of each box are the
relative errors of the transition moments, i.e.|Tbas−Tnum

Tnum
|×100%.

only contains one peak.
Similar artifacts arise in the radial distributions of the electric-velocity multipole moments

Q̂[2n+1] (Figures 4.15 and 4.16 for valence and core transitions, respectively). In both cases, the
reference curve follows the same pattern as the other multipole moment. For the valence transi-
tion, the dyall.ae2z basis set is sufficient to converge the lowest three orders, whereas the dyall.ae3z
basis set should be used at higher orders. For the core transition, the radial distributions are ex-
tremely problematic to converge. At n > 3 the dyall.ae4z is still not enough to converge towards
the reference. Furthermore, at these orders, the dyall.ae4z curves contain additional peaks that are
not present in the reference curves. Due to these artifacts, the overall error for n > 4 follows a
counter-intuitive trend: the dyall.ae2z basis set performs better then the larger bases.

Interestingly, the artificial peaks only appear for the magnetic and electric-velocity distributions,
whereas the electric-length distributions converge smoothly towards the numerical reference. This
observation can be understood from the problematic basis set convergence of the Q1,−1 function
(Figure 4.10). After all, the magnetic and electric-velocity distributions depend on the α-matrices,
which couple the small and large components, whereas the electric-length distribution is diagonal
in these two components (see for example Eqs. (4.27)–(4.30)). In Figure 4.10, it was observed
that the larger basis sets introduce small oscillations in the error curve of the Q1,−1 function.

119



Chapter 4. Applications

1.5
0.0
1.5
3.0
4.5

R M
(r)

×10 1

0.22%
0.00%
0.00%

n=1

0 7 14 21
r (a0)

5.0
2.5

0.0
2.5

R b
as

R n
um ×10 3

0.5
0.0
0.5
1.0
1.5 ×101

0.07%
0.04%
0.00%

n=2

0 7 14 21
r (a0)

4
2

0
2×10 1

3
0
3
6

×102

1.07%
0.17%
0.02%

n=3

0 9 18 27
r (a0)

5.0
2.5

0.0
2.5×101

2.5
0.0
2.5
5.0
7.5 ×104

4.94%
0.55%
0.12%

n=4

0 9 18 27
r (a0)

8
4

0
4×103

3
0
3
6
9

R M
(r)

×106

13.34%
1.66%
0.48%

n=5

0 10 20 30
r (a0)

2
1

0
1

R b
as

R n
um ×106

0.5
0.0
0.5
1.0
1.5

×109

26.63%
4.50%
1.51%

n=6

0 12 24 36
r (a0)

5.0
2.5

0.0
2.5×108 1.5

0.0
1.5
3.0

×1011

43.11%
10.28%
3.85%

n=7

0 14 28 42
r (a0)

1.6
0.8

0.0
0.8×1011

numerical
dyall.ae2z
dyall.ae3z
dyall.ae4z

Figure 4.13: Valence transition (7s1/2 → 7p1/2): radial distributions of magnetic multipole moments
m̂[2n], n ∈ [1, 7]. In each box, the upper panel contains the radial distribution, while the lower panel
contains the deviation with the numerical reference. Note that each box has a different scale. The
percentages in the upper right corner of each box are the relative errors of the transition moments,
i.e. |Tbas−Tnum

Tnum
|×100%.

These oscillations in the electric-length multipoles are contained in the small–small contribution
to the transition density and are thus comparatively small. For the two other types of multipole
moments, the oscillations reside in the large–small contribution and are amplified at large distances
by the power of the radial distance, thus creating the artificial peaks in Figures 4.14 and 4.16.
Similar artifacts are avoided when applying the full interaction operator. As can be inferred from
Eqn. (4.30), the error associated with the tail region of the orbitals is not blown out of proportion
when applying the full interaction operator. Consequently, this renders the full interaction stable
with respect to basis set choice, essentially being converged already with dyall.ae2z.

Conversely, for the core transition, the low-order multipole moments require the dyall.ae3z basis
set to obtain reasonable accuracy, whereas even the dyall.ae4z basis set is not enough for the highest
orders. However, it might be possible that similar accuracy can be achieved with smaller basis sets.
Compared to the dyall.ae2z, the dyall.ae4z basis set contains additional tight functions and high-
angular momentum functions that might be irrelevant for the construction of multipole moments.
I attempted to augment the dyall.ae2z basis set in an even-tempered fashion with diffuse functions
to obtain a better balance between computational costs and performance, but all of these basis sets
introduced unphysical oscillations, as shown in Section D.2. Alternatively, a smaller basis could
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Figure 4.14: Core transition (1s1/2 → 7p1/2): radial distributions of magnetic multipole moments
m̂[2n], n ∈ [1, 7]. In each box, the upper panel contains the radial distribution, while the lower panel
contains the deviation with the numerical reference. Note that each box has different scales. The
percentages in the upper right corner of each box are the relative errors of the transition moments,
i.e. |Tbas−Tnum

Tnum
|×100%.

be constructed by applying a similar scheme as Jensen and coworkers.[219] They augmented the
cc-pVnZ basis set with the core polarization functions of the cc-pCV(n+1)Z basis set. I tried a
similar procedure to add diffuse functions to the dyall.ae2z basis, but this also led to unphysical
oscillations. These findings suggest that the improved convergence observed with increased cardinal
number X of the dyall.aeXz series is not only due to the increased range of exponents, but also their
distribution within that range.

What remains is to apply the basis sets to the calculation of oscillator strengths. By inspection
of Figures 4.11–4.16, it seems that the value of the transition moments become increasingly larger
at higher orders, suggesting that the oscillator strengths of both the valence and core transitions
have convergence problems with respect to the multipole expansion. To validate this proposition, I
report the anisotropic oscillator strengths for the single orbital 1s1/2 and 7s1/2 → 7p1/2 transitions
for both the full and truncated interactions in Table 4.2. However, upon inspection of the values
in Table 4.2, it becomes clear that the multipole expansion already converges at zeroth order for
the valence transition. This appears to be in contradiction with the steady growth of transition
moments seen in Figures 4.11, 4.13 and 4.15. This can be understood from the damping of the
transition moments by increasing powers of the wave vector k, Eqs. (3.64) (3.87). This is not the
case for the 1s1/2 → 7p1/2 transition. The oscillator strength corresponding to this transition seems
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Figure 4.15: Valence transition (7s1/2 → 7p1/2): radial distributions of electric multipole moments
in the generalized velocity representation Q̂[2n+1], n ∈ [0, 6]. In each box, the upper panel contains
the radial distribution, while the lower panel contains the deviation with the numerical reference.
Note that each box has a different scale. The percentages in the upper right corner of each box are
the relative errors of the transition moments, i.e. |Tbas−Tnum

Tnum
|×100%.

to diverge at higher orders. In fact, these results are in line with Section 4.2, where it was found
that the multipole expansion converges extremely slowly at higher excitation energies (ω = c (∼3728
eV)).[1] The basis set series from Table 4.2 follows the same trends as the radial distributions.

A striking observation in Table 4.2 is that even with the largest basis set the oscillator strengths
in the length- and velocity representation differ by orders of magnitude for both core and valence
transitions. More precisely, the ratio lr:vr at zeroth order in k (electric-dipole approximation) is
about 0.09 for the valence transition and 8.10 for the core transition, clearly in favor of the latter
(vr) when comparing with the full interaction. However, before drawing conclusions on the relative
merits of these two representations, one should keep in mind that in Section 3.6.2 it is demonstrated
that one can only expect equivalence between these two representations when three conditions are
met: i) complete basis set limit, ii) variational conditions satisfied and iii) no restrictions on the
excitation window. None of these conditions are met for the results presented in Table 4.2. In
fact, in order to compare directly with the GRASP reference I have imposed a severely restricted
excitation window and I am using orbitals of a singly-excited state and not the ground state. I will
now investigate what happens when we successively comply with conditions iii) and ii).

Table 4.3 contains results obtained after lifting restrictions on the virtual orbital space. I have
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Figure 4.16: Core transition (1s1/2 → 7p1/2): radial distributions of electric multipole moments in
the generalized velocity representation Q̂[2n+1], n ∈ [0, 6]. In each box, the upper panel contains the
radial distribution, while the lower panel contains the deviation with the numerical reference. Note
that each box has different scales. The percentages in the upper right corner of each box are the
relative errors of the transition moments, i.e. |Tbas−Tnum

Tnum
|×100%.

maintained the restrictions on the occupied space. For the core excitation this is mandatory to
assure convergence to the right excitation, and for the valence excitation it is found that it is in any
case completely dominated by excitation of the 7s1/2 orbital. For the valence transition, comparison
with Table 4.2 shows that the oscillator strength using the full interaction is significantly reduced.
Its value is very well reproduced within the dipole-velocity representation, whereas the discrepancy
with the dipole-length representation increases dramatically. For the core excitation there is, on
the other hand, only moderate change with respect to Table 4.2. It is only when we in addition
use the proper ground-state orbitals that the dipole-length and dipole-velocity oscillator strengths
come into agreement (Table 4.4).
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Table 4.2: Anisotropic oscillator oscillator strengths ( cωk = ez; ε = ey) of the ns1/2 → 7p1/2 (n =
1, 7) transitions for the full semi-classical interaction operator and accumulated to various orders in
the truncated interaction, as indicated by the superscripted numbers in parenthesis, within the mul-
tipolar gauge (lr: length representation) and Coulomb gauge (vr: velocity representation), computed
at the 4c-TD-HF level of theory with different basis sets. Numbers in parentheses are exponents of
10.

Basis ∆E (eV) ffull gauge f (→0) f (→2) f (→4) f (→6) f (→8) f (→10) f (→12)

7s1/2 → 7p1/2

dyall.ae2z 1.141 2.603 lr 2.356(-1) 2.356(-1) 2.356(-1) 2.356(-1) 2.356(-1) 2.356(-1) 2.356(-1)
vr 2.603 2.603 2.603 2.603 2.603 2.603 2.603

dyall.ae3z 1.138 2.605 lr 2.341(-1) 2.341(-1) 2.341(-1) 2.341(-1) 2.341(-1) 2.341(-1) 2.341(-1)
vr 2.605 2.605 2.605 2.605 2.605 2.605 2.605

dyall.ae4z 1.138 2.605 lr 2.342(-1) 2.342(-1) 2.342(-1) 2.342(-1) 2.342(-1) 2.342(-1) 2.342(-1)
vr 2.605 2.605 2.605 2.605 2.605 2.605 2.605

1s1/2 → 7p1/2

dyall.ae2z 104444.343 1.662(-5) lr 1.178(-4) -1.461(-1) 1.806(2) -1.964(5) 1.954(8) -1.805(11) 1.556(14)
vr 1.453(-5) 2.091(-5) -1.210(-2) 2.072(1) -2.582(4) 2.689(7) -2.425(10)

dyall.ae3z 104444.304 1.665(-5) lr 1.176(-4) -1.439(-1) 1.726(2) -1.799(5) 1.723(8) -1.556(11) 1.346(14)
vr 1.456(-5) 2.093(-5) -1.188(-2) 1.974(1) -2.397(4) 2.531(7) -2.469(10)

dyall.ae4z 104444.301 1.665(-5) lr 1.176(-4) -1.437(-1) 1.713(2) -1.762(5) 1.649(8) -1.444(11) 1.203(14)
vr 1.456(-5) 2.093(-5) -1.180(-2) 1.926(1) -2.262(4) 2.291(7) -2.131(10)

Table 4.3: Anisotropic oscillator oscillator strengths ( cωk = ez; ε = ey) of the ns1/2 → 7p1/2 (n =
1, 7) transitions for the full semi-classical interaction operator and the dipole-length and velocity
oscillator strengths, calculated with excited state orbitals and no restrictions on the space of virtual
orbitals, within the multipolar gauge (lr: length representation) and Coulomb gauge (vr: velocity
representation), computed at the 4c-TD-HF level of theory with different basis sets. Numbers in
parentheses are exponents of 10.

Basis ∆E (eV) ffull f
(→0)
lr f

(→0)
vr ratio (lr:vr)

7s1/2 → 7p1/2

dyall.ae2z 0.146 5.288(-2) 1.421(-4) 5.288(-2) 2.688(-3)
dyall.ae3z 0.113 8.558(-2) 8.554(-5) 8.558(-2) 9.996(-4)
dyall.ae4z 0.111 8.778(-2) 8.218(-5) 8.778(-2) 9.362(-4)

1s1/2 → 7p1/2

dyall.ae2z 104444.343 1.568(-5) 1.132(-4) 1.358(-5) 8.336
dyall.ae3z 104444.303 1.571(-5) 1.130(-4) 1.361(-5) 8.306
dyall.ae4z 104444.301 1.571(-5) 1.130(-4) 1.361(-5) 8.306
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Table 4.4: Anisotropic oscillator oscillator strengths ( cωk = ez; ε = ey) of the ns1/2 → 7p1/2 (n =
1, 7) transitions for the full semi-classical interaction operator and the dipole-length and velocity
oscillator strengths, calculated with ground state orbitals and no restrictions on the space of virtual
orbitals, within the multipolar gauge (lr: length representation) and Coulomb gauge (vr: velocity
representation), computed at the 4c-TD-HF level of theory with different basis sets. Numbers in
parentheses are exponents of 10.

Basis ∆E (eV) ffull f
(→0)
lr f

(→0)
vr ratio (lr:vr)

7s1/2 → 7p1/2

dyall.ae2z 0.392 1.068(-3) 1.004(-3) 1.068(-3) 0.940
dyall.ae3z 0.383 1.012(-3) 9.686(-4) 1.012(-3) 0.957
dyall.ae4z 0.383 9.750(-4) 9.652(-4) 9.749(-4) 0.990

1s1/2 → 7p1/2

dyall.ae2z 104645.540 6.850(-5) 5.900(-5) 5.873(-5) 1.005
dyall.ae3z 104645.510 6.852(-5) 5.900(-5) 5.874(-5) 1.004
dyall.ae4z 104645.509 6.854(-5) 5.901(-5) 5.876(-5) 1.004

4.3.4 Conclusion
In this section, I have assessed the basis set requirements for 4c-TD-HF linear absorption calculations
with the full semi-classical light-matter interaction operator as well as the truncated interactions
in the generalized length and velocity representations. To simplify the basis set considerations, I
focused my attention on the underlying transition moments for the 7s1/2 → 7p1/2 and the 1s1/2 →
7p1/2 transition in the radium atom. I considered the relativistic dyall.aeXz basis set with cardinal
numbers X=2,3,4 and compared to a numerical reference. The comparison was facilitated by the
generation and visualization of radial distributions of the corresponding transition moment densities.

To lowest orders, the dyall.ae2z basis set was sufficient to converge the length representation
electric multipole moments for both transitions. At higher orders, the dyall.ae4z basis was needed.
It was commonly observed that the core transition tends to be more difficult to converge than the
valence transition. The basis set convergence of the magnetic multipole moments follows these
trends as well, although it seems to be even more difficult to converge for the core transition.
Therefore, for the generalized length representation, the dyall.ae4z basis set suffices to properly
describe high-order multipoles, although the linear dependence threshold needs to be adjusted.

From all types of multipoles, the velocity representation electric multipoles appear to be most
problematic to converge. Even though the valence multipoles converge towards the numerical ref-
erence, the core multipoles contain deviations from the reference in the form of oscillations and
additional peaks. Due to these artifacts, the basis set convergence seems to be inverted: larger basis
sets deviate further from the reference. This suggests that the generalized velocity representation
should be applied with caution for n > 3. For the generalized velocity representation, I recommend
to use the dyall.ae3z basis set, which does not seem to suffer as much from the artifacts as the
dyall.ae4z basis set. In addition, I recommend to go not further than n = 3, because after this
order, the reliability of this scheme becomes questionable.

The full interaction operator does not suffer from these problems and is already converged with
the dyall.ae2z basis. Considering that the truncated interaction also suffers from slow convergence
with respect to the multipole expansion, I recommend to apply the full interaction when calculating
X-ray transitions.
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These findings are transferable to the non-relativistic limit, because in this limit, the full inter-
action and the length representation electric multipole have the same characteristics. Furthermore,
the magnetic multipoles and velocity representation electric multipoles converge faster towards the
numerical reference than equivalent 4c calculations, because the problems associated with linear
dependence disappear upon taking this limit. Therefore, I expect that in the non-relativistic limit,
the basis set requirements of multipole moments are less demanding.

Conclusions are possibly less obvious for the intermediate 2-component relativistic level. The
present approach would formally require the generation of radial distributions using properly picture-
changed interaction operators, and these are for instance not available for the eXact 2-Component
Hamiltonian (X2C), for which in general only a matrix representation, and not a real-space one,
is available (see for instance discussion in Ref.117). However, again the elimination of the small
components suggests that basis set convergence should improve.

4.4 Systems with Symmetry Equivalent Centers
For the calculations on the radium atom (see Section 4.2 and 4.3), it was observed that the dipole-
allowed transitions only gained modest corrections when including non-dipolar effects, the expla-
nation being that the compactness of the core-orbitals negate these effects. However, if the system
under consideration contains symmetry equivalent centers, the core transitions that arise from them
are delocalized, which, in principle, should enhance non-dipolar effects. For those purposes, I will
consider the Cl K -edge in TiCl4. In addition, this system represents a case where there is no natural
choice of gauge origin, thus forming a suitable system to test origin-(in)dependence of the two rep-
resentations. This system has previously been studied in the context of non-dipolar effects in linear
X-ray absorption using low-order multipole expansions. In particular, it was used to demonstrate
the appearance of negative oscillator strengths[28] upon truncation of the light-matter interaction in
the generalized velocity representation in a non-relativistic framework.[27] Below, I will revisit this
case and assess the necessity to go beyond the electric-dipole approximation. I further study numer-
ically the gauge-origin dependence of the three schemes in the case of soft X-ray absorption. Ligand
K -edge absorption spectroscopy supposedly provides direct information on the covalency of metal–
ligand bonds due to the admixture of the ligand p-orbitals with the metal d-orbitals.[220, 221] The
Cl K -edge absorption of TiCl4 has been studied both experimentally and also theoretically within
and beyond the ED approximation using truncated multipole-expanded expressions. Its experimen-
tal spectrum features a broad pre-edge peak that require a two-peak fit (in toluene: at 2821.58 and
2822.32 eV with an approximate intensity ratio of 0.84).[222] In Td symmetry, the five 3d-orbitals
of Ti belong to the e and t2 irreducible representations, and the pre-edge bands can be assigned to
excitations from the a1 and t2 Cl 1s-orbitals into the e and t2 sets of 3d-orbitals on Ti, respectively.
Here, I focus on the eight lowest-lying transitions (a1, t2 → e) which give rise to three degenerate
sets (E, T1 and T2) of which the latter is ED allowed. The results in this section are mainly based
on the findings from ref. 1.

4.4.1 Computational Details
The data reported in this section have been obtained with a development version of the Dirac
electronic structure code[190] (Tables 4.5–4.7: revision 52c65be).
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The calculated results presented in this section have been obtained by time-dependent density
functional theory (TD-DFT) calculations, based on the Dirac–Coulomb Hamiltonian and within
the restricted excitation window (REW) approach[215, 216] using the PBE0[193, 194] exchange-
correlation functional and the dyall.ae3z basis sets.[196, 197] The small component basis sets were
generated according to the condition of restricted kinetic balance, and the (SS|SS) integrals are
replaced by an interatomic SS correction.[195] A Gaussian model was employed for the nuclear
charge distribution.[115] A 86-point Lebedev grid (Lmax = 12) was used for the isotropic averaging
of the oscillator strengths based on the full light-matter interaction operator. The gauge origin was
placed in the center-of-mass and spatial symmetry was invoked in all cases except for the gauge-
origin dependence calculations. The geometry of TiCl4 was taken from Ref. 27 where it was obtained
using the BP86 exchange-correlation functional[223, 224] and the TZP basis set.[225]

4.4.2 Full vs. Truncated Light-Matter Interaction
Table 4.5 collects the isotropically averaged oscillator strengths for the pre-edge transitions com-
puted in 4-component relativistic framework with the full light-matter interaction operator as well
as accumulated to increasing orders (up to 12th order) in the wave vector within Coulomb gauge
(velocity representation) and multipolar gauge (length representation). In line with the results of
Lestrange et al.,[28] negative oscillator strengths are found at second order for the 1T2 excitations
in both length and velocity representation. The same issue appears for the 1T1 and 1E sets, but
at fourth order. As discussed previously,[28, 29] this behavior is expected when the cross terms
involving the lower-order moments to f [n] dominate the diagonal contributions. As evident from
the underlying contributions given in Table 4.6, the multipole expansions are alternating, and be-
yond fourth order, the correction is reduced at each order. Indeed, the expansions converge to the
full expression at about 12th order. For the dipole-allowed 1T2 set, the correction introduced by
non-dipolar effects is significant, reducing the oscillator strength by a factor of ∼5. As seen from the
comparison of the ED and full (BED) oscillator strengths summed over the three sets of transitions,
included in Table 4.5, the implication of going beyond the ED approximation is a redistribution of
intensity among transitions. In particular, the ED forbidden 1T1 and 1E transitions gain intensity
beyond that of the T2 set. It should be noted that this intensity redistribution cannot be observed
in the spectrum due to broadening.

However, even in the hypothetical case where these transitions are well-separated, the validity
of these results can be questioned. In the exact many-body wave function, the probability to find a
core electron on either of the symmetry equivalent centers is strongly correlated with the motion of
the other core electrons. For example, after a core electron is located on center A, the probability
to find another electron on the same center decreases, whereas the probability to find it on other
centers increases. This effect is poorly taken into account using SCF methods, were core electrons
are described by orbitals delocalized over the centers and completely devoid of static correlation.
Early accounts of this effects were made by Bagus et al. in their work involving core-ionized O+

2 ,
were a significant improvement of the ionization energy could be obtained by localizing the core
orbital, albeit at the expense of losing the symmetry of the wave function. If we insist on using SCF
methods to describe core excitations, we are left with a dilemma: either we localize the core orbital,
which improves the energy values, but diminishes non-dipolar effects, or we use the delocalized
orbitals, which induces the opposite effect.

However, this problem is a false dilemma, since there is a third option, as it was found that
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more complicated wave function methods (such as MCSCF[226] or CCSD[227]) can both preserve
symmetry while at the same time reproducing ionization energies. To properly assess the importance
of non-dipolar effects in systems with symmetry equivalent centers, it is thus necessary to go beyond
standard SCF methods. Extending the Dirac implementation to the MCSCF level of theory was
one of the goals in this thesis, although it has not yet been completed. Therefore, the importance of
non-dipolar effects for systems with symmetry equivalent centers remains partially unresolved. In
the outlook (Sec. 5), it is further discussed what code has to be programmed to allow for MCSCF
calculations beyond the electric-dipole approximation.

