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Sommaire

Au cours des dix dernières années, la théorie de la fonctionnelle de la densité (DFT) a com-

plètement changé le paysage de la chimie théorique. Elle est la méthode la plus populaire au-

jourd’hui.1 La DFT a permis aux chimistes théoriciens de s’attaquer à des problèmes chimiques

réels. Son succès réside dans sa capacité à inclure la corrélation électronique pour un coût de

calcul réduit, elle peut donc fournir des résultats de haute précision pour une grande gamme de

problèmes. Le fondement rigoureux de la DFT est fourni par le théorème de Hohenberg-Kohn

qui énonce que l’énergie s’exprime comme une fonctionnelle de la densité de charge de telle

sorte que le calcul de la fonction d’onde complète n’est pas nécessaire. Un aspect clef des calculs

DFTmodernes est l’utilisation de la méthode Kohn-Sham (KS) dans laquelle la densité de l’état

fondamental du système réel est obtenue à partir d’un système de référence déterminé par un

potentiel e�ectif local où les particules n’interagissent pas entre elles. Cependant, la forme pré-

cise de ce potentiel dit d’échange et de corrélation (XC) est inconnue. L’utilisation et l’améliora-

tion continuelle de la DFT dépend donc de façon critique du développement de fonctionnelles

approximatives. L’approximation locale (LDA), puis l’introduction de l’approximation du gra-

dient généralisé (GGA) et, plus récemment, les fonctionnelles hybrides ont constitué un progrès

spectaculaire.

On peut dire que dans la chimie quantique d’aujourd’hui la densité de charge est la variable

fondamentale. En revanche, les théories généralisées de la fonctionnelle de la densité étendent

la DFT approximative conventionnelle en incluant d’autres variables, comme par exemple la

densité de spin (théorie de la fonctionnelle de la densité de spin, SDFT) et la densité de courant

(théorie de la fonctionnelle de la densité de courant, CDFT). La raison pour laquelle la SDFT

et d’autres DFT généralisées sont utilisées et developpées est le fait que les densités généralisées

supplémentaires permettent d’agrandir l’espace fonctionnel et donnent plus de �exibilité dans

11



12 Sommaire

la procédure variationnelle. Ceci est essentiel pour l’étude des propriétés magnétiques et des

systèmes à couche ouverte pour lesquels les fonctionnelles approximatives de la seule densité

de charge, qui sont actuellement disponibles, échouent. D’autres exemples où la DFT généra-

lisée est susceptible d’améliorer les résultats de la DFT approximative conventionnelle est le

traitement des états dégénérés des systèmes atomiques, des états excités et de la corrélation

non-locale (par exemple, polarisabilité dipolaire des chaînes moléculaires).

Notre développement dans la domaine de la DFT généralisée est guidé par des arguments

physiques et non par ajustement d’un nombre important de paramètres. Pour atteindre ce but,

il est préférable de se placer dans un cadre relativiste, car les interactions fondamentales qui in-

terviennent en chimie, les interactions électromagnétiques, sont intrinsèquement relativistes.

Cette thèse constitue les premiers pas vers le développement de la CDFT dans un cadre rela-

tiviste. Nous nous concentrons sur la mise en œuvre de la TD-SDFT (time-dependent SDFT)

non-colinéaire qui fournira la structure du code nécessaire pour la TD-CDFT, grâce à la struc-

ture similaire entre les operateurs de la densité de spin et de courant de charge et entre les

matrices XC et leurs transformées correspondantes. Nous avons presenté et discuté la mise en

œuvre des réponses linéaire et quadratique dans les systèmes à couche fermée dans le cadre de

la théorie adiabatique de la fonctionnelle de la densité dépendant du temps avec la contribution

de la densité de spin (TD-SDFT) non-colinéaire. Les contributions XC aux réponses linéaire et

quadratique ont étés dérivées par un développement perturbatif du gradient électronique XC

par rapport au champ extérieur. Trois autres implémentations de la réponse linéaire relativiste

dans la théorie TD-SDFT fondée sur le noyau XC non-colinéaires ont été rapportées jusqu’à

aujourd’hui, deux d’entre elles en utilisant l’hamiltonien ZORA à deux composantes—par le

groupe de Ziegler2 et par Liu et collaborateurs3— et une implémentation en utilisant l’hamil-

tonien à quatre composantes par Liu et collaborateurs.4 Jusqu’à présent, les noyaux XC non-

colinéaires ont été limités au noyau LDA. L’implémentation présentée dans ce mémoire permet

également d’employer le noyau XC adiabatique dépendant du gradient de la densité de spin. Ce

travail constitue à notre connaissance la première implémentation relativiste de la réponse qua-

dratique dans le cadre TD-SDFT. La dérivation étant répétitive et récursive mais aussi sensible

aux erreurs en raison du nombre important de termes, cela nous a motivé pour développer des

logiciels permettant une dérivation et une simpli�cation automatiques.
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Dans l’avenir, cela nous permettera de progresser vers les ordres élevés du développement.