Table 4.5: Comparison of isotropically averaged oscillator strengths for Cl 1s→Ti 3d transitions of
TiCl4 for the full semi-classical interaction operator and accumulated to various orders, as indicated
by the superscripted number in parenthesis, within multipolar gauge (lr: length representation) and
Coulomb gauge (vr: velocity representation), computed at the 4c-TD-PBE0 level of theory with the
dyall.ae3z basis set. Contributions from degenerate states have been summed. A 86-point (Lmax =
12) Lebedev grid was used to obtain the isotropically averaged full BED oscillator strengths. The
gauge origin is placed on the Ti atom.

Final state ∆E (eV) gauge 103f (→0) 103f (→2) 103f (→4) 103f (→6) 103f (→8) 103f (→10) 103f (→12) 103ffull

1T1 2773.351719 lr 0.000 17.976 -7.344 8.560 2.879 4.191 3.979 3.993vr 0.000 17.976 -7.372 8.561 2.866 4.183 3.970
1E 2773.351723 lr 0.000 7.199 -1.251 3.569 1.945 2.308 2.249 2.248vr 0.000 7.156 -1.229 3.548 1.943 2.298 2.242
1T2 2773.351725 lr 7.825 -17.413 16.369 -4.360 2.948 1.272 1.543 1.510vr 7.781 -17.380 16.353 -4.358 2.942 1.271 1.540

Sum lr 7.825 7.763 7.775 7.769 7.772 7.772 7.771 7.752vr 7.781 7.752 7.752 7.752 7.752 7.752 7.752

Table 4.6: Comparison of isotropically averaged oscillator strengths for Cl 1s →Ti 3d transitions
of TiCl4 for the full BED operator and at various orders within multipolar gauge (lr: length repre-
sentation) and Coulomb gauge (vr: velocity representation) gauges as computed at the 4c-TD-PBE0
level of theory with the dyall.ae3z basis set. Numbers in parentheses are exponents of 10. F.S. stands
for final state. Contributions from degenerate states have been summed. A 86-point (Lmax = 12)
Lebedev grid was used to obtain the isotropically averaged full BED oscillator strengths. The gauge
origin is placed on the Ti atom.

F.S. ∆E (eV) gauge f [0] f [2] f [4] f [6] f [8] f [10] f [12] ffull

1T1 2773.351719 lr 0.000 1.798(-02) -2.532(-02) 1.590(-02) -5.682(-03) 1.312(-03) -2.125(-04) 3.993(-03)vr 0.000 1.798(-02) -2.535(-02) 1.593(-02) -5.695(-03) 1.316(-03) -2.131(-04)
1E 2773.351723 lr 0.000 7.199(-03) -8.450(-03) 4.819(-03) -1.623(-03) 3.627(-04) -5.937(-05) 2.248(-03)vr 0.000 7.156(-03) -8.385(-03) 4.778(-03) -1.606(-03) 3.555(-04) -5.576(-05)
1T2 2773.351725 lr 7.825(-03) -2.524(-02) 3.378(-02) -2.073(-02) 7.308(-03) -1.675(-03) 2.706(-04) 1.510(-03)vr 7.781(-03) -2.516(-02) 3.373(-02) -2.071(-02) 7.301(-03) -1.672(-03) 2.689(-04)

4.4.3 Origin-Dependence
The above results were computed with the gauge-origin placed at the Ti atom. I now proceed to a
numerical evaluation of their dependency on the gauge origin (O+a). The formulations based on the
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full semi-classical interaction operator and truncated interaction in the velocity representation are
formally gauge invariant. In practical calculations, however, as discussed in Section 3.4.1, invariance
in the latter case relies on the accurate cancellation of lower-order contributions multiplied with
powers (k · a), where a is the displacement. In contrast, as discussed in Section 3.6.2, in the
multipolar gauge formal gauge-origin invariance appears to only be achieved in the practically
unreachable limit of the complete expansion of the fields.

Table 4.7 collects the total isotropic oscillator strength for the dipole-allowed 1T2 set for each
of the three schemes for going beyond the ED approximation using different choices for the gauge
origin. As expected, the results for the full light-matter interaction operator remain unchanged,
providing a numerical verification of its gauge-origin invariance. The same is true for the oscillator
strengths in the generalized velocity representation. However, numerical noise from the cancellation
of many terms in powers of the displacement becomes apparent at large displacements. For a
displacement of 100 a0, instabilities start to appear at 10th order, and at 12th order, the oscillator
strength exceeds the full result by one order of magnitude. The oscillator strengths in the multipolar
gauge already at second order differ significantly upon shifting the origin from the Ti atom. In line
with the discussion in Section 3.6.2, the two representations are roughly equivalent if the gauge
origin coincides with the coordinate origin.

Table 4.7: Gauge-origin dependency of the isotropically averaged oscillator strengths for the 1T2 set
of Cl 1s→Ti 3d transitions of TiCl4 for the full semi-classical light-matter interaction operator and
accumulated to various orders within multipolar gauge (lr: length representation) and Coulomb gauge
(vr: velocity representation), computed at the 4c-TD-PBE0 level of theory and the dyall.ae3z basis
set. Numbers in parentheses are exponents of 10. At this level the excitation energy is calculated as
2773.351145 eV. Contributions from the degenerate set have been summed. An 86-point (Lmax = 12)
Lebedev grid was used to obtain the isotropically averaged full BED oscillator strengths. The gauge
origin is shifted along the x-axis (dx) where dx = 0.0 a0 corresponds to gauge-origin in the Ti atom.

dx (a0) gauge f (→0) f (→2) f (→4) f (→6) f (→8) f (→10) f (→12) ffull

0 lr 7.825(-03) -1.741(-02) 1.637(-02) -4.360(-03) 2.948(-03) 1.272(-03) 1.543(-03) 1.510(-03)vr 7.781(-03) -1.738(-02) 1.635(-02) -4.358(-03) 2.943(-03) 1.271(-03) 1.540(-03)

10.0 lr 7.825(-03) -1.755(-02) 1.670(-02) -4.738(-03) 3.238(-03) 1.097(-03) 1.670(-03) 1.510(-03)vr 7.781(-03) -1.738(-02) 1.635(-02) -4.358(-03) 2.943(-03) 1.271(-03) 1.540(-03)

50.0 lr 7.825(-03) -2.045(-02) 1.422(-01) -2.951(+00) 4.429(+01) -5.055(+02) 6.495(+03) 1.510(-03)vr 7.781(-03) -1.738(-02) 1.635(-02) -4.358(-03) 2.943(-03) 1.271(-03) 1.546(-03)

100.0 lr 7.825(-03) -3.148(-02) 2.398(+00) -2.223(+02) 1.343(+04) -6.178(+05) 3.198(+07) 1.510(-03)vr 7.781(-03) -1.738(-02) 1.635(-02) -4.358(-03) 2.943(-03) 1.021(-03) 4.785(-02)

4.4.4 Conclusion
Two important key conclusions follow from these calculations:

• the studied transitions stemming from the Cl K -edge in TiCl4 have significant non-dipolar
corrections, mainly induced by the delocalization of the Cl core orbitals. However, due to
the closeness of the transitions, the accumulated value of these transitions is hardly affected.
Even if this were not the case, it can be questioned whether the delocalization of the core
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orbital is a true physical effect. To properly assess this, it is required to go beyond SCF
theory.

• Formal gauge-origin invariance of oscillator strengths in multipolar gauge hinges on commu-
tator expressions that do not necessarily hold in a finite basis. This explains the notorious
lack of order-by-order gauge-origin independence in practical calculations beyond the electric-
dipole approximation based on any truncated multipolar gauge formulation.[28, 29] As indi-
cated in Section 3.6.2 these commutator relations, involving the Hamiltonian, correspond to
a gauge transformation from the length to the velocity representation. In other words, gauge-
origin independence in multipolar gauge is shown by transforming to another gauge for which
origin-independence holds. Thus far, I have not been able to show gauge-origin invariance
while staying within multipolar gauge.

4.5 Electronic Circular Dichroism
I have not yet exploited the versatility of the BED implementation to its full extent, since all
calculations until this point involved the absorption of linearly polarized light. In this section, I
will thus focus on the isotropic and anisotropic ECD calculated using the full semi-classical light–
matter interaction, as well as the generalized velocity representation. This allows us to investigate
the ECD response across the electromagnetic spectrum, from optical to X-ray regimes. So far,
previous theoretical studies of the isotropic XNCD of molecules were based on a non-relativistic
formulation while only considering the first-order truncated interaction, which is proportional to
the dot-product of the electric- and magnetic-dipole moment (Eqn. (3.150)).[228, 229, 230, 231,
232, 233, 234, 235, 236]

A rough estimate of the first-order XNCD can be found by assuming that the transition in
question is effectively atomic in nature, which is justified by the atom-like character of core orbitals.
Under this assumption, atomic selection rules apply, implying that the electric- and magnetic-dipole
moment transition rules dictate whether the XNCD vanishes. However, as demonstrated in Section
C.2, the non-relativistic magnetic-dipole selection rules prescribe that atomic transitions can only
occur between states that are split by spin-orbit coupling, thus suggesting that the XNCD is zero
within this simplified scheme. In more realistic calculations, the core orbitals are polarized away
from atomic symmetry, which renders the XNCD non-zero, an effect that was taken into consid-
eration in the above mentioned studies. The current implementation accounts for two additional
possible contributions: (i) effects of beyond first-order light–matter interactions and (ii) inclusion
of relativistic effects, notably spin-orbit coupling that modifies selection rules (in particular, the
magnetic transition-dipole selection rule, discussed in Section C.2). Consequently, this allows, for
the first time, to realistically examine the ECD response of molecules across the valence and X-ray
regimes.

However, unlike previous examples, it is not sufficient to use the same atomic target system,
which has vanishing ECD due to its high symmetry. Therefore, as test systems, I consider the
simplest disulfide chromophore models, dihydrogen disulfide H2S2 and dimethyl disulfide (CH3S)2.
Because of the low disulfide torsional barriers (∼6-11 kcal/mol[237, 238, 239, 240]), the two enan-
tiomeric forms (P - and M -helix) cannot be resolved experimentally. However, the disulfide bridge
is an important structural element in proteins,[241] where it preferentially occurs in non-planar,
chiral conformations (C2 symmetry) and hence displays structurally-induced axial chirality. An
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interesting perspective for complex systems (e.g., proteins) is the potential use of XNCD as a
local probe of chirality.[235, 230] This could potentially complement the delocalized conforma-
tional information encoded in valence ECD. Because of its computational tractability, H2S2 has
been widely used to benchmark electronic structure methods for the calculation of chiroptical
properties.[242, 243, 244, 245, 246, 247, 248] For the same reason, Goulon et al. also used it to
estimate relative magnitudes of XNCD responses within the first-order truncated interaction and
non-relativistic framework, reporting values below the experimental detection limits.[228] Here, I
revisit the ECD of the disulfide chromophore across the valence, L- and K -edges, going beyond
these approximations.

4.5.1 Computational Details
The geometries of H2S2 and (CH3S)2 were obtained using the B3LYP[249, 250, 251, 252] ex-
change–correlation functional and the cc-pVTZ[253, 254] basis set. Geometry optimizations were
performed in Gaussian 16.[255] To mimic the χ3 disulfide angle typical for protein structures,[256]
a constrained geometry optimization was performed for χ3 = −87◦, corresponding to M -helical
chirality.[257] The restricted excitation window approach[215, 216] was used to selectively tar-
get the sulfur L- and K -edges. This also eliminates the issue of artificial transitions to quasi-
continuum orbitals caused by finite basis set effects that otherwise often interferes simulations at
the L-edge.[258, 259] A Gaussian model was employed for the nuclear charge distribution,[115] and
an 86-point Lebedev grid (Lmax = 12) was used for the isotropic averaging of the differential linear
absorption based on the full interaction operator. The gauge origin was placed in the center-of-
mass (COM) and spatial symmetry was invoked in all cases except for the gauge-origin dependence
calculations.

Excitation energies, linear and differential absorption cross sections for the full interaction oper-
ator as well as the multipole expansions within the generalized velocity gauge were computed using
the PBE0[193, 194] exchange–correlation functional and the uncontracted aug-pcX-3[260] and aug-
pc-3[261, 262, 263] basis sets for sulfur and hydrogen, respectively. The pcX-n basis set series was
developed for describing core-excitation processes using the ∆SCF (Self-Consistent Field) approach
at both the nonrelativistic and relativistic levels. The small component basis sets were generated
within the condition of restricted kinetic balance. The relativistic calculations were performed us-
ing a Dirac-Coulomb Hamiltonian in which the (SS|SS) integrals are replaced by an interatomic SS
energy correction.[195] Gauge-origin invariance of the full semi-classical formulation of the isotropic
and anisotropic rotatory strengths (Eqs. (3.20) (3.64) (3.87) (3.134) (3.138)) and its first-order trun-
cated counterpart was confirmed numerically by shifting the gauge-origin (from 0 to 100 a0) along
the C2 axis. This leads to a redistribution of the E1–E2 and E1–M1 contributions to R[1]

xx and R[1]
yy

(Eqn. (3.153)) for transitions of B symmetry. As expected, the results remained unchanged for
both the full and truncated formulations (data not shown). Simulated spectra were obtained by
convolving the stick spectrum with Gaussian lineshape functions with full width at half maximum
(FWHM) of 0.4 eV, and those for (CH3S)2 were shifted by different offsets for each absorption edge
to match their experimental counterparts.

To assess the effect of increased excitation energies on the differential oscillator strength, the
L1- and K-edge spectra were calculated for the heavier analogues of H2S2: H2X2, X=Se and Te. In
analogy with H2S2, the geometries for the two heavier analogous were obtained from a constrained
optimization (fixing χ3 = −87◦ ) using the cc-pVTZ[264] and def2-VTZPP[265] basis sets for X=Se

131



Chapter 4. Applications

and Te, respectively. Except for the choice of basis set, this series of calculations was carried out
at the same level of theory as previously mentioned H2S2 calculation. To reduce the computational
cost for the heavier analogous, I used the dyall.av3z basis set[266] for all spectral calculations. To
make the comparison between the structural analogues more precise, the H2S2 calculations were
repeated using this basis set.

4.5.2 Results and Discussion
Before considering the ECD response of the disulfides, I assign the linear absorption features across
the valence and X-ray regions. I initially focus on (CH3S)2 for which experimental gas-phase ab-
sorption spectra are available.[267, 268, 269, 270, 271] Expectedly, and as shown in Figure D.7 in
Section D.3, the spectral profiles for H2S2 are similar, and because of its greater computational
tractability, I consider this minimal disulfide in subsequent analyses.

Figure 4.17 displays the rotationally averaged linear and differential absorption spectra for va-
lence, sulfur L- and K-edge transitions of (CH3S)2, computed using the full interaction operator
(green shading) with corresponding oscillator strengths indicated as green sticks. Hereafter, I ex-
plicitly indicate the results of the full interaction with the superscript "full". For comparison, I also
provide the lowest non-vanishing terms in the truncated generalized velocity representation (orange
lines) for linear and differential absorption, i.e., zeroth- and first-order in the magnitude of the wave
vector, respectively. Black sticks at the top indicate the location of the underlying electronic transi-
tions and black lines (solid and dashed) the experimental absorption spectra.[267, 271, 268, 269, 270]
Apart from uniform shifts necessary to align the lowest-energy band to the respective experimental
spectrum, the theoretical spectra capture well both relative intensities and peak splittings.
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Figure 4.17: Isotropic linear (top) and differential (bottom) absorption spectra of (CH3S)2: (a)
valence, (b) L2,3-edge, (c) L1-edge and (d) K-edge spectra using the full interaction operator in
Eqs. (3.16) (green shadings) or the lowest non-vanishing generalized velocity representation (orange
lines). Left axes correspond to (differential) absorption cross-sections, whereas (differential) oscilla-
tor strengths (sticks) are shown on the right axes. Black sticks indicate the location of all computed
transitions whereas black lines are experimental spectra. [267, 268, 269, 270, 271] The stick spectra
were convolved with a Gaussian lineshape with FWHM of 0.4 eV. The theoretical absorption spectra
have been uniformly shifted to align with the experimental counterparts (shift values indicated in the
top panels). The same shifts were applied to the ECD spectra.

The first valence band (Figure 4.17a) is dominated by the two excitations from the symmetric and
antisymmetric combinations of the non-bonding 3p orbital on each sulfur to the lowest unoccupied
σ∗SS orbital (b symmetry). This assignment is consistent with the analysis by Linderberg and Michl
on H2S2.[272] Since the valence orbitals are found to have well-defined spin, I adopt a non-relativistic
state notation for the valence states, i.e., 11B and 21A, respectively. They are separated by ∼0.15
eV. The second valence band originates from transitions into the σ∗CS orbital (31A and 21B).

Turning to the X-ray region, the first two bands at the sulfur L2,3-edge (Figure 4.17b) are
dominated by transitions from the symmetric and antisymmetric combinations of the S 2p3/2 and
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2p1/2 core orbitals to the σ∗SS orbital. It should be noted that the A/B pair of associated transitions
are essentially degenerate (less than 0.1 meV splitting) because of the limited overlap between the
core orbitals on each of the sulfur atoms. The calculated spin-orbit splitting of ∼1.35 eV between
the L3- and L2-branches is comparable to the experimental splitting reported for dihydrogen sulfide
(∼1.2 eV[273, 274]). The L3/L2 branching ratio of ∼1.4:1 (obtained by summing the underlying
oscillator strengths) deviates significantly from its statistical value, which is obtained only in the
limit of j− j coupling.[275, 276] The second peak in each branch is dominated by excitations to the
σ∗CS orbital and is separated from the first peak by ∼1.4 − 1.5 eV. Consequently, the second band
in the spectrum contains contributions from both branches whereas the third band is associated
with the second peak in the L2 branch. These assignments agree with previous studies.[277, 269]
The energy range considered as well as the basis set used in our calculations does not cover the
fourth band in the experimental spectrum which, according to previous work,[269] originates from
excitations to higher-lying orbitals of mixed σ∗CS/Rydberg character. Not surprisingly, the L1-
and K-edge spectra bear strong resemblance (Figure 4.17c-d): they display two pre-edge features,
separated by ∼1.5 eV, which originate from pairs of near-degenerate excitations from the bonding
and antibonding combinations of sulfur s-orbitals into the σ∗SS and σ∗CS orbitals, respectively.[278,
279, 270]

A non-vanishing ECD response in these minimal disulfides results from axial chirality caused
by trapping the disulfide bridge in a non-planar (i.e., C2) conformation. As described above, the
two lowest-energy transitions in each spectral domain are dominated by an excitation from the
bonding or antibonding combinations of the relevant atomic orbitals on the sulfurs into the σ∗SS
orbital. This pairing of transitions manifests as bisignate features in the low-energy region of
the ECD spectra. On the basis of the simple Bergson model for the low-energy transitions in
the disulfide chromophore,[280, 281] Linderberg and Michl[272] formulated a quadrant rule for
the optical activity of the two low-energy valence transitions (dominated by excitations from the
symmetric and antisymmetric combinations of non-bonding 3p orbitals on sulfurs to the σ∗SS orbital)
in organic disulfides. This rule relates the sign of the long-wavelength Cotton effect across the four
dihedral quadrants and is a specific case of the C2-rule for general chromophores of effective C2

symmetry.[282] Woody extended the theoretical analysis to also include the absolute sign of the
lowest ECD band within each quadrant,[283] providing predictions in agreement with experimental
results across different dihedral angles.[284, 285, 286, 287]

For theM -helical form considered here, a negative-first Cotton effect is observed, consistent with
the quadrant rule.[283] The intensity asymmetry of the lowest-energy valence couplet is attributed
to different intrafragment (i.e., CH3S-) contributions to the ECD signal of each transition. At higher
energies, the electronic coupling between the (core) orbitals decreases, reducing both their energetic
splitting and the intrafragment ECD contributions which become increasingly atomic-like. As a
consequence, the paired core transitions become near-degenerate (energy splitting of a few meV
or less) with rotational strengths of almost equal magnitudes but opposite signs (see Table 4.8).
Hence, after additionally accounting for sources of broadening, including finite core-hole lifetimes
(∼0.1 and ∼0.5 eV at the sulfur L- and K -edges,[288, 289] respectively), it may realistically only be
possible to resolve the differential contributions with the absolute sign given by the most intense of
the transitions. Accordingly, the effective signals are therefore reduced by orders of magnitude in
the X-ray region (see accumulated values in Table 4.8).

The linear absorption profiles with the full interaction and the electric-dipole approximation
essentially coincide across the four spectral regions. However, as shown by the underlying oscillator
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strengths in Table 4.8, non-dipolar effects at the K-edge lead to intensity redistribution among the
underlying near-degenerate transitions (i.e., unrelated to the arbitrary mixing allowed for degenerate
states). Nonetheless, the overall spectral profiles within and beyond the electric-dipole approxima-
tion are essentially identical because of the nearly overlapping transitions. This is consistent with
our previous findings from Section 4.4. In contrast, the beyond-first-order effects become evident in
the differential K-edge absorption profile because of the signed nature of the underlying quantities.
This leads to a factor-of-two overestimation of the ECD within the conventional first-order treat-
ment. Introducing third-order contributions largely corrects this discrepancy at the sulfur K-edge
but going to higher orders in the expansion is not a general remedy, as will be discussed below.

To better understand the nature of the chiral response across spectral regions, I computed
the underlying anisotropic differential oscillator strength distributions, considering now the smaller
H2S2. Figure 4.18 shows the full ECD distributions (points), compared with the first-order truncated
counterparts (surfaces). The solid angle represents the propagation direction, the distance from the
origin (COM) indicates the magnitude of the associated signal and the color its sign. Note that
different scaling factors have been applied across the transitions (see upper right corner of each
subfigure). The C2-rotation axis coincides with the z-axis, whereas the disulfide bond is along the
x-axis. The shapes of the anisotropic distributions can be understood by decomposing the first-
order signals into isotropic and d-orbital contributions (Eqn. (3.153)). The resulting orbital weights
of the excitations plotted in Figure 4.18 are reported in Table 4.9.

From symmetry considerations detailed in Section D.4, it is found that contributions from dxz
and dyz vanish for excitations of both A and B symmetry. In A symmetry, R[1]

zz is also zero by
symmetry, such that the s- and dz2- contributions come in a fixed ratio, giving a toroid in the xy-
plane. For valence and L3-edge excitations of A symmetry this shape is modulated by the dx2−y2-
contribution, giving the shape of a biconcave disc elongated along the y- and x-axis, respectively,
depending on its relative sign. For the L1- and K-edge excitations the dxy-contribution completely
dominates. This is also the case for the corresponding excitations in B symmetry. It may be
noted that in A symmetry the E1–M1 contribution to the dxy term is zero by symmetry, whereas
in B symmetry the E1–E2 and E1–M1 contributions are of similar magnitude and the same sign.
Continuing to the L3 excitation of B symmetry, the angular plot resembles that of its counterpart in
A symmetry, albeit with opposite overall sign and rotated π/2 about the molecular axes. The latter
can be understood from the relative weights of dz2- and dx2−y2- contributions, as seen in Table 4.9.
Finally, the angular plot of the valence excitation in B symmetry is a biconcave disc elongated
along the z-axis, arising from positive interference between s- and dz2-contributions contrary to the
negative interference observed for its counterpart of A symmetry.
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Figure 4.18: Comparison of full and truncated differential oscillator strength ∆f(θ, φ) across the
spectral regions (valence, L3-, L1- and K-edges). Transitions of (a-d) A and (e-h) B symmetry
in H2S2. The black arrow points along the direction of the wave vector for the anisotropic ECD
intensity given in Table 4.8. The truncated ECD is represented by the smooth surface, whereas the
full ECD is shown as individual points generated with a 5810-point Lebedev grid (Lmax = 131). Blue:
negative; red: positive ECD signal. Note that different scaling factors (upper right corner) have been
applied. The corresponding isotropic differential oscillator strengths are indicated in each subfigure.
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Table 4.9: Weights of contributions from solid harmonics (Eqn. (3.153)) to the differential cross
section ∆f(θ, φ) of selected transitions in H2S2. The weights have been scaled by the absolute value
of the s-contribution. Numbers in parentheses are exponents of 10.