Pour valider lamise enœuvre de la réponse linéaire dans la théorie TD-SDFTnon-colinéaire,

nous avons calculé les énergies d’excitations de Zn, Cd, Hg, AuH et UO2+
2 . Ces ensembles ont

été choisis pour deux aspects : (i) ils contiennnent des éléments lourds, y compris le métal

post-transitionnel U, et (ii) il nous était possible de comparer nos énergies d’excitation avec les

résultats publiés par d’autres groupes. En outre, nous avons complété l’étude des spectres élec-

troniques de Zn, Cd, Hg et AuH, en étudiant la performance des autres fonctionnelles, notam-

ment des fonctionnelles dépendant du gradient de la densité en utilisant leurs propres noyaux

XC.

Dans la théorie de la réponse basée sur la quasi-énergiemoyennée dans le temps, les proprié-

tés moléculaires dépendant de la fréquence, les énergies d’excitation et les éléments de matrice

de transition peuvent être associées à des fonctions de réponse, à leurs singularités et à leurs ré-

sidus. Nous avons montré comment les dérivés des densités analytiques et numériques peuvent

être utilisées pour calculer et visualiser les propriétés moléculaires statiques et dépendant de la

fréquence et comment des densités de propriétés peuvent être dé�nies de façon très générale.

Les densités du premier ordre, statiques et dépendant de la fréquence, qui correspondent aux

propriétés du second ordre, ont été obtenues en appliquant la théorie de la réponse sur des dé-

terminants Hartree-Fock (HF) ou KS. D’autres perturbations (statiques) peuvent être imposées

en utilisant la méthode des perturbations �nies. En outre, il est possible d’isoler et de tracer les

contributions orbitalaires individuelles en utilisant seulement certains éléments du vecteur de

réponse correspondant pour la construction des matrices de la densité modi�ée. Les densités

de propriétés “paramagnétiques” et “diamagnétiques” peuvent être dé�nies de la même façon

que les fonctions de réponse linéaire “paramagnétiques” et “diamagnétiques” sont calculées : en

considérant seulement les amplitudes d’excitation vers les orbitales d’énergie positive ou vers les

orbitales d’énergie négative. Ainsi les e�ets relativistes scalaires et les e�ets du couplage spin–

orbite peuvent être visualisés de la même façon qu’ils sont soit calculés soit éliminés des calculs

de réponse linéaire. Le potentiel de cette approche visuelle des propriétésmoléculaires dans l’es-

pace physique à trois dimensions est illustrée pour plusieurs des exemples discutés ci-dessus.
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Nous avons par example étudié la densité induite par un champ électrique statique pour

l’atomeNe et lamoléculeHF. Les graphiquesmontrent e�ectivement les zones de l’espace contri-

buant le plus à la propriété. Par exemple, les graphiques présentés dans ce mémoire soulignent

que la polarisabilité dipolaire et la première hyperpolarisabilité sont des propriétés de la région

de valence extérieure. Cela peut être utile pour démontrer les exigences sur un jeu de base pour

une propriété spéci�que. L’interprétation des propriétés non-linéaires peut être di�cile et les

isosurfaces de densité induites à di�érents ordres qui sont présentées dans ce travail donnent

un aperçu supplémentaire pour le problème au-delà des chi�res, par exemple pour discuter des

tendances des propriétés dans une classe de molécules.

Nous avons démontré comment la polarisabilité dipolaire linéaire dépendante de la fré-

quence peut être visualisée en utilisant soit la densité de charge induite, soit la densité de cou-

rant induite. La représentation de l’équation de continuité dans une base �nie a été étudiée.

Pour une séquence de bases, nous avons démontré comment la représentation de l’équation de

continuité peut être améliorée.

Inspirés par l’approche générale et quantitative de Jusélius, Sundholm et Gauss5 dans le

cadre non-relativiste, nous avons appliqué notre réalisation relativiste à quatre composantes

pour l’étude de la densité de courant induite dans les composés hétéro-aromatiques du groupe

15, C5H5E (E = N, P, As, Sb, Bi). Nous avons présenté et qualitativement discuté les graphiques

des densités de courant de probabilité induites. Les contributions “paramagnétiques” et “dia-

magnétiques” ont été examinées séparément. Pour une analyse plus quantitative, nous avons

discuté les susceptibilités du courant dans le cycle aromatique.