Irrep Excitation ∆f
[1]
iso s dz2 dx2−y2 dxy

A Valence 5.176(-05) 1.000 -0.447 0.300 -0.056
L3-edge -9.118(-05) -1.000 0.447 0.414 -0.031
L2-edge -2.824(-04) -1.000 0.447 0.408 -0.024
L1-edge 7.316(-05) 1.000 -0.447 -0.862 8.817
K-edge 1.657(-04) 1.000 -0.447 -0.772 9.108

B Valence -7.624(-05) -1.000 -0.328 -0.090 0.314
L3-edge 9.186(-05) 1.000 -0.132 -0.592 -0.005
L2-edge 2.883(-04) 1.000 -0.128 -0.591 -0.008
L1-edge -7.312(-05) -1.000 2.503 -0.347 -8.262
K-edge -1.657(-04) -1.000 0.377 0.813 -9.125
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Figure 4.19: Convergence of the truncated anisotropic ECD distributions, i.e., ∆f [2n+1](θ, φ), for
the K-edge transitions in H2S2. The superscript notation ∆f (→m) indicates accumulated contribu-
tions up through mth order. The black arrows point along the direction of the wave vector for the
anisotropic ECD intensity given in Table D.3.

Next, I compare these conventional first-order truncated ECD distributions with their full coun-
terparts. For the valence, L3- and L1-edge transitions, the anisotropic distributions virtually coin-
cide, thereby confirming the validity of the first-order truncated description also for the anisotropic
signal in these energy regimes. On the other hand, the full and truncated ECD distribution for the
K-edge transitions are seen to have the same overall shape, but markedly different size, such that
the factor-of-two overestimation at first order of the isotropic response (Table 4.8) arises largely
from an overall scaling. Closer inspection of the angular distribution of the full ECD distribution
reveals that the lobes are not strictly perpendicular as in a dxy-orbital, hence indicating the con-
tributions from solid harmonics of higher even angular momentum. To investigate this further,
the order-by-order contributions are provided together with the full anisotropic ECD distribution
in Figure 4.19. Although ∆f [3] (` = 0, 2, 4) resembles ∆f [1], the inclusion of higher-order solid
harmonics in the former leads to non-orthogonal lobes. Furthermore, the two distributions differ by
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an overall sign, such that the inclusion of ∆f [3] decreases the ECD signal. A possible issue is the
rate of convergence of the truncated interaction towards the full one. The BED implementation of
truncated interaction for linear absorption allows us to go to arbitrary order, a unique functionality
of the Dirac code. In Section 4.2, it was demonstrated that the truncated treatment converges to
the full interaction upon inclusion of higher-order terms, but for higher-energy transitions (photon
energies beyond ∼3728 eV) the convergence behavior was too slow for practical applications. In the
present case, I assessed the convergence of the isotropic differential oscillator strength expansion at
the sulfur K-edge and found that the relative error is below the threshold of 1% at 7th order (Table
4.10). Indeed, as shown in Figure 4.19 the ∆f [5] distribution (` = 0, 2, 4, 6) is minute. A similar
convergence rate is found for the isotropic linear oscillator strength. From these data, it follows
that the rate of convergence is acceptable for the application to the sulfur K-edge, although this
conclusion may differ when performing calculations at different energy scales.

To further explore the energy window at which the truncated formalism is functional, I have
performed an additional series of the isotropic differential oscillator strength for the heavier H2X2
analogues (X=Se and Te). A comparison of the two pre-edge features in the L1- and K-edge linear
and differential absorption spectra with the full and lowest-order truncated interaction across the
H2X2 (X=S, Se, Te) series is depicted in Figure 4.20. As a consequence of the deeper core levels of
the heavier elements, the deficiency of the first-order treatment of the ECD signal now appears also
at the L-edge. The discrepancy increases with the transition energy (i.e., Se L1-edge < S K-edge
< Te L1-edge < Se K-edge < Te K-edge), with the Te K-edge having a vast discrepancy between
the full and first-order differential oscillator strength. Similar to the findings of Section 4.2, the
convergence of the multipole expansion is met with difficulties for the heavier analogues. Indeed,
when considering these structural analogues, only the selenide L-edge converges at a sufficient rate,
whereas it is too slow to practically converge for all other edges. In both cases, the first-order
treatment not only overestimates the rotatory strengths of individual transitions but most critically
it incorrectly predicts the signs of (the intense) pairs of near-degenerate transitions. However, since
the relative magnitude of these oppositely signed contributions is preserved, the first-order spectral
profile yields the correct overall sign (given sufficiently large Gaussian broadening). By comparing
the series of H2S2 and its analogues, a trend can be observed between the rate of convergence and
excitation energy. Therefore, the breakdown of the first-order description at the sulfur K-edge, and
not at the sulfur L-edges, is a consequence of its order-of-magnitude higher transition energy (∼215
and 2427 eV at the L1 and K-edges).
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Figure 4.20: Isotropic linear (top) and differential (bottom) absorption spectra of H2X2, X=S, Se
and Te: (a-c) L1-edge and (d-f) K-edge spectra using the full interaction operator (green shadings)
or the lowest non-vanishing generalized velocity representation (orange lines). Left axes correspond
to (differential) absorption cross-sections, whereas (differential) oscillator strengths are shown on
the right axes. Black sticks indicate the location of all computed transitions. The stick spectra were
convolved with a Gaussian lineshape with FWHM of 0.4 eV. No shifts have been applied to the
theoretical spectra.

4.5.3 Conclusion
In this section, I have reported the application of the anisotropic and isotropic ECD signal using
the full - and truncated semi-classical light–matter interaction operator within a four-component
relativistic framework. This simultaneous account of beyond-first-order light–matter interactions
and relativistic effects provides two additional sources of ECD which become increasingly important
at high photon energies. The linear form of the light–matter interaction operator in the relativistic
domain further enabled straightforward extension to a multipole-based scheme in the velocity repre-
sentation that allows for the traditional (albeit, in general, ambiguous) decomposition into electric
and magnetic contributions while retaining order-by-order gauge-origin independence.

The presented approach was used to investigate the ECD response of two prototypical disulfides,
H2S2 and (CH3S)2, across the electromagnetic spectrum, from valence to core transitions. To quan-
tify the implications of higher-order effects, I compared the results of the full interaction to those
obtained within the traditional lowest-order non-vanishing (i.e., first-order) truncated generalized
velocity representation. Going beyond the electric-dipole approximation at the sulfur K -edge leads
to non-negligible intensity redistribution among near-degenerate transitions but with no visible im-
plications on the linear absorption profile. On the other hand, the differential absorption profile is
not affected by such redistribution, because of its signed nature. This leads to an overall factor-of-
two overestimation. By examining the shapes of the underlying anisotropic ECD distributions, this
discrepancy is found to largely originate from an overall scaling that is corrected upon introducing
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third-order contributions.
Critically, the first-order treatment deteriorates at higher transition energies (beyond ω=c∼3728

eV), as can be inferred from the additional calculations involving the heavier analogues of H2S2.
In these cases, this treatment may even fail to predict the sign of individual differential oscillator
strengths, although this is partially alleviated if the peaks are broad enough. At such energies,
going to higher orders is not a practical remedy because of the slow convergence of the truncated
interaction — the full interaction is a must.

Table 4.10: Contributions to the isotropic linear and differential oscillator strength (∆f [2n+1]
iso and

f
[2n]
iso ) at various orders for H2S2, n = 0, 1, 2, 3, compared to the result of the full interaction for
the two 1s1/2 → σ∗SS transitions of A/B symmetry. The superscript notation �(→m) indicates
accumulated contributions up through mth order. In particular, the ’ac’-labeled row indicates the
(differential) oscillator strengths accumulated through 8th (9th) order.The errors upon truncation
are defined as %δ∆f

(→2n+1)
iso = |(∆f (→2n+1)

iso − ∆f full
iso )/∆f full

iso |×100%. The results were obtained
using 4c-TD-PBE0 level of theory and the uncontracted aug-pcx-3/aug-pc3 basis set. Numbers in
parentheses are exponents of 10.

4A (1s1/2 → σ∗SS); ωA = 2427.88349eV

n f
[2n]
iso ∆f

[2n+1]
iso %δf

(→2n)
iso %δ∆f

(→2n+1)
iso

0 5.5576(-05) 1.6569(-04) 97.99 109.10
1 3.4276(-03) -1.0818(-04) 26.07 27.42
2 -8.1305(-04) 2.4151(-05) 3.36 3.06
3 9.9900(-05) -2.2416(-06) 2.57(-1) 2.32(-1)
4 -7.5661(-06) 1.2938(-07) 1.69(-2) 3.96(-1)

ac 2.7625(-03) 7.9240(-05) - -
full 2.7630(-03) 7.9240(-05) - -

n 4B (1s1/2 → σ∗SS); ωB = 2427.83334eV

0 1.0512(-02) -1.6570(-04) 35.24 109.10
1 -3.4601(-03) 1.0818(-04) 9.27 27.42
2 8.1318(-04) -2.4153(-05) 1.19 3.06
3 -9.9897(-05) 2.2413(-06) 9.60(-2) 2.24(-1)
4 7.5513(-06) -1.2878(-07) 1.43(-3) 3.98(-1)

ac 7.7729(-03) -7.9433(-05) - -
full 7.7728(-03) -7.9246(-05) - -
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The main goal of this thesis is to assess the validity of the dipole approximation in the simulation
of X-ray absorption spectroscopy. Here, the term dipole approximation should be understood as an
umbrella term that denotes the first-order truncated multipole expansion corresponding to the ab-
sorption of linearly polarized light (electric-dipole approximation) and electronic circular dichroism
(rotational strength). To answer this question, I have presented an applied and implementation at
the four component relativistic level based on either the full- or truncated light–matter interaction.
In addition, it can describe the truncated interaction in two representations, the generalized length-
and velocity representation, which become equivalent in the complete basis set limit. In summary,
the following conclusions were obtained in previous chapter:

1. At high excitation energies (∼ 3728 eV), the truncated interaction converges extremely slowly
towards the full interaction, which renders this scheme impractical for simulations in the hard
X-ray regime.

2. The truncated interaction is more difficult to converge with respect to the basis set choice
than the full interaction. The basis set convergence of the generalized velocity representation
is further complicated by problems associated with linear dependence of the small component
function.

3. The compactness of the core orbital counteracts the magnitude of non-dipolar effects for
transitions arising from a single center, even in the hard X-ray regime. In case of the radium
atom, the full interaction provides a correction of approximately (∼ 13− 20%) compared to
the electric-dipole approximation.

4. In general, it seems that non-dipolar effects redistribute the intensities in a near-degenerate
manifold of transitions, the effects of which are typically not observable in an absorption
spectrum of linearly polarized light due to spectral broadening.

5. In the presence of symmetry equivalent centers, the transitions stemming from these centers
have significant non-dipolar corrections, although the validity of this effect can be questioned
due to the shortcomings of SCF theory. Furthermore, for the absorption of linearly polarized
light, the changes in signal are difficult to observe if spectral broadening is included as a result
of the effect outlined in previous point.

6. In case of electronic circular dichroism, non-dipolar effects where already significant for H2S2,
whereas for the heavier analogues these effects were even more pronounced. Furthermore, the
changes in spectral features caused by non-dipolar effects are better preserved after spectral
broadening due to the signed nature of circular dichroism.
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Taking these points into consideration, we arrive at the general conclusion that at least for the
absorption of linearly polarized light, the electric-dipole approximation is an excellent approximation
for most systems. Even in the hard X-ray regime, the electric-dipole approximation can capture
the overall characteristics of the spectrum. However, to describe the dipole-allowed transitions at
high-accuracy and to even include dipole-forbidden transitions, it is mandatory to go beyond the
electric-dipole approximation. If this level of accuracy is required, the full interaction operator
provides more reliable results than schemes based on a truncated interaction, due to the difficult
convergence of the latter with respect to basis set choice and the multipole expansion. Therefore,
the full interaction should be the standard in calculations that demand high accuracy.

Another exception where the electric-dipole approximation might be insufficient is given by
systems with symmetry equivalent centers, although spectral broadening makes it difficult to observe
these effects. Hypothetically, the individual transitions can be resolved if spectral broadening is
sufficiently small. However, to the best of my knowledge, the resolution that can be achieved with
modern X-ray spectrometers is not enough. Perhaps future X-ray spectrometers will be accurate
enough to measure these effects. It may be also worthwhile to simulate the absorption spectra of
heavier analogues of TiCl4, e.g. TiBr4 or TiI4, whose non-dipolar corrections may be so extreme
that they can even be observed with significant spectral broadening. In addition, the spin orbit
splitting of the Br and I L-edge, may induce interesting effects. However, to rigorously establish the
validity of these effects, current implementation needs to be extended to the MCSCF or CC level
of theory.

Non-dipolar effects seem to be most relevant for electronic circular dichroism, appearing already
for H2S2 and being less susceptible to the spectral broadening. For the heavier analogues of H2S2,
a first-order treatment makes little sense due to the strong non-dipolar effects that are induced by
the high excitation energies of the core electrons. Interestingly, non-dipolar effects seem to go hand-
in-hand with the effects of relativity, as the heavy atoms in these species demand a fully relativistic
treatment. Therefore, the implementation presented in this thesis is ideal to describe these effects.
However, to exclude the possibility that these conclusions are system dependent, the ECD of other
systems should be studied as well. A particularity of the H2X2 series is the near degeneracy of the
bonding and anti-bonding core orbitals, giving rise to bidentate signals that are so close that they
mostly cancel. Future systems of interest may be chiral metal acetylacetonate complexes, or for
that matter any chiral single-centered metal complex.
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Outlook

5.1 MCSCF
In Section 4.4, it is discussed how core transitions stemming from symmetry equivalent centers
give rise to elevated non-dipolar effects because the core orbitals are delocalized over these centers.
However, improved ionization energies can be obtained by localizing the core orbital, which in
principle should decrease non-dipolar effects albeit at the expense of the symmetry of the wave
function. At the end of this section, it is also mentioned that this problem is most rigorously solved
using wave function methods. Therefore, as a part of this thesis, it was originally envisioned to
extend the implementation in Dirac to the MCSCF level. However, this project has not been
finished. In the current Dirac code, energy optimizations at the Kramers-restricted MCSCF level
are possible, although only with the inclusion of symmetry. Being based on the quaternion scheme
(see Section B.3), this implementation involves more complicated equations without symmetry,
explaining why to this day this functionality is not in place. To calculate absorption intensities,
two key features need to be implemented: the optimization of excited states and the calculation
of transition moments from these states. The former feature can be realized by implementing the
NEO algorithm, as described in ref. 290. The implementation of this algorithm heavily benefits
from the existing infrastructure for energy optimization. Transition moments at this level of theory
are complicated by the fact that the MCSCF wave function contains contributions from multiple
determinants. It can be shown that in the corresponding transition moments, the only non-vanishing
contributions involve combinations of determinants that differ at most by one orbital. Transition
moments at the SCF level do not require these considerations as these methods are based on single
determinants.

5.2 Core-Hole Relaxation at the DFT Level
In the introduction of this thesis, it was argued that the description of the core-hole is important
for X-ray spectroscopy. Typically, the relaxation effects arising from this hole, may significantly
shift the energies in a spectrum. These effects can be taken into account using the static exchange
approximation (STEX)[291, 292]. STEX can be thought of as CI singles using a core-hole reference
state. In the current state of Dirac, it is possible to perform calculation of this type using a
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reference state described at the HF level of theory.[293] However, within this reference, dynamic
correlation is not taken into consideration. Furthermore, due to the choice of reference state, the
excited state obtained with STEX is not necessarily orthogonal to the HF ground state, making the
formalism somewhat more cumbersome.

Therefore, another side project in this thesis was to implement STEX at the DFT level of theory.
To avoid the complications associated to non-orthogonality, a scheme was going to be implemented
that uses the core-orbitals from the core-hole reference state. The main assumption of this scheme
being that the core orbitals are not easily polarizable and thus relatively unchanged in the neutral
and core-hole states. The implementation of this scheme heavily leans on the existing Tamm-Dancoff
approximation code. However, this project never really took off due to an unresolved bug in this
code.

5.3 X-ray Magnetic Circular Dichroism
Knowing that non-dipolar effects play an important role in electronic circular dichoism, it seems
straightforward to extend the BED implementation to describe magnetic circular dichroism. This
feature has already been implemented by Foglia et al.,[34] although in a non-relativistic framework.
To generalize it to a relativistic framework, there are two possible routes: either quadratic response
is applied, where the static magnetic field is an additional perturbation, or the magnetic field is
included during the SCF cycles. Presumably, the isotropic averaging within the latter scheme
cannot be carried out in a very elegant manner. The most straightforward method to perform this
averaging is to put all possible directions of the magnetic field on a Lebedev grid. However, this
requires a separate SCF calculation for every grid point, making the calculation rather expensive.
Another challenge associated with this approach is that the magnetic field breaks time-reversal
symmetry, implying that the formalism is more involved. Alternatively, this quantity is calculated
using quadratic response, which in principle, is possible in Dirac. The remaining task would then be
to identify which response function exactly has to be calculated, making this method the preferred
one.

5.4 Full Interaction Operator in the Length Representa-
tion

Although the full interaction operator has many advantages, it does not explicitly distinguish be-
tween electric- and magnetic interactions. In multipolar gauge, this separation is inherent to the
formulation, although it is formulated as a truncated expansion, which is accompanied by a plethora
of problems (see Section 3.5). It is possible, however, to get the best of both worlds by utilizing the
integral representation of multipolar gauge, where the gauge function is given by[158, 159]

χa(r, t) =

∫ 1

0
dλδa · Ã(λδa + a, t) (5.1)

and corresponding potentials
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φa(r, t) = φ̃(a, t)− δa ·
∫ 1

0
dλE(λδa + a, t) (5.2)

Aa(r, t) = −
∫ 1

0
dλλ

(
δa ×B(λδa + a, t)

)
. (5.3)

The integral representations of these potentials are completely equivalent to Eqs. (3.71) and (3.77),
which can be confirmed by expanding the position argument of above integrands around a. An ad-
vantageous feature of the integral representation is that it does not involve any truncation, thus being
gauge-origin independent, as demonstrated in Section 3.5. The implementation of the absorption in-
tensities derived from these potentials presumably shares some similarities with the implementation
of the full interaction, although the integrals are different.
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Complements to Chapter 1

A.1 Solving the Generalized Eigenvalue Problem
In this appendix, a possible technique will be discussed to solve the generalized eigenvalue problem
from Eqn. (1.114). The derivations provided in this section will mainly follow ref. 294. As discussed
in Section 1.3.3, the dimensionality of the problem forms a major obstacle to solve this problem
using a numerical scheme. To avoid this issue, the solution vectors will be expressed in a set of trial
vectors

X̃n =

N∑
i

ciB
i; Bi =

(
bi

hbi∗

)
, (A.1)

where h determines the hermiticity of the trial vectors. Accordingly, the electronic Hessian and
generalized metric can be projected onto this basis

Ẽ
[2]
0;ij = Bi†E

[2]
0 B

j ; S̃
[2]
ij = Bi†S[2]Bj , (A.2)

thus yielding the following reduced problem

Ẽ
[2]
0 X̃n = ~ω̃n0S̃

[2]X̃n, (A.3)

which can be solved readily using conventional diagonalization packages.
For the full problem, the residual equals zero

R̃ =

(
Ẽ

[2]
0 − ~ω̃n0S̃

[2]

)
X̃n, (A.4)

thus forming a suitable diagnostic to assess whether the reduced problem is sufficiently large to
yield accurate results. If this is not the case, the residual vector can be used to extend the space of
trial vectors. Starting from an initial set of trial vectors, this procedure is repeated iteratively until
the residuals fall below a user-defined threshold.

As a main advantage, this procedure avoids explicit storage of the full electronic Hessian. To
construct the reduced electronic Hessian from Eqn. (A.3), it suffices to compute the vector quantity
Σj = E[2]Bj , which are to be contracted with the trial vectors. Furthermore, since the upper and

148



Appendix A. Complements to Chapter 1

lower half of Σj are related by complex conjugation, I will only compute the upper half in the
following

σai = Aai,bjbbj +Bai,bjbjb = 〈0|
[
− a†iaa,

[
a†bajbbj , Ĥ0

]]
|0〉+ 〈0|

[
a†iaa,

[
a†jabbjb, Ĥ0

]]
|0〉. (A.5)

Following a similar procedure as in Section 3.6.2, it can be shown that the inner commutators
evaluate to

σai = 〈0|
[
− a†iaa,

ˆ̃H0

]
|0〉, (A.6)

where appears the one-index transformed Hamiltonian

ˆ̃H0 = h̃pqa
†
paq +

1

2
(̃pq|rs)a†pa†rasaq, (A.7)

in terms of the one-index transformed integrals

h̃pq = Wpthtq − hptWtq (A.8)

(̃pq|rs) = Wpt(tq|rs)− (pt|rs)Wtq +Wrt(pq|ts)− (pq|rt)Wts. (A.9)

Here, the matrix W is defined in terms of the solution vectors Wai = bai; Wia = −bia; Wij =
Wab = 0. Alternatively, these vectors can be expressed in terms of the Fock matrix

σai = FabWbi −WajFji + Lai,jbWbj −WjbLai,bj , (A.10)

and the anti-symmetrized two-electron integrals (see Eqn. (3.109)).
Solving the reduced problem iteratively thus hinges on the calculation of the sigma vectors, which

in turn are obtained from the one-index transformed quantities. Applying this scheme allows us to
calculate the lowest few eigenvalues of a matrix which otherwise would be too large to explicitly store.
However, being a bottom-up approach, this method is cumbersome to calculate core transitions,
requiring us to calculate all lower excitations first. A slight modification to this method that allows
the calculation of core excitations is provided in Section C.4.
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Complements to Chapter 2

B.1 The Dirac Equation and Spin
In this appendix, I will demonstrate that the Dirac wave function can be expressed as two Pauli
spinors (Eqn. (2.84)). To start of, I will express the Dirac equation in this basis(

V cσ · π̂
cσ · π̂ V − 2mec

2

)(
ψL(r)
ψS(r)

)
= E

(
ψL(r)
ψS(r)

)
, (B.1)

where the potential is given by V = −eφ. The Dirac equation is thus constructed from two coupled
differential equations, where the second equation has the following solution for the small component

ψS(r) =
[
2mec

2 + E − V
]−1

c(σ · p̂)ψL(r). (B.2)

Note that for positive-energy solutions the small component is a factor of 1
c smaller than the large

component, hence its name. In the non-relativistic limit, it is clear that the small component
vanishes, suggesting that we should focus on the large component. Using Eqn. (B.2), we can obtain
a single equation for the large component

c2(σ · π̂)
[
2mec

2 + E − V
]−1

(σ · π̂)ψL(r) + V ψL(r) = EψL(r). (B.3)

Further applying the identity

(A+B)−1 = A−1 −A−1B(A+B)−1, (B.4)

yields the equation

1

2me
(σ · π̂)(σ · π̂)ψL(r) +

1

2me
(σ · π̂)

E − V
2mec2 + E − V (σ · π̂)ψL(r) + V ψL(r) = EψL(r), (B.5)

which gives the Pauli Hamiltonian upon taking the non-relativistic limit. Therefore, it seems only
reasonable to identify the first and last two components with a spin degree of freedom. However, it
should be stressed that in the Dirac equation, spin appears naturally, contrary to the ad hoc treat-
ment of spin in the Pauli equation. In addition, the Dirac equation incorporates non-perturbative
spin-orbit coupling in its formalism.
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Spin-orbit coupling arises from the relative motion of electrons and nuclei. In the molecular
frame, the electrons encircle the (stationary) nuclei, whereas the opposite is true in the rest frame
of the electrons. From the viewpoint of the electrons, the moving nuclei induce a magnetic field
that interacts with the spin magnetic moment, hence locally steering the direction of electron spin.
In Fig. B.1, this effect is represented schematically. Due to this effect, spin- and spatial degrees of
freedom become non-separable, which renders the spin density, i.e. the density that integrates up
to the spin, position dependent.