Nous avons tracé les densités de couplage nucléaire spin–spin pour la molécule CO. Nous

avons démontré comment les contributions non-relativistes habituelles—i.e. la contribution

paramagnétique spin–orbite (PSO), la contribution spin-dipôle (SD) plus l’interaction Fermi-

contact (FC), et l’interaction diamagnétique spin–orbite (DSO)—peuvent être également vi-

sualisées dans le cadre relativiste. Bien que l’approche de la visualisation de la densité de cou-

plage nucléaire spin–spin soit déjà connue dans le cadre non-relativiste, l’avantage de l’approche

présentée ici est la possibilité de traiter les systèmes avec des éléments lourds avec une métho-

dologie appropriée.
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Puis, nous avons examiné la di�érence d’énergie entre les deux énantiomères de CHFClBr

causée par la violation de la parité en introduisant la densité γ5

γ5(r) = ψ†

⎡
⎢
⎢
⎢
⎢
⎢
⎣

02×2 12×2

12×2 02×2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

ψ (0.1)

qui est soumise à une distorsion géométrique le long d’un mode vibrationnel. Le but de cette

discussion est que l’étude de la densité γ5 peut donner une autre vue sur la di�érence d’éner-

gie causée par la violation de la parité. Si on arrivait à faire la connection entre la di�érence

d’énergie et la structure spatiale de la densité γ5 et sa variation avec une distorsion géométrique,

cela permettrait peut-être de faciliter la conception de la molécule candidate telle que l’e�et

minuscule soit maximisée et, espérons-le, à la portée de la résolution expérimentale.

Nous avons aussi rapporté la première étude relativiste à quatre composantes de la contri-

bution de non-conservation de la parité (NCP) aux constantes d’écran RMN isotropiques pour

les molécules chirales. Nous avons étudié ici les P-énantiomères de la série H2X2 (X = 17O, 33S,

77Se, 125Te, 209Po). Les contributions NCP sont obtenues dans une approche de réponse linéaire

au niveau Hartree-Fock. Les résultats relativistes à quatre composantes basés sur l’hamiltonien

Dirac-Coulomb sont comparés avec les résultats Lévy-Leblond (non-relativistes) et ceux obte-

nus par l’équation deDiracmodi�ée spin-free. Les calculsmontrent que le couplage spin–orbite

joue un rôle substantiel même pour un traitement qualitatif de H2
77Se2 et de ses homologues

plus lourds, avec un e�et opposé aux e�ets relativistes scalaires. Le formalisme présenté sera

utile pour la future recherche de molecules candidates pour la première détermination expéri-

mentale des e�ets NCP dans les spectres RMN.

Ainsi nous avons examiné le calcul des contributions électrofaiblesNCPdans les paramètres

spectraux de RMN du point de vueméthodologique. Nous avons calculé les paramètres d’ecran

RMN et les constantes de couplage spin–spin indirectes pour trois molécules chirales, H2O2,

H2S2 et H2Se2. Les e�ets de base et de traitement de la corrélation électronique ainsi que les ef-

fets de la relativité restreinte ont été étudiés. Tous les e�ets sont importants. La dépendance par

rapport à la base est très prononcée, particulièrement pour les méthodes corrélées. Les résul-

tats coupled-cluster et DFT pour les contributions NCP di�èrent de manière signi�cative des

résultats HF. La DFT surestime les e�ets NCP, en particulier avec les fonctionnelles XC non-

hybrides. La relativité restreinte est importante pour les propriétés NCP de RMN, ce qui est mis
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en évidence ici en comparant les résultats obtenus par le traitement perturbatif à une compo-

sante avec divers calculs à quatre composantes. Contrairement aux paramètres d’ecran RMN, le

choix du modèle pour représenter la distribution de la charge nucléaire—charge ponctuelle ou

modèle gaussien—a un impact signi�catif sur la contribution NCP aux constantes de couplage

spin–spin indirectes.

Indépendamment, nous avons présenté des calculs relativistes à quatre composantes HF et

DFT de polarisabilité électrique dipôle-dipôle statique et dépendant de la fréquence pour tous

les atomes à couche fermée jusqu’à Ra. Pour cette étude, douze fonctionnelles non-relativistes

y compris trois fonctionnelles asymptotiquement corrigées ont été considérées. La meilleure

performance a été obtenue en utilisant les fonctionnelles hybrides et leurs versions asymptoti-

quement corrigées (GRAC). La performance de la fonctionnelle SAOP est parmi les meilleures

pour des fonctionnelles non-hybrides pour des atomes du groupe 18 mais sa précision se dé-

grade quand on considère l’ensemble complet les atomes étudiés. Pour ces systèmesCAMB3LYP

représente seulement une amélioration légère par rapport à B3LYP. En outre, nous avons dé-

montré que les potentiels e�ectifs de cœur ne devraient pas être utilisés en combinaison avec

l’interpolation de GRAC. Nous avons constaté que les gaz rares ne sont pas entièrement repré-

sentatifs pour l’étalonnage des nouvelles fonctionnelles pour le calcul des polarisabilités.

C’est un plaisir de conclure ce travail en voyant plusieurs projets former des connections qui

convergent vers la thématique centrale de cette thèse : la chimie quantique au-delà de la densité

de charge.



Motivation and overview

You think quantum physics has the answer? I mean, what purpose

does it serve for me that time and space are exactly the same thing?

I ask a guy what time it is, he tells me six miles? What the hell is

that?

Woody Allen in Anything Else (2003)

�is thesis focuses on the calculation and visualization of molecular properties within the

4-component relativistic framework. Response theory together with density functional theory

(DFT) within the Kohn-Sham (KS) approach are the main tools. In the following I will explain

why the 4-component relativistic framework, response theory, and DFT form a good team for

the calculation and visualization of molecular properties and why the development of these

methods is worthwhile.

�e speed of light is �nite and our world is relativistic—with all their fascinating con-

sequences on our understanding of nature. Relativistic e�ects in chemistry and molecular

physics are important and have been recognized as early (or as late) as in the 1970’s6–8 (see

also Refs. 9 and 10 and the bibliography therein). �e increasing interest for relativistic ef-

fects visible in more and more calculations correlates with a very active development of appro-

priate tools for their computational treatment, which are now available in several quantum-

chemical codes (BDF,11, 12 BERTHA,13–15 DIRAC,16 DREAMS,17, 18 MOLFDIR,19 REL4D,20–22 and

several 2-component implementations). Whether it is necessary to include relativistic e�ects

in quantum-chemical calculations depends in the end on “your attitude”23 since the motiva-

tions for treating these e�ects can be very di�erent: (i) for heavy-element systems there is no

alternative to a relativistic treatment in order to obtain even a qualitative description of the elec-

tronic structure, (ii) today calculations can reach the accuracy where relativistic e�ects begin

to count even for light elements, and �nally, (iii) the relativistic theory o�ers the natural frame-

work to describe the interaction of particles with electromagnetic �elds, especially magnetic

properties—they are inherently relativistic phenomena. Magnetic interactions can be described

17
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in a nonrelativistic (NR) formalism. However, the 4-component relativistic framework usually

o�ers “nicer” expressions on paper and amore consistent theory,24 o�en (but not always!) at the

cost of more sophisticated coding and more expensive calculations. Numerous excellent text-

books25–29 and review volumes30–34 on relativistic e�ects in chemistry and relativistic quantum

theory exist and it would be redundant to make a lengthy general introduction to this theory in

this thesis. Relativity will therefore not appear in a separate chapter, it will rather constitute the

point of view and it will be interwoven in the notation and the discussion of expressions and

results.

DFT is today’smost popularmethod in computational chemistry1 and the preferredmethod

in this thesis. Based on the proofs of Hohenberg and Kohn35 (HK), the ground state electron

density is a su�cient variable for the description of the electronic many-body quantum system.

�is variable is intuitive and observable, in contrast to the many-body wave function in wave

functional theory. In principle not only the ground state energy, but all observables of the sys-

tem are functionals of the ground state density. �e theory is exact and rigorous. Unfortunately

for practical applications, DFT, in the spirit of HK, does not o�er explicit expressions.

Practical, explicit DFT, which is almost exclusively used in the formulation of Kohn and

Sham36 (KS), relies on many approximations and presently many di�erent functionals, which

are obtained based on various motivations, are on the market. Given the wealth of available

functionals, part of them designed using several semi-empirical parameters, DFT o�en meets

the critique of being too much cuisine. In strong disagreement to this critique, the design and

selection of density functional approximations can be and should be systematic, following the

method of “constraint satisfaction” along the “Jacob’s Ladder to heaven of chemical accuracy”

nicely discussed in Ref. 37, without �tting to data sets. �e present di�culty and challenge for

the future is however the fact, that although a systematic hierarchy of physical sophistication

exists for density functional approximations (rungs of the “Jacob’s Ladder”), for today’s approx-

imate functionals this series does not guarantee convergence towards exact solutions in every

case. �is is in contrast to wave function based methods with a limit that is known (full con�g-

uration interaction) but is for most practical purposes computationally (not conceptually) out

of reach.

�e huge driving force behind the development of new functionals and the popularity of

DFT is the favorable cost/performance ratio and scaling with the size of the system, together

with relatively modest basis set requirements. A large number of quantum mechanical stud-

ies of interesting systems whose size disquali�es wave function based methods would not be

possible without DFT.
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DFT becomes all the more interesting in the relativistic community due to the typically

larger number of electrons to correlate in the treatment of heavier elements. As in NR DFT,

one has to distinguish between a �rm theoretical basis, laid down by Rajagopal and Callaway38

with the 4-current density being the fundamental variable, and the practical side where such

functionals are not yet available and one therefore usually resorts to the use of NR functionals

in combination with 2- and 4-component Hamiltonians.

�e generalization of the time-independent HK theorem to the time-dependent domain

(TD-DFT) by Runge and Gross39 with the formulation of a corresponding time-dependent KS

scheme made a large number of time-dependent molecular properties accessible within DFT.