Figure B.1: Right: from the perspective of the (core) electron, the nucleus is not stationary, but
rather moving (see Fig. 2.1 for a nuclear centric model). Left: this relative motion generates
magnetic induction, which couples with the spin magnetic moment of the electron, resulting in an
effect more commonly referred to as spin-orbit coupling.

As pointed out in the work of Thomas, the classical analogue of this effect is magnetic induction.[295]
In his work, Thomas considered a charged ball that rotates around its own axis, while simultaneously
orbiting around a central potential. Furthermore, he defined a rest frame of the ball by consecutive
Lorentz transformations that follow the instantaneous motion of the ball. From the transformations
in Eqs. (2.28), it follows that that the magnetic induction is given by

B ≈ 1

2

E × v
c2

, (B.6)

where v is the instantaneous velocity of the charged ball. In this expression, it is assumed that
the electron moves slow, such that the Lorentz factor is unity. The factor of one half results from
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the successive Lorentz transformations, also referred to as Thomas precession. The electric field
appearing in this expression can be rewritten in terms of the central potential

E = −∇φ(r) = −r
r

dφ(r)

dr
, (B.7)

which gives rise to the following expression for the magnetic field

B = − 1

2mec2

dφ(r)

dr
`; ` = r × p. (B.8)

The interaction between the magnetic field and the magnetic moment of the electron spin,
µ̂s = ge

e
2me

ŝ, are described by the operator

ĤSO = −µ̂s ·B = ξ(r) ˆ̀· ŝ; ξ(r) =
gee

4m2
ec

2

dφ(r)

dr
, (B.9)

where ge ≈ 2 is the electron g-factor. Typically, these effects can be captured by introducing above
operator as a perturbation.

As alluded to before, the Dirac equation already has these effects build in its formulation.
To understand this better, consider the time-dependent Dirac equation under the influence of the
Coulomb potential from the nuclei. Transforming this equation from the molecular frame to a
moving frame yields the following result(

i~γµ∂µ −mec+
e

c
γ0φnucl

)
ψ = 0

Λ−→
(
i~γ′µ∂′µ −mec+ eγ′µA′µ

)
ψ′ = 0, (B.10)

where ψ′ is the four-component wave function in the transformed frame. Although this transfor-
mation is far from the consecutive transformations as described by Thomas, the above example
is sufficient to illustrate that a moving frame introduces magnetic interactions that are absent in
the molecular frame. Furthermore, due to its relativistic character, the Dirac equation is equally
valid in any inertial frame. Therefore, in the molecular frame, spin-orbit coupling is taken into
consideration without introducing any additional perturbing operator.

B.2 Negative Energy Solutions
In this appendix, I will demonstrate that the action of the charge conjugation operator on the
four component wave function yields the result provided by Eqn. (2.86). To start off, I will take
the complex conjugate of the minimally-coupled time-dependent Dirac equation[89, Section 1.6][90,
Chapter 5][110, Section 2.8.1](

cα∗ · p̂∗ +mec
2β − eφ+ ecα∗ ·A

)
ψ∗(r, t) = −i~∂tψ∗(r, t). (B.11)

Taking the complex conjugate of the Dirac matrices only changes its y-component

α∗y = −αy, (B.12)

whereas all components of the momentum operator change sign due to its imaginary prefactor

p̂∗ = −p̂. (B.13)
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Inserting the second relation into Eqn. (B.11), yields the result(
− cα∗ · p̂+mec

2β − eφ+ ecα∗ ·A
)
ψ∗(r, t) = −i~∂tψ∗(r, t). (B.14)

The Dirac equation with opposite external charges can be retrieved from this expression by intro-
ducing the operator

Ûc = iβαy, (B.15)

which has the following commutation relation with the Dirac matrices

Ûcβ = −βÛc Ûcα
∗ = αÛc. (B.16)

Application of these relations yields the desired result(
cα · p̂+mec

2β + eφ− ecα ·A
)
Ûcψ

∗(r, t) = i~∂tÛcψ∗(r, t). (B.17)

B.3 Quaternion Scheme
The purpose of this appendix is to lay out the fundamental concepts of the quaternion scheme. This
derivation closely follows refs. 145, 146, so the reader is referred to these sources for more detail.

In the following, it will be assumed that we have a time-reversal symmetric system, such that the
eigenfunctions come in Kramers partners and the matrix representation of time-reversal symmetric
operators assume the form in Eqn.(2.132). In most quantum-chemical applications, it is relevant to
compute the eigenvectors and - values of such matrices(

A B
−B∗ A∗

)(
cα

cβ

)
= ε

(
cα

cβ

)
. (B.18)

As expected from Kramers theorem, the eigenvectors come in degenerate pairs(
A B
−B∗ A∗

)(
−cβ∗
cα∗

)
= ε

(
−cβ∗
cα∗

)
(B.19)

that are related by time-reversal. Typically, degeneracies that are related to a symmetry suggest
a block-diagonalization of the matrix representations. In our example, this is certainly possible,
albeit at the expense of complicating the algebra in these matrices from complex to quaternion.

Before proceeding to demonstrate this transformation explicitly, I will first briefly discuss quater-
nions. Quaternions can be thought of as generalizations of complex numbers

q = a+ b̆i+ cj̆ + dk̆; a, b, c, d ∈ R (B.20)

constructed from three different types of imaginary units, ĭ2 = j̆2 = k̆2 = ĭj̆k̆ = −1. However, the
increase in dimensionality compared to complex algebra comes at the cost of losing commutativity

ĭj̆ = −j̆ ĭ; ĭk̆ = −k̆ĭ; j̆k̆ = −k̆j̆. (B.21)

Alternatively, quaternions can also be expressed as two complex numbers
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q = a+ bj̆; a, b ∈ C, (B.22)

where the following relation holds due to the non-commutativity bj̆ = j̆b∗.
Returning to our eigenvalue problem, the following unitary quaternion matrix ought to be

applied

U =
1√
2

(
I j̆I

j̆I I

)
, (B.23)

to block-diagonalize our matrix

U †ΩU =

(
A+Bj̆ 0

0 −k̆(A+Bj̆)k̆

)
(B.24)

thereby reducing the eigenvalue problem to the half of its original dimension[
A+Bj̆

][
cα − cβ∗j̆

]
= ε
[
cα − cβ∗j̆

]
. (B.25)

By using the quaternion scheme, it becomes thus possible to benefit optimally from the reductions
provided by time-reversal symmetry. In the quaternion representation the operator associated to
this symmetry, can be represented by j̆[145]

j̆
[
cα − cβ∗j̆

]
=
[
cα∗j̆ + cβ

]
. (B.26)

In the following, it will also be illustrated how the quaternion scheme can be used to introduce
point-group symmetry to relativistic calculations.

However, before arriving at that point, let us see how these techniques carry over to the Dirac
equation. For these purposes, it proves to be useful to reorder the four-component wave function

(
ψL

ψS

)
=


ψLα

ψLβ

ψSα

ψSβ

→

ψLα

ψSα

ψLβ

ψSβ

 =

(
ψα

ψβ

)
. (B.27)

In this basis, the time-reversal operator can be represented as

K̂ = −i
[
σy ⊗ I2

]
K̂0 (B.28)

from which we obtain

K̂ψ =


−ψLβ∗
−ψSβ∗
ψLα∗

ψSα∗

 . (B.29)

If we assume the absence of external magnetic fields, the Dirac Hamiltonian in the reordered basis
reads

ĥD =


V̂ −ic∂z 0 −ic∂−
−ic∂z −2mc2 + V −ic∂− 0

0 −i∂+ V ic∂z
−ic∂+ 0 ic∂z −2mc2 + V

 ; ∂± = ∂x ± i∂y (B.30)
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where the general structure of Eqn. (B.19) can be recognized. It is thus possible to block diago-
nalize the Dirac Hamiltonian using the quaternion transformation from Eqn. (B.23), yielding the
quaternion Dirac Hamiltonian

QĥD =

{(
V 0
0 −2mc2 + V

)
− c̆i

(
0 ∂z
∂z 0

)
− cj̆

(
0 ∂y
∂y 0

)
− ck̆

(
0 ∂z
∂z 0

)}
(B.31)

and the quaternion wave function

Qψ = ψα − ψβ∗j̆. (B.32)

As alluded to before, the quaternion scheme shows its true virtue in combination with point-group
symmetry.

However, in a four-component formalism, point-group symmetry deserves special consideration,
compared to the more straightforward symmetry considerations of scalar wave functions. After all,
the four-component wave function transforms as a fermion function, which have the rather unusual
feature of developing a phase of minus one after a rotation of 2π

R̂(2π)ψ = −ψ. (B.33)

Here, the rotation could be around any axis, so the axis of rotation is left out in the rotation operator,
R̂. Interestingly, this result implies that a fermion ought to be rotated around an angle of 4π before
returning to its initial state. Therefore, in our point-group we should also take this symmetry
operation into account. Suppose that we have a point-group, consisting of the symmetry operations
{Ĝ}, that preserve the structure of our Hamiltonian,

[
ĥD, Ĝ

]
= 0. For every member of this group,

we can create a new member by combining it with the operation from Eqn. (B.33), Ĝ′ = R̂(2π)Ĝ,
which results in a group of double dimensions. The amount of irreducible representations (irreps) in
this group, however, is not doubled and can generally be divided into bosonic irreps and fermionic
irreps, the former is symmetric and the latter is anti-symmetric with respect to R̂(2π).

It can be shown, however, that not all of these irreps are unique, because in some cases they are
related by time-reversal. Therefore, we may want to include time-reversal into our double groups to
obtain a more complete description of the symmetry structure. Including time-reversal turns out to
be rather problematic for the group structure, because there is not anymore a one-to-one correspon-
dence between the product of representation matrices and symmetry operations if anti-Hermitian
operators are included in the group.[145] It is still possible to construct these matrices, now referred
to as a corepresentation, and decompose them into irreducible corepresentations (irrcoreps). How-
ever, the symmetry reductions that can be gained from the fermion irr(co)reps is rather limited.
More reductions can be gained from symmetry considerations of the individual components.

Although the spinors as a whole generally transform according to the fermion irreps, the real-
and imaginary part of each components transform as boson irreps[296]

ΓL =

(
(ΓRLα,Γ

I
Lα)

(ΓRLβ,Γ
I
Lβ)

)
; ΓS =

(
(ΓRSα,Γ

I
Sα)

(ΓRSβ,Γ
I
Sβ)

)
. (B.34)

In the following I will assume that our pointgroup is either D2h or any of its subgroup, implying that
at most we have eight irreps: the totally symmetric irrep, Γ0 the Cartesian coordinates, (Γx,Γy,Γz),
the rotations (ΓRx ,ΓRy ,ΓRz) and the function Γxyz. From the structure of the Dirac equation, in
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particular Eqn. (B.3), it can be shown that the symmetry content of the large- and small component
reads

ΓL =

(
(Γ0,ΓRz)

(ΓRy ,ΓRx)

)
⊗ Γφ; ΓS =

(
(Γxyz,Γz)
(Γy,Γx)

)
⊗ Γφ = ΓL ⊗ Γxyz, (B.35)

where Γφ corresponds to a phase factor that depends on whether the spinor is gerade/ungerade
Γ0/Γxyz, or barred/unbarred Γ0/ΓRy . This phase can also correspond to the irreps of the rotations
or Cartesian coordinates, but in these cases the components in Eqn. (B.35) are merely reordered,
thus preserving the overall symmetry structure. By applying this structure to the quaternion wave
function, we obtain

ΓQψ =

(
ΓQ

ψL

ΓQ
ψS

)
=

([
Γ0,ΓRr

][
Γxyz,Γr

])⊗ Γφ. (B.36)

It can thus be concluded that in this scheme, the function of the quaternions is twofold: it preserves
the structure of time-reversal symmetry, while simultaneously each quaternion unit points to a
certain boson irrep.

Within the quaternion scheme, the basis set expansion of an orbital can be expressed as

Qψi =

(
χL 0
0 χS

)(
QcLi
QcSi

)
; QcX = cX0 + ĭcX1 − j̆cX2 + k̆cX3 (X = L, S), (B.37)

where the coefficients are now given by quaternion numbers. For a symmetry-adapted basis, our
orbital is given by the expression

Qψk =

(∑
i χ

L
i (Γi)

[
cL0;i(Γ0) + cL1;i(ΓRz )̆i− cL2;i(ΓRy) + cL3;i(ΓRx)k̆

]∑
j χ

S
j (Γj)

[
cS0;j(Γxyz) + cS1;j(Γz )̆i− cS2;j(Γy) + cS3;j(Γx)k̆

] ) , (B.38)

where the coefficients vanish if the symmetry of the basis function does not agree with the coefficient,
e.g. cL0;i(Γ0) = 0 if Γ0 6= Γi. For the C2v, D2 and D2h point groups, this structure implies that
the coefficient of each basis function only has contributions from one quaternion unit. Following
a rather technical procedure that is described with more detail in ref.[145], it can be shown that
this single quaternion cancels with the quaternion units in the Dirac Hamiltonian, hence forming
a single real matrix. Likewise, for point groups of lower symmetry, such as C2, Cs and C2h, each
coefficient has contributions from two quaternion units. From a similar procedure, it follows that
we are left with a complex matrix representation of the Dirac Hamiltonian. For the C1 and Ci point
groups, however, the coefficients have contributions from all quaternion units, thus implying that the
matrix representation keeps its quaternion structure. Therefore, point-groups of higher symmetries
are accompanied by a reduction of the algebra, which simplifies the calculation significantly.

Using this scheme, it is possible to re-express the familiar quantities from chapter 1 in quaternion
form. Some examples are: the one-body density matrix

QDpq = Dpq +Dpq̄ j̆, (B.39)

the Fock matrix

QFpq = Fpq + Fpq̄ j̆ (B.40)
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and even the solution vectors and the property gradient

QZai = Zai + Zāij̆;
QgA:ai = gA;ai + gA;āij̆. (B.41)

This composition is particularly useful in the context of selection rules, since the symmetry structure
in Eqn. (B.35) implies that each quaternion component of the gradient can be associated with a
bosonic irrep[146][

Γ0︸︷︷︸
Re[gA;ai]

+ĭ ΓRz︸︷︷︸
Im[gA;ai]

+j̆ ΓRy︸︷︷︸
Re[gA;aī]

+k̆ ΓRx︸︷︷︸
Im[gA;aī]

]
⊗ (Γφa ⊗ Γφi)⊗ ΓA. (B.42)
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C.1 Chirality and ECD Beyond First Order
As alluded to in the introduction of this chapter, there seems to be an intricate relation between
ECD and the isotropy of the sample. Contrary to what is mentioned in most textbooks, ECD can
yield non-zero signal for achiral molecules under anisotropic conditions. To illustrate this, consider
the first-order truncated anisotropic differential oscillator strength

∆f [1] =
2meω

~c2

(
ω

c

)
ek;jek;iεipq2Re

{
〈f |1

2
Q̂[2]
j;p|i〉〈f |Q̂[1]

q |i〉∗
}

(C.1)

+
2meω

~c2

(
ω

c

)
ek;jek;iεipq2Re

{
〈f |− i

ω
m̂[1]
r εrjp|i〉〈f |Q̂[1]

q |i〉∗
}
,

which is given in terms of the electric-dipole, magnetic-dipole and electric-quadrupole moment.
Expressed in the irreps of D2h and subgroups, the electric-dipole moment transforms as the Carte-
sian coordinates (Γx,Γy,Γz), the magnetic-dipole as the rotations (ΓRx ,ΓRy ,ΓRz) and the electric-
quadrupole as the rotations or the totally symmetric irep, Γ0. To obtain a non-vanishing ECD
signal under anisotropic conditions, the transitions must simultaneously have non-vanishing con-
tributions from the electric-dipole and the electric-quadrupole or from the electric-dipole and the
magnetic-dipole. Therefore, for a non-vanishing anisotropic ECD, at least one of the Cartesian
coordinates must either be totally symmetric Γri = Γ0, or transform as a rotation Γri = ΓRj , where
the component of the rotation and coordinate do not necessarily have to be equal. Exactly which of
these conditions holds true depends on the direction of the wave vector. In general, these conditions
can also be met for non-chiral point groups, confirming that non-chiral molecules can have a non-
zero ECD signal under anisotropic conditions. Upon taking the isotropic average, the first-order
truncated ECD is given by Eqn. (3.150).

Similar to previous example, the minimal condition for non-vanishing ECD is Γri = ΓRi , for
at least one Cartesian coordinate, although in this case, the Cartesian coordinate and the rotation
do have to be the same component. This small detail explains why isotropic ECD can only be
measured for chiral molecules, since this condition is only met for chiral point groups. However,
this derivation leans on the symmetry properties of the lowest-order multipole moments, whereas
the full interaction and higher-order terms in the multipole expansion do not generally obey the
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same selection rules. Therefore, in the following, I will demonstrate that the isotropic ECD is zero
for achiral molecules regardless of the order of the multipole expansion.

To start off, suppose that we are considering the isotropic ECD of some achiral molecule, A,
consisting of n atoms, whose nuclear coordinates are stored in the matrix

RA =
(
RN1 ,RN2 , · · ·RNn

)
(C.2)

In the previous Section, the effects of isotropy where taken into account by fixing the molecule in
space and considering all possible propagation- and polarization directions of the incoming light. In
this proof, it turns out to be useful to follow the alternative approach: I will fix the incoming light
and rotate the coordinates, using the Euler angles θ, φ, χ

O(θ, φ, χ)RA =
(
O(θ, φ, χ)RN1 ,O(θ, φ, χ)RN2 , · · · O(θ, φ, χ)RNn

)
, (C.3)

where the matrix O(θ, φ, χ) is constructed from three orthogonal rotations[32]

O(θ, φ, χ) = O(φ, ez)O(θ, ey)O(χ, ez). (C.4)

In this expression, the matrix O(α, en) rotates the coordinates with an angle of α around the axis
spanned by en. Starting from RA, we can thus generate all possible orientations of A by varying
the angles φ, θ and χ over their respective domains, [0, 2π], [0, π] and [0, 2π]. Let us further denote
{RA} as the set of all possible orientation of A.

Because {RA} contains all possible orientations, we can choose any starting geometry from
which we generate this set. Furthermore, because A is achiral, we can thus apply any orthogonal
transformations to RA, without changing this set

{RA} = {ÛRA}; ÛTU = I. (C.5)

This implies that this set is also invariant under transformations that do not preserve the handedness
of the coordinate system, i.e. det(U) = −1.

In particular, the parity inversion operator is of great relevance in physics, as it leaves electromag-
netic interactions unchanged. Therefore, if we apply this operator to both the nuclear coordinates
and the circularly polarized light, the oscillator strength should not change. For these purposes, I
will write the anisotropic oscillator strength of circularly polarized light as a function of the wave
vector and a parametric function of the nuclear geometry: fL/R(k;RA). Due to the generality of this
proof, this oscillator strength can either be derived from the full interaction operator, or a truncated
interaction. The action of parity inversion on the oscillator strength can thus be expressed as

fL/R(k;RA) = P̂
(
fL/R(k;RA)

)
= fR/L(−k; P̂RA). (C.6)

Let us further denote the set of oscillator strengths from all possible orientations ofA as {fL/R(k;RA)}.
The isotropic differential oscillator strength can be obtained as the average of all members in
{fL/R(k;RA)}. Because {fL/R(k;RA)} is constructed from all possible orientations of A, it is
isotropic with respect to k. We can thus define k at will, without changing {fL/R(k;RA)}, with
the only constraint being that k is consistent throughout this set.

I will use this feature, together with Eqn. (C.6), to demonstrate that the isotropic differential
oscillator strength is always zero for achiral molecules, regardless of the order in the multipole
expansion. For these purposes, I will demonstrate that the sets {fL(k;RA)} and {fR(k;RA)}
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are the same, yielding the same value upon isotropic averaging, which implies that the isotropic
differential oscillator strength is zero. Let us start off with the former set and apply parity inversion
onto each of its members

{fL(k;RA)} = {P̂
(
fL(k;RA)

)
} = {fR(−k; P̂RA)}, (C.7)

where in the second equality I have inserted Eqn. (C.6). If we further exploit the fact that the
set {RA} is invariant under orthogonal transformations and that the set {fL/R(k;RA)} does not
depend on the choice of k, we arrive at the result

{fL(k;RA)} = {fR(k;RA)}, (C.8)

which thus concludes the proof that isotropic ECD vanishes for achiral molecules.
The situation is different, however, when our molecule is chiral. In this case, we have an

enantiomeric pair, that I will label as L and R. Accordingly, the set of all their possible orientations
is given by the sets {RL} and {RR}. A defining feature of chiral molecules, is that their point
group only contain proper rotations. Any transformation with det(Û) = −1 thus converts between
the members of the enantiomeric pair. Unlike previous example, the parity operator thus has the
following action on the sets of all orientations

{P̂RL} = {RR}. (C.9)

Similar to previous example, we define the collections of oscillator strengths as {fL/R(ω;RL)} and
{fL/R(ω;RR)}. From this, it follows that it is not possible to recreate the proof given in previous
paragraph

{fL/R(k;RL)} = {P̂fL/R(k;RL)} = {fR/L(−k;RR)} (C.10)

{fL/R(k;RL)} = {P̂fL/R(k;RL)} = {fR/L(−k;RR)},

Therefore, based on these symmetry considerations, there is no a priori reason to assume that the
isotropic differential oscillator strength vanishes for chiral molecules. I recall that this derivation
is entirely based on inversion symmetry, with no reference to selection rules arising from specific
operators. Therefore, it is equally valid for the full- and truncated interaction.