�e usually addressed electronic excitation spectrum is only one of many possible applications.

Some of the di�culties of stationary DFT mentioned above apply also in TD-DFT. New prob-

lems arise, e.g. the so-called ultra-nonlocality40 or the memory of the exchange-correlation

kernel.41

�e calculation of static and frequency-dependent molecular properties within TD-DFT,

formulated in the language of response theory, and employing the time-averaged quasienergy

formalismwill be the core of this thesis. Within the time-averaged quasienergy response theory,

frequency-dependentmolecular properties, excitation energies, and transitionmatrix elements

can be associated with response functions, their poles, and residues, respectively. �e imple-

mentation of closed-shell linear and quadratic response functions within TD-DFT in the 4-

component relativistic framework will be presented with extensions that include contributions

from spin density. It will be argued why these extensions can be necessary for the treatment

magnetic and time-dependent electric molecular properties using approximate functionals de-

spite the fact that these additional variables do not appear in the original HK theorems. Espe-

cially for the study of magnetic molecular properties, the employed 4-component formalism

will be shown to o�er a convenient and transparent framework.

Finally, several components from response theory will be put together to produce a visu-

alization tool for various densities which will be used as a valuable alternative for the demon-

stration, rationalization, and discussion of some basic concepts response theory and relativis-

tic quantum chemistry and o�er a real-space approach to molecular properties within the 4-

component relativistic framework. It will be demonstrated how scalar relativistic e�ects and

e�ects due to spin–orbit coupling can be visualized separately. Numbers will be given colors

and properties will be given shapes, which may open up new views on well-knownmodels and

concepts.
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Layout of this thesis

�e thesis is divided into three parts:

I �e �rst part gives an introduction to themethodology, starting from themolecular elec-

tronic energy (Section 1), then introducing response theory for approximate variational

wave functions (Section 2), followed by a detailed discussion of the noncollinear TD-

SDFT implementation for linear and quadratic response (Section 3). Section 4 tests the

TD-SDFT implementation for excitation energies. Finally, Section 5 discusses a real-

space approach to molecular properties within the 4-component relativistic framework.

II In the second part three papers are presented.

III It is a good tradition of the T. Saue research group to prepare notes for problems and for

solutions. In this spirit, several notes are included which relate to Parts I and II. �ese

might be useful when more insight into the implementations and more technical details

are needed.
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Notation, conventions, and units

SI-based atomic units42, 43 are used throughout unless explicitly noted. �e electron mass∗ m

and the elementary charge e are written out explicitly for compatibility with the literature. �e

Einstein implicit summation convention is used where it is clear from the context, recalled

where it is less clear from the context, and avoided where it is not expected.

�e Dirac identity44

(σ ⋅A)(σ ⋅ B) = A ⋅ B + iσ ⋅ (A ×B) (0.2)

will be repeatedly used. Here σ is the vector of Pauli spinmatrices in the standard representation

(de�ned in Section 1.3, p. 30), A and B are arbitrary vectors.

Orbital indices i , j, . . . will be reserved of occupied (or inactive) orbitals, indices a, b, . . . for

virtual (or secondary) orbitals, and p, q, . . . will be general orbital indices.

LDAcalculationswill always employ the parametrizationVWN5ofVosko et al. 45 (SVWN5).

�e acronym LSDAwill not be used for LDA within spin density functional theory because for

other functionals this distinction is not made either. �e acronym ALDA will not be used for

the adiabatic LDA kernel to keep a consistent notation with other adiabatic kernels where the

pre�x “A” is typically not used.

Electromagnetic properties will be discussed using the (electron) charge density ρ, and the

(electron) charge current density j. However, it will actually minimize the confusion bymaking

two exceptions:

(i) �eDFT andTD-SDFT implementationwill be presented using the probability (or num-

ber) density n. �e charge and number densities are related by the factor −e, which is the
charge q of the electron.

ρ = qn = −en (0.3)

�e reason is that density functionals are typically formulated and programmed using

the number density n.

(ii) Induced currents will be visualized using the probability current density, denoted by the

calligraphic J . Again, the charge current density j and the probability current density J
are related by the electron charge q = −e.

j = qJ = −eJ (0.4)

�e reason is that it ismore intuitive to rationalize inducedJ with the familiar right hand

rules than induced jwhich points opposite to the electron velocity vector, combined with

possibly unfamiliar le�-hand rules.

∗ For compatibility with the literature on relativistic electronic structure theory the electron mass is written asm

instead of me.
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Chapter 1

Molecular electronic energy

Dr. Brackish Menzies, who works at the Mount Wilson Observa-

tory, or else is under observation at theMountWilsonMental Hos-

pital (the letter is not clear), claims that travelers moving at close to

the speed of light would require many millions of years to get here,

even from the nearest solar system, and, judging from the shows on

Broadway, the trip would hardly be worth it.

Woody Allen,�e UFO Menace in Side E�ects

1.1 Dirac equation and the molecular electronic energy

Books about programming languages typically start with a very easy example: the “hello world”.

From there more di�cult and more sophisticated models are introduced. Quantum chemical

dissertations and articles go in the opposite direction and start typically with probably their

most di�cult example, the time-dependent Dirac equation:

i
∂

∂t
∣ψ(t)⟩ = [Ĥ + P̂(t)]∣ψ(t)⟩. (1.1)

�is equation describes the time evolution of the quantum states of motion ∣ψ(t)⟩ (wave func-
tions), from which all observables may be extracted. �e total Hamiltonian∗ [Ĥ + P̂(t)] is par-
titioned here into a time-independent term Ĥ and an explicitly time-dependent perturbation

P̂(t).
∗ Before giving the Hamiltonian in its explicit relativistic form (see Section 1.2, p. 28) the time-dependent Dirac

equation can be understood here as a synonym for the time-dependent Schrödinger equation.

25
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For an isolated system (P̂(t) = 0) the Hamiltonian and the total energy are constants

of motion, and the time-dependent Dirac equation (Eq. 1.1) reduces to its well-known time-

independent version:

Ĥ∣ψm⟩ = Em∣ψm⟩. (1.2)

�e stationary states ∣ψm⟩ are eigenvectors of the Hamiltonian that correspond to the eigenval-

ues Em. Among ∣ψm⟩ is the ground state ∣ψ0⟩ obtained as a solution of

Ĥ∣ψ0⟩ = E0∣ψ0⟩. (1.3)

We are interested in the electronic problem and invoke the Born-Oppenheimer approximation.

In the second-quantization representation the electronic Hamiltonian is given by

Ĥ = hpq â
†
p âq + 1

2
gpqrs â

†
p â

†
r âs âq (1.4)

= hpq x̂pq + 1
2
gpqrs x̂pqrs ,

and consists of one- and two-electron excitation operators x̂pq and x̂pqrs and the associated

probability amplitudes hpq and gpqrs. To keep the form of theHamiltonian as generic as possible

at this stage, the terms hpq and gpqrs are not further speci�ed. �e explicit one- and two-electron

integrals hpq and gpqrs will be detailed later in the discussion (Section 1.2, p. 29). Having solved

the time-independent Dirac equation (Eq. 1.3), the ground state wave function ∣ψ0⟩ or any other
state is obtained, and the ground statemolecular electronic energy E0 is given as the expectation

value expression

E0 = ⟨ψ0∣Ĥ∣ψ0⟩ = hpq⟨ψ0∣x̂pq∣ψ0⟩ + 1
2
gpqrs⟨ψ0∣x̂pqrs∣ψ0⟩ (1.5)

= hpqDpq + 1
2
gpqrsdpqrs ,

where Dpq and dpqrs are the one- and two-electron (reduced) density matrices, respectively.

Other observables are expectation values of their corresponding operators. In principle, it is

possible to approximate ∣ψ0⟩ to any desired accuracy using the full con�guration interaction by
representing the electronic state in the N-particle basis, i.e. in the basis of so-called occupation

number (ON) vectors (or Slater determinants = antisymmetrized products of orbitals).

A useful quantum-chemical calculation is then a balanced choice of at least the following

three approximations: (i) choice of the Hamiltonian, this is the choice of hpq and gpqrs, to ob-

tain a useful approximation for the physical problem under study, (ii) approximation of the

N-particle wave function represented in the basis of Slater determinants (usually called the

method), and (iii) choice of the one-particle basis in which the orbitals are represented. �e

three axes which de�ne a quantum chemical model for the molecular energy are depicted in
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Figure 1.1: �e three axes which de�ne a quantum chemical model for the molecular energy as a wave

functional (le�) or as a KS density functional (right).

Fig. 1.1, one (le�) as a wave functional and the other (right) as a KS density functional. �e

ticks along the axes represent steps along a systematic improvement of the approximation to-

wards the exact solution (actually towards other approximations46). In the following the two

axes, Hamiltonian andmethod/functional, will be highlighted separately. �eHamiltonian axis

will be discussed “backwards”, starting from the 4-component form, and the discussion of the

method/functional axis will put more emphasis on the KS DFT approach since this is the ap-

proach studied in this thesis. A nice discussion of the choice of the basis set can be found in for

instance in Ref. 47.
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1.2 4-component relativistic Hamiltonian

Within theBorn-Oppenheimer approximation the electronicHamiltonian—whether being rel-

ativistic or not—has the generic form given in Eq. 1.4, with the one- and two-electron integrals,

hpq = ⟨ϕp∣ĥ∣ϕq⟩ (1.6)

and

gpqrs = ⟨ϕpϕr ∣ĝ∣ϕqϕs⟩, (1.7)

respectively, in which appears the one-electron operator ĥ and the two-electron interaction

operator ĝ. �e speci�cation of these operators for 4-component relativistic molecular calcu-

lations will be the subject of the present section. We will assume an orthogonal basis {ϕp}.
�e starting point in 4-component relativistic theory is the free-particle Dirac operator