C.2 Selection Rules
In this appendix, I will explore the selection rules of multipole moments and the full interaction
operator. This section heavily leans on the findings from Appendix B from ref. 113, which, in turn,
will be applied to the various interaction operators introduced Chapter 3. Conventional electric-
dipole selection rules and those corresponding to higher-order multipole moments are a consequence
of spherical symmetry. In the presence of this symmetry, one-electron states can be expressed as
eigenfunctions of the total angular momentum (see Section 2.3.3)

ĵz|jm〉 = ~m|jm〉; ĵ2|jm〉 = ~2j(j + 1)|jm〉, (C.11)
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which generally can be understood as irreducible representations of the full rotation group. However,
to fully exploit the restrictions imposed by spherical symmetry, we should also express the operator
in the transition moment in terms of this symmetry. The irreducible tensor operators generally
obey this condition. An irreducible tensor operator of rank k, comes with 2k + 1 components

T k = {T kq | q = k, k − 1, · · · ,−k}, (C.12)

where each component obeys the commutator relations

[ĵz, T
k
q ] = ~mT kq ; [ĵ±, T

k
q ] = ~

√
k(k + 1)− q(q ± 1)T kq±1. (C.13)

In this expression, I have introduced the ladder operators ĵ± = ĵx ± iĵy, which deserve their name
from their action on angular momentum eigenstates

ĵ±|jm〉 = ~
√
j(j + 1)−m(m± 1)|jm± 1〉. (C.14)

The symmetry reductions arising from irreducible tensor operators become manifest in the Wigner-
Eckart theorem

〈jm|T kq |j′m′〉 = (−1)j−m
(

j k j′

−m q m′

)
(j||T k||j′), (C.15)

where the integral on the right-hand-side is independent on the orientation of the system, i.e. the
values of m, m′ and k. Furthermore, the prefactor of this integral is given by the 3j-symbol, which
can be related to the Clebsch-Gordan coefficients (Eqn. (2.93)) according to

〈j1m1j2m2|j1j2; jm〉 = (−1)j1−j2−m
√

2j + 1

(
j1 j2 j
m1 m2 −m

)
= Cj1j2jm1m2m. (C.16)

The 3j-symbol mediates all selection rules, only being non-zero if the following conditions apply

m1 +m2 = m (C.17)
|j1 − j2| ≤ j ≤ j1 + j2

j1 + j2 + j ∈ Z.

Typically, the j-dependent integral is found by exploiting the fact that it is the same for all com-
ponents of T k. For example, by expressing the angular momentum operator as a irreducible tensor
operator, ĵ1 = {− 1√

2
ĵ−, ĵz,

1√
2
ĵ+}, the j-dependent integral can be found from the relation

〈jm|jz|j′m′〉 = ~m′δjj′δmm′ , (C.18)

thus implying

(j||ĵ(1)||j′) = ~
√
j(j + 1)(2j + 1)δjj′ . (C.19)

In the following, I will be treating operators that are derived from cα · A, where cα acts on
spin space, whereas A on position space. It will thus be useful to combine two irreducible tensor
operators Sk1 and T k2 , which may act on different spaces, into a new spherical tensor operator
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[Sk1 ⊗ T k2 ]kq =

k1∑
q1=−k1

k2∑
q2=−k2

Ck1k2k
q1q2q S

k1
q1 ⊗ T k2

q2 ; q = k, k − 1, · · · ,−k; |k1 − k2| ≤ k ≤ k1 + k2.

(C.20)
As a first example, I will apply this machinery in the derivation of electric-dipole selection rules.

For these purposes, I will conveniently express the electric-dipole moment operator in spherical basis

Q[1] = −
√

4π

3
erY10e0 +

√
4π

3
erY1−1e+ +

√
4π

3
erY11e−; e± = ∓ 1√

2
(ex ± iey). (C.21)

Within this basis, we can rewrite this operator as an irreducible tensor operator of rank 1

Q[1] = −erC1; C1 = {
√

4π

3
Y1−1,

√
4π

3
Y10,

√
4π

3
Y11}, (C.22)

which I will insert in Eqn. (C.15)

− 〈jm|erC1
q |j′m′〉 = (−1)j−m

(
j 1 j′

−m q m′

)
(j||C1||j′). (C.23)

From Eqn. (C.17), the 3j-symbol yields non-zero results if

m′ + q = m (C.24)
|j − 1| ≤ j′ ≤ |j + 1|
j + j′ + j ∈ Z.

Therefore, the selection rules of electric-dipole transitions are ∆j = ±1, 0; ∆m = ±1, 0, with the
caveat that any transition of the type j = 0 → j = 0 are forbidden, as can be inferred from the
3j-symbol. Exactly the same selection rules apply to the velocity representation, as we can express
the α matrices in irreducible tensor form as well

α1 = {− 1√
2
α−, αz,

1√
2
α+}; α± = αx ± iαy, (C.25)

which has the same rank as Eqn. (C.22), thus suggesting that the same selection rules apply.
Deriving selection rules for magnetic-dipole transitions is more difficult, as this operator has a more
complicated structure, being defined as the cross-product between the position and current vector.
It is possible, however, to apply the same procedure as the one outlined before. Again, we have
to express the relativistic magnetic-dipole moment operator as an irreducible tensor operator. In
other words, we first have to express this operator in spherical basis, which can be achieved by
evaluating the cross-product of Eqn. (C.22) and (C.25). From [113, Equation B.3.149], it follows
that the cross-product of two first rank spherical tensor can be expressed as

(a1 × b1)q = −i
√

2[a1 ⊗ b1]1q = −i
√

2
∑
q1q2q

C111
q1q2qa

1
q1b

1
q2 , (C.26)
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where in the second equality, I have used the composition rule for two spherical tensors (Eqn. (C.20)).
Expressed in spherical basis, the transition moment stemming from the magnetic-dipole moment

can be expressed as

〈jm|m̂[1]
q |j′m′〉 = i

√
2〈jm|er[C1⊗cα1]1q |j′m′〉 = (−1)j−mi

√
2

(
j 1 j′

−m q m′

)
(j||er[C1⊗cα1]1||j′).

(C.27)
Therefore, the magnetic-dipole selection rules are the same as for the electric-dipole: ∆j = ±1, 0; ∆m =
±1, 0(j = 0 9 j = 0). Alternatively, selection rules can be derived in terms of the orbital angular
momentum of the large- and small component (∆` = 0, 2). However, this approach will not be
pursued here, as the orbital angular momentum is not a good quantum number, which makes these
selection rules less useful in current context. For a full derivation, see ref. 297.

It should be noted, however, that these selection rules drastically differ from the ones derived
in a non-relativistic framework, where the magnetic-dipole moment assumes the more simple form
m̂

[1]
nr = e

2mc
ˆ̀. Further recalling that the non-relativistic one-electron atomic states can be expressed

as ψn`m(r) = 1
rRn`(r)Y`m(θ, φ), the selection rules follow from

〈ψni`imi |
e

2mc
ˆ̀|ψnf `fmf 〉 =

∫ ∞
0

drRni`iRnf `f

∫ π

0
dθ sin θ

∫ 2π

0
dφY ∗mi`i

e

2mc
ˆ̀Ymf `f , (C.28)

where I have used the fact that the non-relativistic magnetic-dipole moment operator is purely
angular. By expressing the angular momentum operator in spherical basis, Eqn. (C.14) can be
exploited. Orthogonality relations subsequently give the following selection rules ∆n = 0; ∆` =
0, which suggest that magnetic-dipole transitions can only occur inside the manifold of quasi-
degenerate states split by spin-orbit coupling. As noted in Section 4.5, this difference in selection
rules can have severe consequences on the magnitude of the first-order isotropic differential oscillator
strength.

Although I will not show it explicitly here, the electric-quadrupole selection rules can be derived
by expressing this operator in terms of the following irreducible tensor operator of rank 2:

C2 = {
√

4π

5
Y2−2,

√
4π

5
Y2−1,

√
4π

5
Y20,

√
4π

5
Y21,

√
4π

5
Y22}. (C.29)

From the Wigner-Eckart theorem it can thus be concluded that its selection rules are given by
∆j = ±2,±1, 0; ∆m = ±2,±1, 0(j = 0 9 j = 0). Using the procedure outlined above, it is in
principle possible to find selection rules for multipole moments to arbitrary order.

In the following, however I will use the machinery of irreducible tensor operator to assess the
selection rules of the full interaction operator, which I will conveniently expand using a plane-wave
expansion

T̂p =
e

ω
cαpe

ik·r = 4π
e

ω

∞∑
`=0

∑̀
m=−`

i`j`(kr)Y
m∗
` (ek)cαpY

m
` (θ, φ), (C.30)

where the α matrix is expressed in spherical basis. Starting from the irreducible tensor operator
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Xk
q = [α(1) ⊗C(l)]kq =

k1∑
q1=−k1

k2∑
q2=−k2

C1lk
q1q2qαq1C

(l)
q2 , (C.31)

it can be shown that the full interaction operator can be expressed in terms of this operator by
multiplying above operator with C1`k

pmq and exploiting the orthogonality of the Clebsch-Gordan
coefficients

|j1+j2|∑
j3=|j1−j2|

j3∑
m3=−j3

Cj1j2j3m1m2m3
Cj1j2j3
m′1m

′
2m3

= δm1m′1
δm2m′2

, (C.32)

where the final result can be identified with the terms appearing in Eqn. (C.30)

|`+1|∑
k=|`−1|

k∑
q=−k

C1`k
pmq[α

(1) ⊗C`]kq =
∑
k,q

k1∑
q1=−k1

k2∑
q2=−k2

C1`k
pmqC

1`k
q1q2qαq1C

`
q2 (C.33)

=

k1∑
q1=−k1

k2∑
q2=−k2

δpq1δmq2αq1 ⊗ C`q2 = αpC
`
m.

Therefore, the full interaction operator can be expressed as

T̂p =
e

ω
cαpe

ik·r =
√

4π
e

ω

∞∑
`=0

∑̀
m=−`

√
2`+ 1i`j`(kr)Y

m∗
` (ek)

( |`+1|∑
k=|`−1|

k∑
q=−k

C1`k
pmqX

k
q

)
. (C.34)

Due to the complexity of this expression, which has contributions from nearly all irreps, it may
seem as if there are no selection rules associated to this operator. However, upon closer inspection,
it follows that the index k assumes values between 1 and∞, which in turn implies that a transitions
between two states of zero angular momentum always vanishes. Therefore, the selection rules
j = 0 9 j = 0 seems to be a universal rule that applies throughout each order of the multipole
expansion.

C.3 Manipulations of Summation Indices
In this appendix, I will illustrate several useful techniques to rewrite summation indices. For these
purposes, let A be a square matrix of dimension N and suppose that we want to calculate its sum
over all elements

N∑
n=0

N∑
m=0

Anm. (C.35)

Written in this form, the summation is carried out row-wise, whereas we could also have defined it
column-wise
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N∑
m=0

N∑
n=0

Anm. (C.36)

Figure C.3 depicts a diagram of both possibilities. In the following example, I will demonstrate all
possible ways to sum all terms on the diagonal and lower triangle of this matrix. I will start off
with column-wise and row-wise summation, respectively

N∑
m

N∑
n=m

Anm =
N∑
n=0

n∑
m=0

Anm. (C.37)

It should be noted that on the diagonal and each sub-diagonal, the index combination v = n −m
assumes a constant, distinct and positive value, suggesting that we can use it as a summation index.
Summing over v implies that we are summing over the diagonals,

N∑
v=0

N−v∑
m=0

Avm =
N∑
v=0

N∑
n=v

Anv, (C.38)

where we have the additional choice to run the second index over the columns or rows. In Figure
C.3 a diagram of this type of summations is presented.
In some cases, it may also be useful to constrain our summation over the upper left triangle of the
matrix

N∑
m=0

N−m∑
n=0

Anm =
N∑
n=0

n∑
m=0

Anm, (C.39)

where the left-hand-side represents column-wise summation and the right-hand-side row-wise sum-
mation. Considering that along the any sub anti-diagonal and the anti-diagonal the index y = n+m
is constant, distinct and positive, which makes it a suitable summation index. Therefore, it is also
possible to carry out the summation over the sub anti-diagonals and the anti-diagonal

N∑
y=0

y∑
m=0

Aym =

N∑
y=0

y∑
n=0

Any. (C.40)

In Figure C.4, this type of summations is depicted diagrammatically.
Another useful technique to manipulate summations involves redefining of summation indices.

Similar to previous examples, the main idea is that a summation can be carried out in any order,
thus implying that we may shift the summation index, reverse it or even both. For example, suppose
we are dealing with a simple row-wise summation and we want to shift the index of the column by
a certain amount. This operation can be realized by applying the substitution

m→ m′ = m+ l (C.41)

which implies that we have to insert m = m′ − l into our summation

N∑
n=0

N∑
m′−l=0

An,m′−l =
N∑
n=0

N−l∑
m′=l

An,m′−l (C.42)
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Typically, once the transformation has been completed, the prime on the index m′ is dropped,
yielding the relation

N∑
n=0

N−l∑
m=l

An,m−l (C.43)

Another useful example is the reversal of a summation, which can carried out using the substi-
tution

m→ m′ = N −m, (C.44)

and inserting the relation m = N −m′

N∑
n=0

N∑
N−m′=0

An,N−m′ =

N∑
n=0

0∑
−m′=−N

An,N−m′ =

N∑
n=0

0∑
m′=N

An,N−m′ =

N∑
n=0

N∑
m′=0

An,N−m′ , (C.45)

where the prime on the indices can be dropped afterwards.

C.4 Restricted Excitation-Window Approach
The aim of this appendix is to briefly discuss the restricted excitation-window approach. In Section
3.6.2, the conditions were given that indicate whether the generalized length- and velocity repre-
sentation are equivalent at the SCF level of theory. As a side note, I argued that this equivalence is
broken if the restricted excitation-window approach is applied. Since this approach takes such an
important position in this work, I will devote this section to the discussion of its principles.

In Chapter 1, we have learned that solution vectors, and hence transition moments, are obtained
by solving the generalized eigenvalue problem from Eqn.(1.114). It was also noted that the Hessian
matrix appearing in this problem is typically much too large to store, thus requiring us to project
it onto a set of trial vectors and solve it in this reduced basis. In the context of core transitions,
such methods are cumbersome because they are generally bottom-up approaches. Therefore, before
obtaining the core transition, all transitions of lower excitation energies need to be calculated first.

To solve this problem, the orbital rotation operator (Eqn. (1.85)) is restricted, such that the
occupied part only contains contributions from the core orbitals. For example, if we want to study
the K-edge of the radium atom, the orbital rotation operator assumes the form

κ̂(t) =
∑
a

[
κai1s â

†
aâi1s − κ∗ai1s â

†
i1s
âa

]
, (C.46)

where the Einstein summation convention is not applied and i1s is the index corresponding to
the 1s1/2 orbital of the radium atom. This procedure is referred to as the restricted excitation-
window approach.[215, 216] Closely related is the core-valence separation scheme, which applies
to EOM-CC.[298, 299] Approximation schemes of this type are justified because core transitions
typically do not contain significant contributions from occupied valence orbitals. These methods
thus allow to selectively study transitions stemming from the core shell. However, due to the nature
of the restricted excitation-window approach, the terms appearing in Eqn. (3.107) do not cover
all occupied-virtual/virtual-orbital pairs, thus breaking equivalence of the generalized length- and
velocity representation.
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Figure C.1: schematic representation of circularly polarized light interacting with an anisotropic
sample (panel A), an isotropic achiral sample (B) and an isotropic chiral sample (C). The cor-
responding oscillator strengths are shown above. In the isotropic case, the oscillator strength is
constructed as an average of the set {fL/R(k;RA}.
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A00 A01 A02 A03 . . .

A10 A11 A12 A13 . . .

A20 A21 A22 A23 . . .

A30 A31 A32 A33 . . .

...
...

...
... . . .

A00 A01 A02 A03 . . .

A10 A11 A12 A13 . . .

A20 A21 A22 A23 . . .

A30 A31 A32 A33 . . .

...
...

...
... . . .

Figure C.2: diagrammatic representation of column-wise (right) and row-wise (left) summation of
the elements of A.

A00 A01 A02 A03 . . .

A10 A11 A12 A13 . . .

A20 A21 A22 A23 . . .

A30 A31 A32 A33 . . .

...
...

...
... . . .

A00 A01 A02 A03 . . .

A10 A11 A12 A13 . . .

A20 A21 A22 A23 . . .

A30 A31 A32 A33 . . .

...
...

...
... . . .

v = 0 A00 A01 A02 A03 . . .

v = 1 A10 A11 A12 A13 . . .

v = 2 A20 A21 A22 A23 . . .

v = 3 A30 A31 A32 A33 . . .

...
...

...
... . . .

Figure C.3: diagrammatic representation of the column-wise (left), row-wise (middle) and diagonal
(right) summation of the lower triangle and main diagonal of a matrix. For the summation on the
right, the index v = n−m is given for each (sub) diagonal.

A00 A01 A02 A03 . . .

A10 A11 A12 A13 . . .

A20 A21 A22 A23 . . .

A30 A31 A32 A33 . . .

...
...

...
... . . .

A00 A01 A02 A03 . . .

A10 A11 A12 A13 . . .

A20 A21 A22 A23 . . .

A30 A31 A32 A33 . . .

...
...

...
... . . .

y = 0 A00 A01 A02 A03 . . .

y = 1 A10 A11 A12 A13 . . .

y = 2 A20 A21 A22 A23 . . .

y = 3 A30 A31 A32 A33 . . .

...
...

...
... . . .

Figure C.4: diagrammatic representation of the column-wise (left), row-wise (middle) and diagonal
(right) summation of the sub anti-diagonals and anti-diagonal of a matrix. For the summation on
the right, the index y = n+m is given for each (sub) anti-diagonal.

168



Appendix D

Complements to Chapter 4

D.1 Linear Dependences in Small Component Function
Throughout the main text, it is advocated to use a tight linear dependence threshold, i.e. less
functions deleted, for the calculations of radial distributions associated with truncated interaction.
In this section, I will demonstrate what happens to the magnetic multipoles if the default linear
dependence threshold in the Dirac code is used (10−6 for the large component space and 10−8 for
the small component space).

Figure D.1 shows the radial distributions of the magnetic multipole moments for the core tran-
sition. In these calculations, the default linear dependence threshold is applied, the effects of which
are clearly visible: for 1 < n < 5, the radial distributions of the dyall.ae3z and dyall.ae4z basis
sets oscillate considerably around the numerical reference. At higher orders, the oscillations appear
to less pronounced because the r-dependent prefactor dominates the characteristics of the curve.
Although the oscillations are diminished in these curves, the overall deviations vastly increase. Inter-
estingly, the basis set convergence seems to be inverted: larger basis sets introduce larger deviations
from the numerical reference.

To understand the origin of these oscillations, the involved orbitals need to be analyzed (Figure
D.2). The 7p1/2 orbital converges smoothly towards the numerical reference, whereas the error curve
of the 1s1/2 orbital exhibit similar oscillations as the magnetic multipoles. Especially the basis set
convergence of the small component of the 1s1/2 orbital is problematic: instead of reducing the
error, the dyall.ae3z and dyall.ae4z deteriorate the description of the small component function.
It seems that most of the oscillations in Figure D.1 stem from the small component of the 1s1/2

orbital. Therefore, in the following, I inspect the Q1,−1 function in terms of its basis set expansion.
Ideally, the large and small component are expanded in a two-component basis (Eqn. (2.99))

Gακ`m = Rα`(r)ξκm(θ, φ), (D.1)

where the radial part is a Gaussian function

Rα` = Nα`r
`e−αr

2
; Nαl =

2(2α)3/4

π1/4

√
2`

(2`+ 1)!!

(√
2α
)` (D.2)

and the angular part a spherical spinor, depending on the angular quantum numbers κ and m.
However, in its current form, this basis cannot be used for the small component function, because
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Figure D.1: Core transition (1s1/2 → 7p1/2): radial distributions of magnetic multipole moments
m̂[2n], n ∈ [1, 7]. These distributions are calculated with the default linear dependence thresholds:
10−6 and 10−8 for the large and small component space. In each box, the upper panel contains the
radial distribution, while the lower panel contains error relative to the numerical reference. Note
that each box has different scales. The percentages in the upper right corner of each box are the
relative errors of the transition moments, i.e. |Tbas−Tnum

Tnum
|×100%.

the kinetic balance condition is not met (see Section 2.4.2). In radial form, a kinetically balanced
basis assumes the form[90]

RS ∝
{√

2`+ 3Rα,`L+1 − 2
√

2`+ 1Rα,`L−1 for κL = `L > 0

Rα,`L+1 for κL = −(`L + 1) < 0,
(D.3)

As an example, the small component `S = 1 can be generated either from `L = 0 or `L = 2, where
the latter function is to be used for p1/2 and the former for p3/2. In the atomic case, the 2-component
basis functions do not mix since they have different angular parts, corresponding to κS = +1 and
κS = −2, respectively.

However, in the Dirac code, a scalar basis is employed

Gα`m = Rα`(r)Y`m(θ, φ), (D.4)

Small component basis functions with radial parts corresponding to both forms of Eqn. (D.3) are
generated, hence adhering to kinetic balance. However, now, in the case of e.g. `S = 1, basis
functions can contribute to both p1/2 and p3/2, hence possibly amplifying linear dependencies.
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Figure D.2: Radial functions of the large and small component of the 1s1/2 (〈r〉 = 0.01454 a0)and
7p1/2 orbital (top row) and their deviations from the numerical reference (bottom row). These
orbitals were taken from the radium atom with [Ra]1s−1

1/27p1
1/2 configuration. The basis set orbitals

were calculated at the 4c-HF level using Dirac, while the numerical reference was calculated with
GRASP. These calculations where carried out using the default linear dependence threshold: 10−6

and 10−8 for the large and small component space. Note that the scaling is different for each
individual box and that the error curves are plotted in a different range than the radial functions.

D.2 Augmented Basis Sets
In Section 4.3, I have investigated the absolute basis set convergence of the full interaction operator
and the various multipole moments. In general, we have observed that the high-order multipole
moments require at least the dyall.ae4z basis set. However, compared to the dyall.ae2z basis set,
the dyall.ae4z basis contains additional tight functions, in addition to functions of higher orbital
angular momentum, that may not contribute to the high-order multipole moments. Therefore, I
investigated the effects of augmenting the dyall.ae2z basis set, such that a better balance could be
found between accuracy and basis set size. I have employed two schemes to construct a new basis
set:

I Adding diffuse functions to the dyall.ae2z basis set in an even-tempered fashion.
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II Replacing the diffuse functions of the dyall.ae2z basis set with the diffuse functions of the
larger basis sets. This scheme is inspired by recent work of Jensen and coworkers[219] in
which they augmented the cc-pVnZ basis set with the core polarization functions of the cc-
pCV(n+1)Z basis set.