ĥ0 = β
′mc2 + c(α ⋅ p). (1.8)

�e relativistic orbitals, also called 4-spinors, have four components, and the free-particle Dirac

operator is a 4 × 4 matrix. As done here, it is common to replace the matrix βmc2 by

β′mc2 = (β − 14×4)mc2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 −2mc2 0

0 0 0 −2mc2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.9)

to align relativistic and NR energy scales. Here 14×4 is the 4 × 4 identity matrix. �e particle

mass is given as m, c is the speed of light, p the (canonical) linear momentum operator, and

the 4 × 4 matrix α contains in the o�-diagonal blocks the vector of Pauli spin matrices in the

standard representation (see also Section 1.3, p. 30):

α =

⎡⎢⎢⎢⎢⎣
02×2 σ

σ 02×2

⎤⎥⎥⎥⎥⎦ . (1.10)

At this stage the Hamiltonian describes not only the electron, but also its antiparticle, the

positron. �e one-particle Hamiltonian in the presence of external scalar (ϕ) and vector (A)

potentials can be obtained from its free-particle counterpart by the Gell-Mann minimal elec-

tromagnetic substitution prescription48

p→ p − qA and E → E + qϕ, (1.11)
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where q is the charge of the particle:

ĥ = β′mc2 + c(α ⋅ p) − qc(α ⋅A) + qϕ. (1.12)

�e minimal electromagnetic coupling requires the speci�cation of the particle charge q. �e

charge of an electron is q = −e. �is gives the one-electron Hamiltonian

ĥ = β′mc2 + c(α ⋅ p) + ec(α ⋅A) − eϕ. (1.13)

�e relativistic two-electron interaction operator ĝ is considerably more involved since it

describes all e�ects of retardation and magnetic interactions due to the �nite speed of light. In

the Coulomb gauge

∇ ⋅A = 0 (1.14)

the operator ĝ can be conveniently expanded in powers of c−2. One typically considers only the

zeroth-order term, the instantaneous Coulomb interaction

ĝCoulomb =
(14×4 ⊗ 14×4)

r12
, (1.15)

where the 4 × 4 identity matrices (14×4) emphasize the 4-component structure of this operator.

�is operator provides spin-same, but not spin-other orbit interaction.24 Together with the

Dirac one-electron operator it constitutes the Dirac-Coulomb (DC) Hamiltonian. �e �rst-

order term is the Breit term which is usually expressed as the sum of the Gaunt term ĝGaunt and

a gauge-dependent term ĝgauge according to

ĝBreit = ĝGaunt + ĝgauge (1.16)

= −(cα1) ⋅ (cα2)
c2r12

− (cα1 ⋅ ∇1)(cα2 ⋅ ∇2)r12
2c2

.

In the NR limit ĝ reduces to the instantaneous Coulomb interaction. All contributions beyond

the zeroth-order term are neglected in this thesis. �is speci�c choice of a Hamiltonian �xes

hpq and gpqrs. In the second-quantization representation and the Born-Oppenheimer approx-

imation and in the absence of external �elds other than the scalar potential vext created by the

nuclei, hpq and gpqrs are given by

hpq = ⟨ϕp∣ĥ∣ϕq⟩ (1.17)

= β′mc2δpq + c⟨ϕp∣(α ⋅ p)∣ϕq⟩ + ⟨ϕp∣vext∣ϕq⟩
= β′mc2δpq + c⟨ϕp∣(α ⋅ p)∣ϕq⟩ −∑

K

ZK ∫ dr
Ωpq(r)∣RK − r∣

gpqrs =∬ dr1dr2
Ωpq(r1)Ωrs(r2)∣r2 − r1∣ . (1.18)
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Here RK and ZK are the position and charge of nucleus K, respectively, and Ωpq is the orbital

overlap distribution ϕ†
pϕq.

It is important to note that the DCHamiltonian is not the last tick on the Hamiltonian-axis

in Fig. 1.1: all two-electron interactions beyond the instantaneous Coulomb interaction (retar-

dation and magnetic interactions) are neglected and the frequently used term “fully relativistic

calculation” in combination with the DC Hamiltonian is therefore misleading.

1.3 Dirac matrices

�e following brief discussion of the Dirac matrices, their explicit form and physical content

will be rewarding because a knowledge of their transformation properties under symmetry

operations can save a substantial amount of computation time and programming e�ort.