In Table D.1, the exponents and the shell of the augmentation functions from Scheme I are
depicted. Because the dyall.aeXz basis sets are constructed from uncontracted functions, there is
no need to give contraction coefficients in Table D.1. To generate the augmentation functions, the
ratio was taken of the two most diffuse exponents. The exponents of the augmentation functions are
obtained by multiplying an integer multiple of this ratio with the most diffuse exponent. Table D.2
summarizes the composition of the basis sets from Scheme II. These basis sets are constructed by
replacing theN most diffuse functions from the dyall.ae2z basis set with theM most diffuse functions
of the dyall.ae3z or dyall.ae4z basis set. Accordingly, these basis sets are named ae2z+dae3z and
ae2z+dae4z, respectively. In the construction of these bases, M is always chosen larger than N ,
hence creating a larger basis set than the original. However, there remains a certain degree of
arbitrariness in the construction of the basis sets in Scheme II, because there is not a general
method to decide how many functions to remove and introduce. Jensen and coworkers did not
face this problem, because the cc-pcVnZ basis sets are constructed by introducing core-polarization
functions to the cc-pVnZ basis set. Therefore, the augmentation of the cc-pVnZ basis set with the
core polarization functions of the cc-pCV(n+1)Z basis set is unambiguous.

Table D.1: Exponents of the augmentation functions used for the basis sets of Scheme I. The letters
s and p denote the shell of the augmentation functions. Numbers in parentheses are exponents of
10.

s1 s2 s3 p1 p2 p3

Exponent 8.672(−3) 3.669(−3) 1.552(−3) 7.304(−3) 2.821(−3) 1.089(−3)

Table D.2: Composition of the hybrid basis sets from Scheme II. The third column summarizes how
many diffuse functions from the dyall.ae2z were removed (N), while the fourth column indicates the
number of diffuse functions that were added (M) from the dyall.aeXz (X = 3, 4) basis set.

Basis shell N M

ae2z+dae3z s 9 11
p 8 10

ae2z+dae4z s 8 12
p 8 12

To assess the performance of these composite basis sets, I computed the radial distributions of
the length representation electric and magnetic transition multipole moments for the 1s1/2 → 7p1/2

transition. The results of Scheme I are depicted in Figures D.3 and D.4, respectively. In both figures,
the augmented basis sets have similar performance for the first two orders. For n = 2 and n = 3,
the augmented basis sets seem to induce small oscillations with respect to the numerical reference.
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At the three highest orders, the augmented basis sets completely fail to capture the shape of the
reference due to severe oscillations, despite the use of tight thresholds for linear dependence. It can
thus be concluded that the basis sets from Scheme I are not a proper substitute for the dyall.ae3z
and dyall.ae4z basis sets.
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Figure D.3: Scheme I. Radial distributions of electric transition multipole moments in the general-
ized length representation for the 1s1/2 → 7p1/2 transition. The basis sets for these calculations were
generated by augmenting the dyall.ae2z basis set with diffuse functions in an even-tempered fash-
ion. The percentages in the upper right corner of each box are the relative errors of the transition
moments, i.e. |Tbas−Tnum

Tnum
|×100%.

Figures D.5 and D.6 depict the results from Scheme II for the length representation electric and
magnetic transition multipole moments, respectively. The basis sets constructed with this scheme
provide no obvious improvement over the dyall.ae2z basis sets. Therefore, Scheme II is not a suitable
alternative to the dyall.ae3z and dyall.ae4z basis sets.

D.3 H2S2
Linear and differential absorption spectra for H2S2 are depicted in Figure D.7. Corresponding
oscillator strengths are given in Table D.3.
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Figure D.4: Scheme I. Radial distributions of magnetic transition multipole moments for the 1s1/2 →
7p1/2 transition. The basis sets were generated by augmenting the dyall.ae2z basis set with diffuse
functions in an even-tempered fashion. The percentages in the upper right corner of each box are
the relative errors of the transition moments, i.e. |Tbas−Tnum

Tnum
|×100%.
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Figure D.5: Scheme II. Radial distributions of electric transition multipole moments in the general-
ized length representation for the 1s1/2 → 7p1/2 transition. The basis sets for these calculations were
generated by augmenting the dyall.ae2z basis set with the diffuse functions of either the dyall.ae3z
or dyall.ae4z basis sets. The percentages in the upper right corner of each box are the relative errors
of the transition moments, i.e. |Tbas−Tnum
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Figure D.6: Scheme II. Radial distributions of magnetic transition multipole moments for the
1s1/2 → 7p1/2 transition. The basis sets for these calculations were generated by augmenting the
dyall.ae2z basis set with the diffuse functions of either the dyall.ae3z or dyall.ae4z basis sets. The
percentages in the upper right corner of each box are the relative errors of the transition moments,
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Figure D.7: Isotropic linear (top) and differential (bottom) absorption spectra of H2S2: (a) valence,
(b) L2,3-edge, (c) L1-edge and (d) K-edge spectra using the full interaction operator (green shadings)
or the lowest non-vanishing generalized velocity representation (orange lines). Left axes correspond
to (differential) absorption cross-sections, whereas (differential) oscillator strengths are shown on
the right axes. Black sticks indicate the location of all computed transitions. The stick spectra were
convolved with a Gaussian lineshape with FWHM of 0.4 eV. No shifts have been applied to the
theoretical spectra.
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D.4 Analysis of the Rotational Strength Tensor
Elements of the rotational strength tensor of Eqn. (3.152) of the main text, using the Einstein sum-
mation convention, can be split into the electric-dipole/electric-quadrupole (E1–E2) and electric-
dipole/magnetic-dipole (E1–M1) contributions

RE1–E2
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4meω
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and analyzed in terms of symmetry. The target molecules, in the chosen geometries, have C2

symmetry. Fixing the origin at the center of mass we find that for excitations of irrep A the
rotational strength tensor has the structure
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where a shorthand notation is used for transition moments, e.g. Q[2]
xy = 〈f |Q̂[2]

xy|i〉 . For excitations
of B symmetry the corresponding matrices are

RE1–E2
B =

4meω
2

e2~c

 −1
2Q

[2]
xzQ̂[1]

y −1
2Q

[2]
yzQ[1]

y 0
1
2Q

[2]
xzQ[1]

x
1
2Q

[2]
yzQ[1]

x 0

0 0 1
2Q

[2]
zxQ[1]

y − 1
2Q

[2]
zyQ[1]

x

 (D.9)

RE1–M1
B =

4meω
2

e2~c

 − i
ωm

[1]
y Q[1]

y
i
ωm

[1]
x Q[1]

y 0
i
ωm

[1]
y Q̂[1]

x − i
ωm

[1]
x Q[1]

x 0

0 0 − i
ωm

[1]
x Q[1]

x − i
ωm

[1]
y Q[1]

y

 . (D.10)

It should be noted that in both irreps the elements R[1]
xz, R

[1]
yz , R

[1]
zx, R

[1]
zy are strictly zero by symmetry;

in the A irrep elements R[1]
zz are zero as well.
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Table D.4: Rotational strength tensors used for the generation of first-order contributions for excita-
tions of A symmetry in Figure 4.18 of the main text. Left: total first-order rotatory strength tensor;
middle: E1–E2 contribution and right: E1–M1 contribution, as obtained with the gauge origin in
the COM. Numbers in parentheses are exponents of 10.

A valence: total E1–E2 E1–M1
1.077(-04) -1.834(-05) 0.000 3.008(-05) -1.834(-05) 0.000 7.764(-05) 0.000 0.000
7.175(-06) 4.757(-05) 0.000 = 7.175(-06) -3.008(-05) 0.000 + 0.000 7.764(-05) 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A L3-edge
-6.371(-05) -1.402(-06) 0.000 7.306(-05) -1.402(-06) 0.000 -1.368(-04) 0.000 0.000
-9.509(-06) -2.098(-04) 0.000 = -9.509(-06) -7.306(-05) 0.000 + 0.000 -1.368(-04) 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A L2-edge
-2.007(-04) 9.546(-06) 0.000 2.229(-04) 9.546(-06) 0.000 -4.236(-04) 0.000 0.000
-3.550(-05) -6.465(-04) 0.000 = -3.550(-05) -2.229(-04) 0.000 + 0.000 -4.236(-04) 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A L1-edge
-1.243(-05) 2.264(-03) 0.000 -1.222(-04) 2.264(-03) 0.000 1.097(-04) 0.000 0.000
2.343(-04) 2.319(-04) 0.000 = 2.343(-04) 1.222(-04) 0.000 + 0.000 1.097(-04) 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A K-edge
8.743(-07) 5.802(-03) 0.000 -2.477(-04) 5.802(-03) 0.000 2.485(-04) 0.000 0.000
4.321(-05) 4.962(-04) 0.000 = 4.321(-05) 2.477(-04) 0.000 + 0.000 2.485(-04) 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table D.5: Rotational strength tensors used for the generation of first-order contributions for excita-
tions of B symmetry in Figure 4.18 of the main text. Left: total first-order rotatory strength tensor;
middle: E1–E2 contribution and right: E1–M1 contribution, as obtained with the gauge origin in
the COM. Numbers in parentheses are exponents of 10.

B valence: total E1–E2 E1–M1
-6.159(-05) 4.502(-05) 0.000 -6.159(-05) 4.502(-05) 0.000 -5.382(-05) 7.800(-05) 0.000
4.780(-05) -3.494(-05) 0.000 = 4.780(-05) -3.494(-05) 0.000 + 4.177(-05) -6.054(-05) 0.000

0.000 0.000 -1.322(-04) 0.000 0.000 -1.322(-04) 0.000 0.000 -1.144(-04)

B L3-edge
-1.124(-08) -2.632(-06) 0.000 4.131(-08) -9.106(-07) 0.000 -5.255(-08) -1.721(-06) 0.000
9.001(-07) 2.108(-04) 0.000 = -3.308(-06) 7.292(-05) 0.000 + 4.208(-06) 1.378(-04) 0.000

0.000 0.000 6.484(-05) 0.000 0.000 -7.296(-05) 0.000 0.000 1.378(-04)

B L2-edge
-5.708(-08) -1.250(-05) 0.000 1.490(-07) -4.298(-06) 0.000 -2.060(-07) -8.199(-06) 0.000
3.011(-06) 6.593(-04) 0.000 = -7.859(-06) 2.268(-04) 0.000 + 1.087(-05) 4.326(-04) 0.000

0.000 0.000 2.055(-04) 0.000 0.000 -2.269(-04) 0.000 0.000 4.324(-04)

B L1-edge
-3.269(-04) -2.307(-03) 0.000 -3.622(-04) -8.438(-04) 0.000 3.528(-05) -1.464(-03) 0.000
-3.238(-05) -2.285(-04) 0.000 = -3.588(-05) -8.358(-05) 0.000 + 3.494(-06) -1.450(-04) 0.000

0.000 0.000 3.361(-04) 0.000 0.000 4.458(-04) 0.000 0.000 -1.097(-04)

B K-edge
2.552(-05) -5.859(-03) 0.000 -7.107(-05) -1.786(-03) 0.000 9.660(-05) -4.073(-03) 0.000
2.163(-06) -4.965(-04) 0.000 = -6.023(-06) -1.513(-04) 0.000 + 8.186(-06) -3.452(-04) 0.000

0.000 0.000 -2.617(-05) 0.000 0.000 2.224(-04) 0.000 0.000 -2.486(-04)
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Introduction
Au fil des siècles, l’évolution de la chimie se caractérise par l’émergence de sous-disciplines distinctes
dont les frontières se sont progressivement estompées au fil du temps. Un exemple notable est
l’avènement de la chimie organique au XIXe siècle. Au début, ce domaine était principalement
préoccupé par la chimie de la matière vivante, tandis que son cousin plus développé et plus ancien,
la chimie inorganique, était plutôt centré sur les sels inorganiques et les acides minéraux. Pour cette
raison, une division dichotomique de la chimie prévalait, selon laquelle la chimie organique repose
sur des principes fondamentalement différents de la chimie inorganique. Cependant, une découverte
clé qui a remis en question ce paradigme est la synthèse de l’urée à partir de matière inorganique par
Wöhler en 1828. Associée aux avancées ultérieures de la théorie moléculaire, l’unification des deux
domaines était inévitable. Les chimistes au cœur de ces développements peuvent être comparés à
des détectives, déduisant méticuleusement les caractéristiques structurelles à l’aide de ressources
minimalistes, telles que l’analyse de la décomposition et la réactivité chimique.

Dans la chimie moderne, la résolution de la structure moléculaire est devenue une tâche routinière
grâce à l’avènement de la spectroscopie. La spectroscopie mesure généralement les interactions
lumière-matière en termes d’absorption, d’émission ou de diffusion en fonction de la longueur d’onde.
Cependant, l’utilité de la spectroscopie va au-delà de la simple caractérisation structurale, car
elle sert également de technique pour évaluer les propriétés moléculaires, dont la nature dépend
généralement de la longueur d’onde de la lumière. Par exemple, dans la plage d’énergie inférieure du
spectre, c’est-à-dire les micro-ondes et l’infrarouge (IR), le rayonnement induit des rotations et des
vibrations moléculaires, tandis que le régime UV-Vis est associé à des excitations électroniques. En
réduisant davantage la longueur d’onde, on obtient des rayons X, dont l’application en spectroscopie
moléculaire a été pionnière grâce à de Broglie, Siegbahn et Stenström. Les rayons X ont une
énergie suffisante pour révéler la structure des couches d´électrons internes, au coeur des atomes
et qui ne sont pas autrement affectés par le rayonnement UV-Vis. De plus, au-dessus d’un certain
seuil, les rayons X peuvent même ioniser le système, ce qui se manifeste par des sauts verticaux
soudains dans le spectre d’absorption. Les seuils constituent un outil particulièrement utile dans
l’analyse structurale, car ils sont centrés sur les énergies d’ionisation des électrons internes, étant
ainsi spécifiques aux éléments et bien séparés.

Cependant, les caractéristiques structurales les plus intéressantes ne sont pas facilement déduites
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des seuils seuls, mais plutôt à partir de leurs régions voisines. Dans la région au-delà du seuil, on
peut observer des oscillations subtiles, induits par des interférences de photoélectrons qui sont
rétrodiffusés par leur environnement local. La technique de mesure de ces oscillations, également
appelée structure fine d’absorption des rayons X étendue (EXAFS), nous fournit des informations sur
la structure cristalline de l’échantillon. Cependant, cette thèse sera consacrée plutôt au spectroscopie
de structure près du front d´absorption de rayons X, qui peut être sondé à l’aide de la structure
fine d’absorption des rayons X en bordure (NEXAFS). Dans cette plage d’énergie, les rayons X ont
encore suffisamment d’énergie pour interagir avec les électrons internes, bien qu’ils soient excités
vers des niveaux liés et vides. Étant donné que les orbitales internes tendent à être localisées autour
des noyaux, le NEXAFS fournit des informations spécifiques au site sur le système à l’étude, formant
ainsi un complément à la spectroscopie UV-Vis, qui implique des excitations de valence qui sont
délocalisées sur toute la molécule. Dans sa forme la plus simple, le NEXAFS est basé sur la lumière
polarisée linéairement, bien que cette procédure ait un point faible critique : elle ne distingue
pas entre les membres d’une paire énantiomère. Pour faire cette distinction, il faut mesurer son
dichroïsme circulaire électronique (ECD), qui est défini comme la différence d’absorption entre la
lumière polarisée circulairement à gauche et à droite. En général, cette quantité est mesurée dans la
plage UV-Vis, bien qu’elle se manifeste également dans la gamme des rayons X, où elle est appelée
dichroïsme circulaire naturel des rayons X (XNCD) par convention. Le XNCD présente les mêmes
avantages que le NEXAFS ordinaire en ce sens qu’il fournit plus d’informations locales par rapport
à l’ECD dans la plage UV-Vis.

Cependant, la création de lumière polarisée circulairement à des fréquences élevées peut être
assez difficile, car les rayons X sont notoirement difficiles à manipuler à l’aide d’éléments optiques
conventionnels. De nos jours, cependant, cet exploit technique peut être réalisé de manière rou-
tinière grâce aux récents développements de la radiation synchrotron. Initialement produit en tant
que sous-produit de la physique des particules, ces dispositifs sont des accélérateurs de particules
circulaires qui utilisent des champs magnétiques pour contraindre les électrons à des orbites circu-
laires dans leur intérieur creux. Les rayons X peuvent être extraits de ces électrons en appliquant un
champ magnétique alternatif supplémentaire qui est perpendiculaire à la trajectoire des électrons.
Les oscillations induites des électrons donnent naissance à une source cohérente de rayons X qui
permet un contrôle complet de la polarisation. Cela rend la radiation synchrotron particulièrement
utile pour effectuer des expériences NEXAFS. D’autres techniques alternatives qui ont gagné en
popularité sont basées sur les lasers à électrons libres ou la génération d’harmoniques élevées.

Même si de nombreuses informations utiles peuvent être extraites de ces expériences seules,
l’attribution et l’interprétation des spectres nécessitent des apports de la théorie et de la simulation.
Par exemple, la stéréochimie absolue des molécules chirales ne peut être déterminée que lorsque le
XNCD est comparé à des résultats équivalents issus de simulations chimiques quantiques. De plus,
en conjonction avec la théorie, le NEXAFS peut être utilisé pour déterminer l’état d’oxydation et
l’environnement de coordination local des complexes métalliques. Par conséquent, les avancées dans
les techniques expérimentales doivent aller de pair avec le développement de la théorie et de ses
mises en œuvre.

Pour simuler la spectroscopie des rayons X, il semble naturel d’appliquer la théorie bien établie
développée pour le régime UV-Vis. Cependant, une grande disparité avec l’expérience est observée
si l’on transfère sans réflexion cette théorie au domaine des rayons X. Pour corriger cette disparité,
il est donc nécessaire d’inclure plusieurs effets au-delà de ce qui est généralement requis pour la
spectroscopie UV-Vis. Tout d’abord, puisque les effets relativistes sont générés dans la région
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du coeur, ils doivent être pris en compte dans la simulation des excitations du coeur même pour
des éléments assez légers. Deuxièmement, après l’excitation de l’électron du coeur, le système
est laissé avec un trou qui réduit l´écrántage de la charge nucléaire. En conséquence, la charge
nucléaire effective augmente, ce qui équivaut à une stabilisation supplémentaire de l’état excité,
appelée relaxation du trou du coeur. Troisièmement, dans le régime UV-Vis, la longueur d’onde est
considérablement plus grande que l’étendue de la molécule, ce qui suggère que les champs semblent
uniformes du point de vue de la molécule. En raison de cette différence d’échelle, l’interaction
lumière-matière peut être effectivement décrite par les premiers termes d’une expansion multipolaire,
ce qui donne l’approximation électrique dipolaire pour la lumière polarisée linéaire et la force de
rotation pour le dichroïsme circulaire, cette dernière dépendant à la fois du moment dipolaire
électrique et magnétique. Dans les deux cas, seules les contributions dipolaires doivent être prises
en compte. Il semble donc naturel d’utiliser l’approximation dipolaire comme terme générique pour
désigner ces deux schémas. Dans le régime des rayons X, cependant, l’approximation dipolaire est
remise en question.

Dans cette thèse, j´étudiais si l’approximation dipolaire est valable dans la simulation de la
spectroscopie d’absorption des rayons X.

En général, il existe deux approches possibles pour inclure les effets non dipolaires : soit
l’interaction lumière-matière semi-classique est traitée de manière exacte, soit l’expansion multi-
polaire est tronquée au-delà de l’ordre zéro. Cependant, les expansions tronquées introduisent
inévitablement une dépendance à l’origine de jauge dans le calcul, un problème que Bernadotte
et al. ont résolu en développant la section efficace d’absorption plutôt que l’interaction lumière-
matière elle-même. De plus, des schémas de ce type peuvent également donner de sections efficaces
d’absorption négatives et de divergences apparentes, qui sont, en principe, toutes deux atténuées
si suffisamment de termes sont inclus dans l’expansion multipolaire, bien que le dernier problème
puisse nécessiter une quantité déraisonnablement de termes. Il existe plusieurs autres exemples
d’implémentations, en plus de celles des références susmentionnées, qui sont capables de calculer
les intensités d’absorption en utilisant soit une interaction tronquée, soit l’interaction complète.
Certains de ces schémas ont même été étendus pour modéliser des phénomènes plus complexes tels
que le dichroïsme circulaire magnétique des rayons X, la diffusion des rayons X ou l’absorption
transitoire. Cependant, toutes ces implémentations ont une plage spectrale d’application limitée,
car elles sont dérivées d’un cadre non relativiste, ayant au plus des corrections relativistes pertur-
batives. Dans le régime des rayons X durs, où les effets non dipolaires sont les plus pertinents, la
lumière excite généralement les orbitales du coeur des éléments lourds, ce qui nécessite un traite-
ment entièrement relativiste. Pour répondre à la question principale d’une manière qui s’applique
également au régime des rayons X durs, il est donc impératif de travailler dans un cadre relativiste.

Dans cette thèse, je présenterai une implémentation pour simuler les interactions lumière-matière
en utilisant à la fois l’interaction complète et tronquée dans un cadre relativiste à quatre composants.
Cette implémentation fait partie de Dirac, un code de chimie quantique spécialisé dans les calculs
moléculaires relativistes à deux ou quatre composants. Cependant, il convient de noter que même ce
niveau de théorie a une portée limitée. À des échelles d’énergie extrêmes, telles que celles rencontrées
dans les cations fortement chargés, les effets de l’électrodynamique quantique peuvent jouer un rôle
dans les spectres d’absorption des rayons X. De plus, je n’ai pas inclus les effets du trou du coeur,
dont l’importance a été évoquée dans le paragraphe précédent. Cependant, l’inclusion de ces effets
dépasse le cadre de cette thèse et ne sera pas poursuivie plus avant.
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E.1 Chapitre 1
Dans ce chapitre, je vais illustrer les méthodes de chimie quantique conventionnelles pour calculer les
spectres d’absorption UV-Vis. Les idées et dérivations exprimées dans ce chapitre suivent générale-
ment le livre Principes et Pratiques des Propriétés Moléculaires, auquel il convient de se référer pour
plus de détails. Pour classer le type d’approximations généralement effectuées dans la simulation
de la spectroscopie UV-Vis, je vais diviser le calcul des intensités d’absorption en trois composantes
principales : le calcul de l’état fondamental, le calcul de l’état excité et le traitement de l’interaction
lumière-matière.

Pour simplifier le calcul de l’état fondamental, des approximations peuvent être appliquées
soit au niveau de la méthode de la structure électronique, soit au niveau de l´Hamiltonien. Par
exemple, les orbitales de valence généralement impliquées en spectroscopie UV-Vis sont les moins
sensibles aux effets relativistes, suggérant qu’un Hamiltonien non relativiste, tel que l’Hamiltonien
de Schrödinger ou l’Hamiltonien de Pauli, est généralement suffisant. Une fois que l´Hamiltonien
à utiliser a été décidé, il faut choisir une méthode de structure électronique pour approximer la
complexité de la fonction d’onde à plusieurs corps. Il existe une pléthore de méthodes de structure
électronique parmi lesquelles choisir, chacune ayant un rapport coût-précision distinct. Par exemple,
l’état fondamental peut être obtenu de manière plus fiable à l’aide de méthodes de fonction d’onde
telles que le coupled cluster (CC) ou l’interaction de configuration (CI), bien que cela implique des
coûts de calcul élevés. Les coûts de calcul sont moindres pour la méthode de Hartree-Fock (HF),
bien que sa précision soit plutôt faible. Un rapport coût-précision amélioré peut être obtenu en
utilisant la théorie de la fonctionnelle de la densité (DFT), qui se situe généralement entre un calcul
HF et peut même approcher la précision des méthodes de fonction d’onde dans certains cas. Dans
cette thèse, le HF et la DFT seront les méthodes de choix pour décrire la fonction d’onde de l’état
fondamental. Par la suite, le terme "méthodes auto-cohérentes" sera utilisé pour englober les deux
approches.

En utilisant la fonction d’onde de l’état fondamental comme point de départ, diverses méthodes
sont disponibles pour traiter les états excités, comme cela sera plus clair dans ce chapitre. Pour les
états exacts et les fonctions d’onde CI, cette procédure est plutôt simple, car les états excités peuvent
être obtenus directement par diagonalisation du Hamiltonien. Suivre cette approche au niveau de
la SCF est plus fastidieux, car HF et DFT sont essentiellement des théories de l’état fondamental.
Cependant, le calcul explicite des états excités peut être évité en appliquant la théorie de la réponse
linéaire. Dans ce chapitre, il sera démontré comment les pôles et les résidus des fonctions de réponse
linéaire peuvent être reliés aux énergies d’excitation et aux moments de transition, qui à leur tour
peuvent être utilisés pour obtenir les intensités d’absorption. Un inconvénient majeur de cette
méthode est qu’elle ne tient pas compte des effets des trous du coeur, ce qui ne devrait pas avoir
beaucoup d’importance dans le régime UV-Vis.

Il reste donc à trouver une description adaptée de l’interaction lumière-matière. Dans ce travail,
une description semi-classique sera poursuivie, bien qu’il existe des exemples dans la littérature où
la nature quantique de la lumière est prise en compte. Une caractéristique particulière du régime
UV-Vis est la grande taille de la longueur d’onde par rapport au système moléculaire, ce qui permet
l’application de l’approximation du dipôle électrique.

Pour mieux comprendre les origines de cette approximation, considérons l’exemple suivant.
Supposons que nous voulons modéliser l’absorption de lumière rouge polarisée linéairement (λ =
700 nm) par une molécule de benzène. Les champs électromagnétiques décrivant ce type de lumière
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sont montrés ci-dessous.

E (r, t) = Eωε sin [k · r− ωt+ δ] ; B (r, t) =
Eω
ω

(k× ε) sin [k · r− ωt+ δ] , (E.1)

où apparaît le vecteur d’onde k avec magnitude

k =
ω

c
=

2π

λ
, (E.2)

le vecteur de polarisation ε et la phase δ. La lumière peut être polarisée sous d’autres formes que
celle montrée ci-dessus, mais cette discussion sera reportée au Chapitre 3.

Pour les solutions diluées, l’absorption de la lumière est donnée par la loi de Lambert-Beer.

I

I0
= e−Nσ(ω)`. (E.3)

Dans cette expression, I et I0 sont les intensités sortantes et incidentes, tandis que l’exposant
donne le nombre effectif de molécules absorbantes, exprimé en termes de densité de molécules ab-
sorbantes, N , de la longueur parcourue par la lumière, `, et de la section efficace d’absorption, σ(ω).
Cette dernière peut être considérée comme une surface couvrant toutes les molécules qui ont absorbé
la lumière incidente, formant ainsi une mesure de l’intensité d’absorption. Les quantités exprimées
dans la loi de Lambert-Beer sont de nature macroscopique et sont, en principe, uniquement acces-
sibles par l’experience, tandis que les simulations de chimie quantique fournissent généralement des
quantités microscopiques. Dans le contexte de l’absorption de la lumière, les deux échelles peuvent
être reliées par la relation suivante.

Iσ(ωfi) = ~ωfiwi→f , (E.4)

où wi→f est le taux de transition et ~ωfi est la différence d’énergie entre l’état initial et final. Les
deux côtés de cette équation donnent une mesure de l’énergie absorbée par le système. Le taux de
transition peut être calculé à l’aide de méthodes de mécanique quantique, ce qui permet d’éviter de
calculer directement la section efficace d’absorption. Avant de procéder au calcul de cette quantité,
revenons d’abord en arrière et examinons le système en question (Figure 1.1).

Ce qui ressort, c’est la grande différence d’échelle entre la longueur d’onde et la molécule de
benzène, cette dernière ne pouvant être perçue qu’à l’intérieur d’un cadre zoomé. Dans ce cadre,
la plupart de la courbure de l’onde plane est perdue, ce qui implique que la molécule ressent
effectivement un champ uniforme, dont le composant magnétique peut être négligé en raison de
son préfacteur de 1/c. Formulé de manière plus mathématique, l’interaction lumière-matière est
développée en séries de vecteurs d’onde et tronquée à l’ordre zéro, justifiée par la limite kr � 1. À cet
ordre, notre interaction est donnée par l’opérateur de dipôle électrique, correspondant à un champ
électrique uniforme. Ces considérations forment la base de l’approximation du dipôle électrique,
largement utilisée en spectroscopie UV-Vis. Pour décrire l’ECD, cependant, l’approximation du
dipôle électrique ne suffit pas, car cette interaction dépend également de l’opérateur de dipôle
magnétique, qui apparaît à un ordre supérieur dans notre expansion.

Tournons maintenant notre attention vers le Hamiltonien qui décrit ce système. Sans perte de
généralité, notre Hamiltonien peut être séparé en une partie statique (donnée par un Hamiltonien
non relativiste) et un opérateur d’interaction dépendant du temps.
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Ĥ = Ĥ0 + V̂ (t); V̂ (t) =

∫ ∞
−∞

dte−iωtV̂ (ω), (E.5)

le second étant exprimé de manière pratique sous forme d’une transformée de Fourier. De plus,
l’hermiticité de l’opérateur d’interaction implique la relation suivante dans le domaine de fréquence.

V̂ †(t) = V̂ (t)→ V̂ †(ω) = V̂ (−ω). (E.6)

Je vais reporter la construction explicite de cet opérateur au chapitre 3, car il suffit pour le
moment de supposer que cet opérateur est périodique. En conséquence, la transformée de Fourier
de l’opérateur d’interaction est discrétisée en composantes de fréquence qui sont des multiples entiers
d’une fréquence fondamentale.

V̂ (t) = V̂ (t+ T )→ ω = nωT ; ωT =
2π

T
, n ∈ N. (E.7)

Par conséquent, l’opérateur d’interaction peut être exprimé comme suit.

V̂ (t) =
N∑

y=−N
λ
ωy
α V̂α(ωy)e

−iωyt+εt, (E.8)

où les indices y et α représentent les composantes de Fourier et cartésiennes. Pour les com-
posantes cartésiennes, la convention de sommation d’Einstein est appliquée, tandis que la somme
sur les composantes de fréquence est écrite explicitement. Comme on peut le déduire de l’hermiticité
de l’opérateur global, la somme sur les composantes de fréquence contient des indices positifs et
négatifs, correspondant à des paires égales mais de signe de fréquences opposées.

ω0, (ω1,−ω1), (ω2,−ω2), (ω3,−ω3), · · · . (E.9)

Ici, les composantes de fréquence zéro décrivent les contributions statiques, c’est-à-dire ω0 = 0,
à notre perturbation. De plus, dans cette expression, ε est un nombre infinitésimal garantissant que
la perturbation est activée doucement, c’est-à-dire un commutateur adiabatique.

Dans l’approximation du dipôle électrique, les composantes de fréquence sont données par
l’opérateur du moment dipolaire électrique

V̂α(ωy) = Q̂[1]
α = −erα; λ

ωy
α =

1

2
Eωεα, (E.10)

où −e est la charge de l’électron. Dans notre cas particulier de lumière monochromatique, une
seule paire de fréquences contribue, ce qui nous permet d’exprimer notre opérateur d’interaction
sous une forme plus simple

V̂ (t) = EωεαQ̂
[1]
α cos(ωt)eεt. (E.11)

Cependant, dans ce chapitre, la représentation de l’équation (E.8) est préférée pour préserver la
généralité du formalisme.
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E.2 Chapitre 2
Les électrons de cœur sont généralement pas pris en compte dans la formation de liaisons, car ils
ne sont pas facilement polarisés et conservent ainsi largement leur caractère atomique. Cependant,
en spectroscopie des rayons X, les électrons de cœur jouent un rôle central, car ces expériences
fonctionnent à des énergies suffisamment élevées pour sonder ces électrons. La simulation de la
spectroscopie des rayons X est confrontée à des difficultés, car la théorie conventionnelle de la
spectroscopie UV-Vis (voir le chapitre 1) ne peut pas reproduire avec précision les expériences des
rayons X. Au moins certaines de ces lacunes sont expliqués dans les caractéristiques spéciales des
électrons de cœur. En raison de leur proximité avec le noyau, les électrons de cœur subissent une
attraction beaucoup plus forte que les électrons de valence, augmentant ainsi considérablement
leur vitesse. Un effet analogue se produit dans le système solaire, où la planète Mercure orbite
autour du soleil à des vitesses beaucoup plus élevées que les planètes plus éloignées. En général,
la vitesse des électrons augmente avec un nombre atomique plus élevé. Déjà pour des éléments
de taille modérée, les électrons de cœur se déplacent si rapidement que la mécanique quantique
classique échoue à prendre correctement en compte leur mouvement. Cependant, pour les éléments
dans la partie basse du tableau périodique, les influences des effets relativistes s’étendent au-delà du
cœur, car les orbitales de tous les autres électrons doivent rester orthogonales aux orbitales de cœur,
contractant ainsi efficacement la couche de valence. Pour obtenir ne serait-ce qu’une fonction d’onde
qualitativement correcte des molécules contenant de tels éléments, les effets relativistes doivent être
inclus.

Avec la mécanique quantique, la relativité restreinte a révolutionné le paradigme de la physique
moderne. Cette dernière théorie exige une réévaluation drastique des concepts d’espace et de temps,
bien qu’elle ne gagne de la pertinence qu’à des échelles d’énergie extrêmement élevées. Cependant,
cette théorie est classique dans le sens où elle concerne le mouvement déterministe de particules
ponctuelles, tandis que la mécanique quantique est fondamentalement de nature probabiliste. Pour
inclure les effets de la relativité dans nos calculs, elle doit être étendue au domaine de la mécanique
quantique. Heureusement, ce travail a déjà été fait pour nous par Paul Dirac, qui a formulé une
extension relativiste de l’équation de Schrödinger. Les mérites de l’équation de Dirac résident
dans ses valeurs d’énergie plus précises, sa description naturelle du spin et du couplage spin-orbite,
ainsi que sa prédiction de l’antimatière. Comme mentionné précédemment, l’équation de Dirac est
particulièrement utile pour décrire des propriétés qui dépendent des électrons de cœur, telles que la
spectroscopie RMN, la spectroscopie Mössbauer ou la spectroscopie des rayons X. Dans ce travail,
une approche relativiste sera suivie pour décrire correctement les électrons de cœur. Par conséquent,
ce chapitre sera consacré aux méthodes de la chimie quantique relativiste.

187



Appendix E. Résumé en Français

E.3 Chapitre 3
Nous avons parcouru un long chemin depuis le début de notre discussion sur les principes de base
de la théorie de réponse linéaire de SCF, suivie de la chimie quantique relativiste. Avec les outils
théoriques des chapitres précédents en place, nous sommes presque prêts à discuter de quelques
exemples pratiques. Cependant, avant de continuer, je dois aborder une hypothèse clé formulée
dans le chapitre 1. Je rappelle qu’en régime UV-Vis, l’étendue spatiale de la molécule cible est
généralement beaucoup plus petite que la longueur d’onde de la lumière. Pour cette raison, il est
justifié d’appliquer l’approximation du dipôle électrique, selon laquelle le champ électromagnétique
est approximé comme un champ électrique uniforme. Cependant, en régime X, cette approximation
est remise en question car la longueur d’onde est de taille comparable par rapport à la molécule.
La Figure 3.1 représente une situation similaire à celle de la Figure 1.1, bien que dans ce cas, la
molécule de benzène interagisse avec des rayons X, ayant une longueur d’onde beaucoup plus courte
(λ = 2, 6 nm).

Compte tenu du fait que l’approximation du dipôle électrique revient essentiellement à un
développement multipolaire à l´ordre zéro, il existe généralement deux méthodes pour corriger
les lacunes de cette approximation. La première méthode, la plus directe, évite complètement un
développement multipolaire et repose son interaction sur les champs électromagnétiques exacts,
conservant ainsi leur caractère sinusoïdal dans l’opérateur d’interaction. En utilisant l’opérateur
d’interaction complet, tous les effets non dipolaires sont inclus de manière exacte, bien que le for-
malisme soit quelque peu plus compliqué en raison de la dépendance en fréquence de cet opérateur.

Alternativement, le développement multipolaire peut être tronqué au-delà de l´ordre zéro,
prenant ainsi en compte les moments multipolaires d’ordre supérieur. Les moments multipolaires
peuvent être compris comme des idéalisations des distributions de charge et de courant. Par exem-
ple, le moment dipolaire électrique est une quantité vectorielle qui donne la direction globale dans
laquelle la distribution de charge est polarisée. Le moment quadrupolaire électrique, en revanche,
décrit la largeur globale d’une distribution de charge, semblable à la variance des distributions
statistiques. Les inhomogénéités supplémentaires des distributions sont décrites par des moments
multipolaires d’ordre supérieur, qui, sous forme cartésienne, sont définis comme suit :

Q
[n]
j1···jn =

∫
d3rrj1rj2 · · · rjnρ(r, t); m

[n]
j1···jn−1;i =

n

n+ 1

∫
d3rrj1rj2 · · · rjn−1

(
r× j(r, t)

)
i
. (E.12)

En incluant les contributions de tous les moments multipolaires, les distributions de charge
ou de courant peuvent être récupérées exactement. Cependant, en pratique, cela n’est souvent
pas nécessaire, car généralement, les contributions les plus dominantes proviennent des moments
multipolaires d’ordre le plus bas. Les distributions de charge ou de courant compliquées peuvent
donc être simplifiées en ne considérant que ces contributions dominantes. Cette approche se révèle
particulièrement utile lors de la description des interactions intermoléculaires. Dans ce contexte,
cependant, j’utiliserai cette méthode pour approximer les interactions lumière-matière.

En utilisant soit l’interaction lumière-matière complète, soit l’interaction tronquée, je décrirai
deux types de spectroscopie : près du front d´absorption de rayons X (NEXAFS) et le dichroïsme
circulaire naturel des rayons X (XNCD). La NEXAFS peut être calculée directement à partir de la
section efficace d’absorption dérivée de la lumière polarisée linéairement. Le calcul du XNCD, cepen-
dant, est un peu plus compliqué, car il implique la différence entre la section efficace d’absorption
de la lumière polarisée circulairement à gauche et à droite :

188



Appendix E. Résumé en Français

∆σ(ω) = σL(ω)− σR(ω). (E.13)

En tenant compte de la parité, on peut faire valoir que le dichroïsme circulaire des échantillons
isotropes, par exemple les gaz et les solutions, n’est différent de zéro que pour les molécules chirales.
En fait, pour les énantiomères, le dichroïsme circulaire est égal mais du signe opposé, ce qui en fait
l’une des rares techniques pour distinguer les énantiomères. Des effets similaires peuvent être obtenus
pour les systèmes non chiraux en imposant des conditions anisotropes, comme dans les cristaux, ou
en appliquant un champ magnétique externe supplémentaire. Cependant, cette dernière suggestion
crée un type d’interaction différent, également appelé dichroïsme circulaire magnétique des rayons
X.

S’appuyant sur les résultats du chapitre précédent, toutes les dérivations seront effectuées dans
un cadre relativiste à quatre composantes. Ces dérivations reposent principalement sur des articles
dont je suis co-auteur. Alternativement, il est également possible de dériver un formalisme similaire
dans un cadre non relativiste, bien qu’il soit plus compliqué en raison du grand nombre de termes
nécessaires pour décrire l’interaction lumière-matière. Par conséquent, le formalisme non relativiste
ne sera pas poursuivi ici, sauf indication contraire. En outre, sauf indication contraire, j’utiliserai
la notation de la théorie de l’état exact tout au long de mes dérivations, car la généralisation à la
théorie SCF découle directement de la procédure décrite au chapitre 1.
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E.4 Chapitre 4

E.4.1 Implémentation
Dans la chimie quantique contemporaine, la formulation de la théorie n’est que la moitié du travail,
car une implémentation efficace est cruciale pour rendre les calculs chimiques quantiques réalisables,
ce qui impliquent souvent de nombreuses opérations mathématiques fastidieuses. Pour cette raison,
cette section sera consacrée à l’implémentation de l’opérateur d’interaction lumière-matière complet
et tronqué. Ces deux développements ont été réalisés dans DIRAC, qui est un code chimique quan-
tique adapté aux calculs relativistes à quatre composantes. L’implémentation de ces interactions est
encore en cours, donc ce qui suit est une invertoire de toutes les fonctionnalités disponibles. Il est
possible d’effectuer des calculs d’intensité à l’aide des opérateurs d’interaction complets et tronqués,
à la fois dans des conditions isotropes et anisotropes. Cependant, dans l’implémentation actuelle,
les calculs ECD ne peuvent être effectués qu’à l’aide de l’opérateur d’interaction complet, tandis que
l’ECD tronqué est encore en développement. L’ECD tronqué rapporté plus loin dans ce chapitre a
été calculé à l’aide d’un script externe avec les moments de transition de DIRAC en entrée. Dans
ce qui suit, je donnerai un bref aperçu de l’implémentation de l’interaction complète et tronquée,
en mettant en évidence leurs caractéristiques uniques. Dans la section à venir et les suivantes, cette
partie du code sera désignée sous le nom d’implémentation BED, l’abréviation signifiant au-delà
de l’approximation électro-dipolaire. Bien que cette abréviation ne s’applique pas nécessairement à
l’ECD, qui est déjà au-delà de cette approximation au premier ordre, elle sera quand même utilisée
par souci de cohérence.

E.4.2 Convergence de l’Expansion Multipolaire
Avoir une implémentation entièrement fonctionnelle à notre disposition qui peut calculer des forces
d’oscillateur au-delà de l’approximation électro-dipolaire nous permet de procéder à nos premiers
calculs. Pour toute nouvelle fonctionnalité développée, il est toujours bon de procéder avec prudence
et de commencer par des calculs sur des systèmes de test simples, ce qui facilite l’identification des
erreurs et des résultats inattendus. Par conséquent, cette section se concentrera principalement sur
les spectres d’absorption UV-Vis et absorption des rayons X de l’atome de radium, dont la symétrie
sphérique simplifiera considérablement le problème à portée de main. De plus, cette symétrie
induit des règles de sélection pour les transitions multipolaires. Il est probable que les principales
caractéristiques des spectres seront décrites par la force d’oscillateur électrique-dipolaire, tandis que
les détails plus fins seront donnés par des contributions dépendant du moment magnétique-dipolaire
et du quadrupôle électrique. Les règles de sélection pertinentes sont les suivantes :

• dipolaire-électrique: ∆j = 0,±1; ∆m = 0,±1; (j = 0 9 j = 0)

• dipolaire-magnétique : ∆j = 0,±1; ∆m = 0,±1; (j = 0 9 j = 0)

• quadrupôle électrique : ∆j = 0,±1,±2; ∆m = 0,±1,±2; (j = 0 9 j = 0)

• interaction complète : (j = 0 9 j = 0).

Dans ce chapitre, je vais mettre en pratique ces règles et calculer les intensités d’absorption de
l’atome de radium à la fois dans les régions centrale et de valence.
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Sauf indication contraire, les données rapportées dans cette section ont été obtenues avec une
version en développement du code de structure électronique DIRAC. En utilisant l’interaction com-
plète, le spectre de valence et de cœur de l’atome de radium a été calculé au niveau de la théorie
TDDFT en utilisant la fonction d’échange-corrélation PBE0, basée sur l’hamiltonien de Dirac-
Coulomb et dans le cadre de la méthode de fenêtre d’excitation restreinte (REW). Dans ces calculs,
les intégrales biéléctronique ont été remplacées par une correction d’énergie SS interatomique. Pour
des raisons techniques qui deviennent plus claires par la suite, les calculs impliquant des interactions
tronquées ont été limités aux excitations ns1/2 → 7p1/2; n = 1, 2, · · · , 7 de l’atome de radium et
effectués au niveau de la théorie TD-HF. De plus, dans ces calculs, le criblage des intégrales (SS|SS)
a été désactivé et les intégrales (SS|SS) ont été incluses. Pour les deux séries de calculs, l’ensemble
de base dyall.ae3z a été utilisé.

Il a été constaté que pour des énergies d’excitation croissantes, l’utilisation de l’interaction
tronquée lumière-matière devient de plus en plus problématique en raison de la convergence lente
de ces expansions. Il ne s’agit pas d’un problème de base qui peut être atténué en augmentant la
base, car cette lente convergence a été observée au niveau des intégrales atomiques sous-jacentes
OA. En particulier, pour les excitations de cœur, une convergence extrêmement lente a été observée
pour les intégrales impliquant des orbitales gaussiennes cartésiennes avec des exposants diffus. Cela
peut s’expliquer par le fait que de telles fonctions diffuses sont moins efficaces que les fonctions
serrées pour amortir les puissances cartésiennes croissantes apparaissant dans une expansion de
l’interaction lumière-matière complète en fonction de la norme du vecteur d’onde. Cela suggère
à son tour que l’utilisation d’orbitales de type Slater, qui ont une décroissance plus lente que les
orbitales gaussiennes, sera encore plus problématique.

E.4.3 Convergence de la base
Le choix approprié de la base est essentiel pour atteindre une précision quantitative dans les calculs
chimiques quantiques. Surtout dans le contexte actuel, où des opérateurs d’interaction non con-
ventionnels sont utilisés, il est important de tenir compte spécialement du choix de la base. Par
conséquent, dans cette section, il sera évalué si les bases conventionnelles sont suffisamment flexibles
pour satisfaire les exigences de ces opérateurs d’interaction.

Les bases conventionnelles sont construites en choisissant un ensemble de fonctions qui min-
imisent l’énergie. En général, on gagne plus d’énergie en ajoutant des fonctions serrées qu’en
ajoutant des fonctions diffuses. En raison de cela, les bases optimisées en termes d’énergie saturent
plus rapidement la région du coeur que la région au-délà du valence. L’interaction lumière-matière
complète et tronquée peut nécessiter l’ajout de fonctions de base supplémentaires. Un problème à cet
égard est l’absence d’un principe variationnel pour les moments de transition. Alternativement, des
bases pour une utilisation au-delà des énergies peuvent être construites en utilisant l’approximation
du cœur équivalent, la règle de Slater ou le schéma d’optimisation de la complétude. Une autre
stratégie consiste à augmenter systématiquement la taille de la base jusqu’à ce que la propriété
d’intérêt soit stabilisée.

Sørensen et al. ont réalisé une série de calculs dans un cadre non relativiste en utilisant
l’opérateur d’interaction complet et tronqué, ce dernier étant limité à l’ordre deux, exprimé avec les
bases ANO-RCC. Bien que la série n’ait pas complètement convergé pour les bases plus grandes,
leurs résultats indiquent que l’opérateur d’interaction complet est plus stable en ce qui concerne le
choix de la base. De plus, Sørensen et al. ont fait valoir que chaque moment multipolaire nécessite
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des bases différentes, ce qui rend extrêmement difficile la construction de bases pouvant décrire
l’interaction tronquée à des ordres plus élevés. Ils ont conclu que l’opérateur d’interaction complet
devrait être la norme pour les calculs impliquant des effets non dipolaires. Pour les interactions
d´ordre zéro et de premier ordre, la représentation en longueur semble être le choix privilégié dans
la littérature, bien qu’il n’y ait pas de réponse concise quant à la supériorité de la convergence de
la base dans une représentation donnée.

Une autre stratégie pour évaluer la qualité d’une base consiste à la comparer à une valeur de
référence. Dans cette section, les besoins en termes de base pour les effets non dipolaires sont
évalués en comparant des calculs utilisant des bases gaussiennes avec le code moléculaire DIRAC à
des calculs de différences finies équivalents avec le code atomique GRASP. Si la taille de la grille de
ce dernier est suffisamment grande, les résultats correspondent effectivement à la limite de la base
complète, ce qui en fait une référence appropriée pour les calculs de base. À cette fin, j’étudierai
les transitions 1s1/2 → 7p1/2 et 7s1/2 → 7p1/2 dans l’atome de radium, qui sont représentatives des
excitations de cœur et de valence, respectivement.

Pour comparer les effets de la base dans les régions de valence et de cœur, j’ai étudié les tran-
sitions 7s1/2 → 7p1/2 et 1s1/2 → 7p1/2 de l’atome de radium. Les transitions étaient contraintes à
se produire entre des orbitales simples pour faciliter la comparaison entre les calculs utilisant des
orbitales de type gaussien dans DIRAC et les calculs de référence numériques dans GRASP. Comme
GRASP ne calcule que les orbitales occupées, les orbitales ont été optimisées en utilisant la méthode
de Hartree-Fock avec moyenne des configurations (AOC) par rapport à des déterminants d’états
excités, c’est-à-dire [Rn]7s1

1/27p1
1/2 pour la transition de valence et [Ra]1s−1

1/27p1
1/2 pour la transition

de cœur. Même si l’orbitale 7p1/2 est formellement occupée dans ces configurations, je la traite
comme une orbitale virtuelle pour construire les moments de transition. Dans le cas de GRASP,
ceux-ci ont été obtenus en insérant les fonctions radiales Pnκ et Qnκ dans les équations décrivant les
distributions radiales. Comme les moments de transition sont déterminés jusqu’à une phase com-
plexe, je les ai définis de manière à ce que toutes les distributions radiales soient réelles et aient une
valeur maximale positive. Étant donné que les fonctions radiales de GRASP sont calculées sur une
grille numérique et correspondent ainsi effectivement à la limite de la base complète, les moments
de transition de GRASP ont été utilisés comme référence. Dans le cas de DIRAC, j’ai appliqué
la sélection par recourrement pour éviter que l’état excité de cœur ne s’effondre pendant les cycles
SCF. J’ai ensuite utilisé les orbitales des calculs de l’état excité dans un calcul d’état fondamental
de Hartree-Fock dépendant du temps à quatre composantes (4c-TD-HF) dans le cadre de la réponse
linéaire. La méthode de la fenêtre d’excitation restreinte a été invoquée pour ne considérer qu’une
seule amplitude. Les distributions radiales ont ensuite été divisées par cette amplitude restante pour
comparer les résultats des calculs de base avec les valeurs de référence numériques. Dans DIRAC,
les distributions radiales ont été calculées sur une grille radiale avec le module de visualisation, qui
effectue l’intégration angulaire sur une grille de Lebedev (Lmax = 64). En raison du schéma de
symétrie quaternion dans DIRAC, tous les moments de transition sont par défaut réels.

Les calculs de base ont été effectués au niveau de la théorie de Hartree-Fock en utilisant le
Hamiltonien de Dirac-Coulomb et les bases dyall.aeXz (X=2,3,4). Ces bases sont construites à
partir de fonctions de base gaussiennes cartésiennes non contractées qui sont conçues pour les calculs
corrélés et contiennent donc des fonctions de base de grand moment cinétique orbital. J’ai supprimé
les fonctions g, h et i car, pour les systèmes atomiques, elles ne contribuent qu’à l’espace des orbitales
virtuelles. Les bases des petites composantes ont été générées en respectant la condition de l’équilibre
cinétique restreint et les intégrales (SS|SS) ont été traitées exactement, pour une cohérence avec les

192



Appendix E. Résumé en Français

calculs numériques. De plus, j’ai constaté qu’avec le seuil de dépendance linéaire par défaut (10−6

et 10−8 pour les espaces des grandes et petites composantes, respectivement), plusieurs fonctions de
base étaient supprimées. Surtout, la petite composante du 1s1/2 était susceptible d’être supprimée.
Cela nuit à la qualité des résultats, donc pour toutes les calculs, j’ai réglé le seuil de dépendance
linéaire à 10−9 et 10−10 pour les espaces des grandes et petites composantes, respectivement.

Pour les ordres les plus bas, la base dyall.ae2z était suffisante pour converger les moments
multipolaires électriques en représentation de longueur pour les deux transitions. À des ordres plus
élevés, la base dyall.ae4z était nécessaire. Il a été couramment observé que la transition de cœur a
tendance à être plus difficile à converger que la transition de valence. La convergence de la base des
moments multipolaires magnétiques suit également ces tendances, bien qu’elle semble être encore
plus difficile à converger pour la transition de cœur. Par conséquent, pour la représentation de
la longueur généralisée, la base dyall.ae4z suffit pour décrire correctement les multipôles d’ordre
supérieur, bien que le seuil de dépendance linéaire doive être ajusté.

De tous les types de multipôles, il semble que les multipôles électriques en représentation de
vitesse soient les plus problématiques à converger. Même si les multipôles de valence convergent
vers la référence numérique, les multipôles de cœur présentent des écarts par rapport à la référence
sous forme d’oscillations et de pics supplémentaires. En raison de ces artefacts, la convergence de
la base semble inversée : les bases plus grandes s’éloignent davantage de la référence. Cela suggère
que la représentation de la vitesse généralisée doit être utilisée avec prudence pour n > 3. Pour la
représentation de la vitesse généralisée, je recommande d’utiliser la base dyall.ae3z, qui ne semble
pas souffrir autant des artefacts que la base dyall.ae4z. De plus, je recommande de ne pas aller
au-delà de n = 3, car après cet ordre, la fiabilité de ce schéma devient douteuse.

L’opérateur d’interaction complet ne souffre pas de ces problèmes et est déjà convergé avec la
base dyall.ae2z. Étant donné que l’interaction tronquée souffre également d’une convergence lente
par rapport à l’expansion multipolaire, je recommande d’appliquer l’interaction complète lors du
calcul des transitions aux rayons X.

Ces conclusions sont potentiellement moins évidentes pour le niveau relativiste à 2 composantes
intermédiaire. L’approche actuelle exigerait formellement la génération de distributions radiales
en utilisant des opérateurs d’interaction transformés correctement, et ceux-ci ne sont par exemple
pas disponibles pour le Hamiltonien à 2 composantes eXact (X2C), pour lequel en général seule
une représentation matricielle, et non une représentation en espace réel, est disponible. Cependant,
l’élimination des petites composantes suggère à nouveau que la convergence de la base devrait
s’améliorer.

E.4.4 Systèmes avec des Centres de Symétrie Équivalents
Pour les calculs sur l’atome de radium, on a observé que les transitions permises par le dipôle ne
gagnaient que des corrections modestes lorsqu’on incluait des effets non dipolaires, l’explication
étant que la compacité des orbitales du cœur annule ces effets. Cependant, si le système en question
contient des centres de symétrie équivalents, les transitions du cœur qui en découlent sont délocal-
isées, ce qui, en principe, devrait renforcer les effets non dipolaires. À cette fin, je considérerai le
seuil K du Cl dans TiCl4. De plus, ce système représente un cas où il n’y a pas de choix naturel
d’origine du jauge, formant ainsi un système approprié pour tester l’indépendance de l’origine du
jauge des deux représentations. Ce système a déjà été étudié dans le contexte des effets non dipo-
laires dans l’absorption des rayons X linéaires en utilisant des expansions multipolaires de faible
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ordre. En particulier, il a été utilisé pour démontrer l’apparition de forces oscillatoires négatives
lors de la troncature de l’interaction lumière-matière dans la représentation de la vitesse généralisée
dans un cadre non relativiste. Ci-dessous, je revisiterai ce cas et évaluerai la nécessité d’aller au-
delà de l’approximation électrique-dipolaire. J’étudie également numériquement l’indépendance de
l’origine du jauge des trois schémas dans le cas de l’absorption des rayons X mous. La spectroscopie
d’absorption de le seuil K du ligand suppose fournir des informations directes sur la covalence
des liaisons métal–ligand en raison du mélange des orbitales p du ligand avec les orbitales d du
métal. L’absorption de Cl K -edge de TiCl4 a été étudiée à la fois expérimentalement et théorique-
ment dans le cadre et au-delà de l’approximation électrique-dipolaire en utilisant des expressions
tronquées d’expansions multipolaires. Son spectre expérimental présente un pic pré-edge large qui
nécessite un ajustement à deux pics (dans le toluène : à 2821,58 et 2822,32 eV avec un rapport
d’intensité approximatif de 0,84). Dans la symétrie Td, les cinq orbitales 3d de Ti appartiennent
aux représentations irréductibles e et t2, et les bandes pré-edge peuvent être attribuées à des excita-
tions des orbitales 1s du Cl a1 et t2 vers les ensembles e et t2 des orbitales 3d sur Ti, respectivement.
Ici, je me concentre sur les huit transitions les plus basses (a1, t2 → e) qui donnent naissance à trois
ensembles dégénérés (E, T1 et T2), dont le dernier est permis en ED.

Les données rapportées dans cette section ont été obtenues avec une version de développement
du code de structure électronique .

Les résultats calculés présentés dans cette section ont été obtenus par des calculs de théorie de
la fonctionnelle de la densité dépendante du temps (TD-DFT), basés sur le Hamiltonien de Dirac–
Coulomb et dans le cadre de la fenêtre d’excitation restreinte (REW) en utilisant la fonctionnelle
d’échange-corrélation PBE0 et les bases dyall.ae3z. Les bases des petites composantes ont été
générées en respectant la condition de l’équilibre cinétique restreint, et les intégrales (SS|SS) ont
été remplacées par une correction SS interatomique. Un modèle gaussien a été utilisé pour la
distribution des charges nucléaires. Une grille Lebedev à 86 points (Lmax = 12) a été utilisée
pour la moyenne isotropique des forces oscillatoires basées sur l’opérateur complet de l’interaction
lumière-matière. L’origine du jauge a été placée au centre de masse et la symétrie spatiale a été
invoquée dans tous les cas, sauf pour les calculs de l’indépendance de l’origine du jauge.

Deux conclusions clés importantes découlent de ces calculs :

• Les transitions étudiées issues du seuil K du Cl dans TiCl4 ont d’importantes corrections
non dipolaires, principalement induites par la délocalisation des orbitales du cœur du Cl.
Cependant, en raison de la proximité des transitions, la valeur cumulative de ces transitions est
à peine affectée. Même dans le cas contraire, on peut remettre en question si la délocalisation
de l’orbite du cœur est un effet physique réel. Pour l’évaluer correctement, il est nécessaire
d’aller au-delà de la théorie SCF.

• L’invariance formelle de l’origine du jauge des forces oscillatoires en jauge multipolaire repose
sur des expressions de commutateur qui ne tiennent pas nécessairement dans une base finie.
Cela explique le manque notoire d’indépendance de l’origine du jauge d’ordre en ordre dans les
calculs pratiques au-delà de l’approximation électrique-dipolaire basée sur n’importe quelle
formulation tronquée du jauge multipolaire. Comme indiqué au chapitre 3, ces relations
de commutateur, impliquant le Hamiltonien, correspondent à une transformation du jauge
de la représentation de la longueur à la représentation de la vitesse. En d’autres termes,
l’indépendance de l’origine du jauge en jauge multipolaire est démontrée en se transformant
en une autre jauge pour laquelle l’indépendance de l’origine est maintenue. Jusqu’à présent,
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je n’ai pas été en mesure de démontrer l’invariance de l’origine du jauge tout en restant dans
le jauge multipolaire.

E.4.5 Dichroïsme Circulaire Électronique
Jusqu’à présent, je n’ai pas encore exploité pleinement la polyvalence de la mise en œuvre BED,
car toutes les calculs jusqu’à présent portaient sur l’absorption de lumière polarisée linéairement.
Dans cette section, je me concentrerai donc sur le ECD isotrope et anisotrope calculé en util-
isant l’interaction lumière–matière semi-classique complète, ainsi que la représentation de la vitesse
généralisée. Cela nous permet d’étudier la réponse ECD sur l’ensemble du spectre électromagné-
tique, de l’optique aux régimes des rayons X. Jusqu’à présent, les études théoriques précédentes
sur le XNCD isotrope des molécules étaient basées sur une formulation non relativiste tout en ne
considérant que l’interaction tronquée du premier ordre, qui est proportionnelle au produit scalaire
du moment dipolaire électrique et magnétique).

Une estimation sommaire du XNCD du premier ordre peut être trouvée en supposant que la
transition en question est effectivement de nature atomique, ce qui est justifié par le caractère de type
atomique des orbitales du cœur. Dans cette hypothèse, les règles de sélection atomiques s’appliquent,
ce qui signifie que les règles de transition des moments dipolaires électriques et magnétiques dictent
si le XNCD s’annule. Cependant, les règles de sélection des moments dipolaires magnétiques non
relativistes prescrivent que les transitions atomiques ne peuvent se produire qu’entre des états qui
sont séparés par un couplage spin-orbite, suggérant ainsi que le XNCD est nul dans ce schéma
simplifié. Dans des calculs plus réalistes, les orbitales du cœur sont polarisées hors de la symétrie
atomique, ce qui rend le XNCD non nul, un effet pris en compte dans les études mentionnées ci-
dessus. La mise en œuvre actuelle tient compte de deux contributions possibles supplémentaires
: (i) les effets des interactions lumière–matière au-delà du premier ordre et (ii) l’inclusion d’effets
relativistes, notamment le couplage spin-orbite qui modifie les règles de sélection. Par conséquent,
cela permet, pour la première fois, d’examiner de manière réaliste la réponse ECD des molécules
sur l’ensemble des régimes de valence et des rayons X.

Cependant, contrairement aux exemples précédents, il n’est pas suffisant d’utiliser le même
système cible atomique, qui a une ECD nulle en raison de sa grande symétrie. Par conséquent,
en tant que systèmes de test, je considère les modèles chromophores les plus simples de disulfure,
le dihydrogène disulfure H2S2 et le diméthyl disulfure (CH3S)2. En raison des barrières de torsion
faibles du disulfure (∼6-11 kcal/mol, les deux formes énantiomères (P - et M -hélice) ne peuvent pas
être résolues expérimentalement. Cependant, le pont disulfure est un élément structural important
dans les protéines, où il se produit de préférence dans des conformations non planes, chirales (de
symétrie C2) et affiche donc une chiralté axiale induite structuralement. Une perspective intéressante
pour les systèmes complexes (par exemple, les protéines) est l’utilisation potentielle du XNCD
comme une sonde locale de la chiralté. Cela pourrait éventuellement compléter les informations
de conformation délocalisées encodées dans l’ECD de valence. En raison de sa facilité de calcul,
H2S2 a été largement utilisé pour évaluer les méthodes de structure électronique pour le calcul des
propriétés chiroptiques. Pour la même raison, Goulon et al. l’ont également utilisé pour estimer les
magnitudes relatives des réponses XNCD dans le cadre de l’interaction tronquée du premier ordre et
du cadre non relativiste, en signalant des valeurs en dessous des limites de détection expérimentales.
Ici, je revisite l’ECD du chromophore disulfure sur toute l’échelle de valence, les seuils L- et K, allant
au-delà de ces approximations.
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Les géométries de H2S2 et (CH3S)2 ont été obtenues en utilisant la fonctionnelle d’échange-
corrélation B3LYP et l’ensemble de bases cc-pVTZ. Les optimisations de géométrie ont été effec-
tuées dans Gaussian 16. Pour imiter l’angle de disulfure χ3 typique des structures protéiques, une
optimisation de géométrie contrainte a été réalisée pour χ3 = −87◦, correspondant à la chiralté
M -hélicoïdale. L’approche de fenêtre d’excitation restreinte a été utilisée pour cibler sélectivement
les seuils du soufre L- et K. Cela élimine également le problème des transitions artificielles vers les
orbitales quasi-continues causé par les effets du jeu de bases finies, qui interfèrent souvent avec les
simulations au bord L. Un modèle gaussien a été utilisé pour la distribution de charges nucléaire, et
une grille Lebedev à 86 points (Lmax = 12) a été utilisée pour la moyenne isotropique de l’absorption
linéaire différentielle basée sur l’opérateur complet de l’interaction. L’origine du jauge a été placée
au centre de masse (CM) et la symétrie spatiale est pris en compte dans tous les cas, sauf pour les
calculs de dépendance à l’origine du jauge.

Les énergies d’excitation, les sections efficaces d’absorption linéaire et différentielle pour l’opérateur
complet d’interaction ainsi que les expansions multipolaires dans le jauge de vitesse généralisée ont
été calculées en utilisant la fonctionnelle d’échange-corrélation PBE0 et les ensembles de bases non
contractés aug-pcX-3 et aug-pc-3 pour le soufre et l’hydrogène, respectivement. La série de jeux de
bases pcX-n a été développée pour décrire les processus d’excitation du cœur en utilisant l’approche
∆SCF (Self-Consistent Field) aux niveaux non relativiste et relativiste. Les jeux de bases des petites
composantes ont été générés dans le cadre de l’équilibre cinétique restreint. Les calculs relativistes
ont été effectués en utilisant un Hamiltonien Dirac-Coulomb dans lequel les intégrales (SS|SS) ont
été remplacées par une correction d’énergie (SS–SS). L’invariance de l’origine du jauge de la for-
mulation semi-classique complète des intensités rotatoires isotropes et anisotropes et de sa forme
tronquée du premier ordre a été confirmée numériquement en déplaçant l’origine du jauge (de 0 à
100 a0) le long de l’axe C2. Cela conduit à une redistribution des contributions E1–E2 et E1–M1 à
R

[1]
xx et R[1]

yy pour les transitions de symétrie B. Comme prévu, les résultats sont restés inchangés à la
fois pour les formulations complètes et tronquées (données non présentées). Les spectres simulés ont
été obtenus en convoluant le spectre à bâtonnets avec des fonctions de forme gaussienne avec une
largeur totale à mi-hauteur (FWHM) de 0,4 eV, et ceux de (CH3S)2 ont été décalés par des décalages
différents pour chaque bord d’absorption afin de correspondre à leurs homologues expérimentaux.

Pour évaluer l’effet de l’augmentation des énergies d’excitation sur la force oscillatrice différen-
tielle, les spectres des seuils L1 et K ont été calculés pour les analogues plus lourds de H2S2 : H2X2,
X=Se et Te. En analogie avec H2S2, les géométries des deux analogues plus lourds ont été obtenues à
partir d’une optimisation contrainte (fixant χ3 = −87◦) en utilisant les ensembles de bases cc-pVTZ
et def2-VTZPP pour X=Se et Te, respectivement. À l’exception du choix du jeu de bases, cette
série de calculs a été réalisée au même niveau de théorie que les calculs précédemment mentionnés
pour H2S2. Pour réduire le coût du calcul des analogues plus lourds, j’ai utilisé le jeu de bases
dyall.av3z pour toutes les simulations spectrales. Pour rendre la comparaison entre les analogues
structuraux plus précise, les calculs de H2S2 ont été répétés en utilisant ce jeu de bases.

Aller au-delà de l’approximation du dipôle électrique au seuil K du soufre entraîne une redistri-
bution non négligeable de l’intensité parmi les transitions presque dégénérées, mais sans implications
visibles sur le profil d’absorption linéaire. En revanche, le profil d’absorption différentielle n’est pas
affecté par une telle redistribution, en raison de sa nature signée. Cela entraîne une surestimation
globale d’un facteur deux. En examinant les formes des distributions ECD anisotropes sous-jacentes,
on constate que cette disparité provient en grande partie d’une mise à l’échelle globale corrigée en
introduisant des contributions du troisième ordre.
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De manière critique, le traitement du premier ordre se détériore à des énergies de transition
plus élevées (au-delà de ω=c∼3728 eV), comme cela peut être déduit des calculs supplémentaires
impliquant les analogues plus lourds de H2S2. Dans ces cas, ce traitement peut même pas réussir
à prédire le signe des intensités de force oscillatrice individuelles, bien que cela soit partiellement
atténué si les pics sont suffisamment larges. À de telles énergies, passer à des ordres supérieurs n’est
pas une solution pratique en raison de la convergence lente de l’interaction tronquée - l’interaction
complète est incontournable.
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E.5 Conclusion et Perspectives
Nous parvenons à la conclusion générale qu’au moins pour l’absorption de la lumière polarisée
linéairement, l’approximation du dipôle électrique est une excellente approximation pour la plupart
des systèmes. Même dans le régime des rayons X durs, l’approximation du dipôle électrique peut
capturer les caractéristiques générales du spectre. Cependant, pour décrire avec précision les transi-
tions autorisées par le dipôle et même inclure les transitions interdites par le dipôle, il est impératif
d’aller au-delà de l’approximation du dipôle électrique. Une autre exception où l’approximation du
dipôle électrique pourrait être insuffisante est donnée par des systèmes avec des centres symétriques
équivalents, bien que l’élargissement spectral rende difficile d’observer ces effets. Les effets non
dipolaires semblent être les plus pertinents pour le dichroïsme circulaire électronique, apparaissant
déjà pour H2S2 et étant moins sensibles à l’élargissement spectral. Deux exemples de projets futurs
sont l’extension au dichroïsme circulaire magnétique et la mise en œuvre de la relaxation des trous
de cœur.
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