Start from the following four 2 × 2 matrices σi (with i = 0, 1, 2, 3)

σ0 =

⎡⎢⎢⎢⎢⎣
1 0

0 1

⎤⎥⎥⎥⎥⎦ = 12×2 σ1 =

⎡⎢⎢⎢⎢⎣
0 1

1 0

⎤⎥⎥⎥⎥⎦ σ2 =

⎡⎢⎢⎢⎢⎣
0 −i
i 0

⎤⎥⎥⎥⎥⎦ σ3 =

⎡⎢⎢⎢⎢⎣
1 0

0 −1
⎤⎥⎥⎥⎥⎦ , (1.19)

where σ1,2,3 are the well-known Pauli spin matrices σx ,y,z in the standard representation. For

later reference it is worth to note the useful mapping between the Pauli spin matrices times

imaginary i and the quaternion units∗ ı̌, ǰ, and ǩ:

iσz ↔ ı̌, iσy ↔ ǰ, iσx ↔ ǩ (1.20)

As pointed out by Jordan,50 they have the same algebra. Next, form the 4 × 4 matrices Ai and

Bi de�ned by

Ai = 12×2 ⊗ σi and Bi = σi ⊗ 12×2. (1.21)

�e products Mi j = AiB j are the 16 Dirac matrices.51, 52 In a compact notation they are given in

Tab. 1.1 or explicitly in Tab. 1.2. �ese 16 Dirac matrices have many interesting properties,28, 51

i.e. they are Hermitian, 15 of them are traceless, and most notably they form a complete set for

any 4 × 4 matrix. �is means that the perturbation operators in Section 2 can be de�ned by

a linear combination of these 16 Dirac matrices. Apart from being esthetically appealing they

have physical content (see Tab. 1.3) and possess transformation properties under spatial and

time-reversal symmetry operations which will be explored in the following and which can be

exploited in calculations and programming.

∗ A quaternion number q is given by q = a + bǰ = Re(a) + Im(a)̌ı + Re(b)̌j + Im(b)ǩ, with ı̌2 = ǰ
2 = ǩ

2
= −1,

ı̌̌j = ǩ, ǰǩ = ı̌, and ǩı̌ = ǰ. �e quaternion units ı̌, ǰ, and ǩ anticommute. Quaternion numbers do not commute

under multiplication.49
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Table 1.1: 16 Dirac matrices Mi j in compact notation.

M00 = 14×4 M01 = Σx M02 = Σy M03 = Σz

M10 = γ
5 M11 = αx M12 = αy M13 = αz

M20 = −iβγ5 M21 = −iβαx M22 = −iβαy M23 = −iβαz

M30 = β M31 = βΣx M32 = βΣy M33 = βΣz

Table 1.2: Explicit Dirac matrices Mi j.

14×4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Σx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Σy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Σz =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

γ5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

αx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

αy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

αz =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−iβγ5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−iβαx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−iβαy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−iβαz =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

βΣx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

βΣy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

βΣz =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table 1.3: Dirac matrices Mi j and the physical meaning of the corresponding generalized densities

ψ†Mi jψ. �is table points to sections where these densities are further explored/used. �e evaluation of

these densities is described in Note B, p. 185.

Mi j ψ†Mi jψ

14×4 number density see Section 5.2, p. 95 and Section 5.3, p. 102

Σx ,y,z spin density in x , y, z-direction see Section 3.1, p. 63

γ5 γ5 density or chirality density see Section 5.6, p. 124

αx ,y,z (1/c)× velocity density in x , y, z-direction see Section 5.3, p. 102 and Section 5.4, p. 110

Time reversal

�e antilinear time reversal operator K̂ reverses the time arrow

K̂ψ(t) = ψ̄(−t), (1.22)

reverses all vectors that describe themovement at a speci�c time

K̂vK̂−1 = −v, (1.23)

�ips the spin, but keeps positions and orientations unchanged. In the 4-component relativistic

framework it is given by

K̂ = −iΣyK̂0, (1.24)

with Σy de�ned previously (Tab. 1.2) and K̂0 being the complex conjugation operator. �e latter

is the time reversal operator for scalar wave functions. In the case of systems with fermion

symmetry a double time reversal operating on the corresponding wave function yields

K̂2ψ(t) = −ψ(t). (1.25)

�e operation of K̂ on fermion basis functions {ϕ} generates their complementary partners

(Kramers partners) {ϕ̄}. �e union of both sets is the Kramers restricted basis.
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Table 1.4: Time reversal symmetry of the 16 Dirac matrices Mi j.

14×4 ∶ t = +1 Σx ∶ t = −1 Σy ∶ t = −1 Σz ∶ t = −1
γ5 ∶ t = +1 αx ∶ t = −1 αy ∶ t = −1 αz ∶ t = −1

−iβγ5 ∶ t = −1 −iβαx ∶ t = +1 −iβαy ∶ t = +1 −iβαz ∶ t = +1
β ∶ t = +1 βΣx ∶ t = −1 βΣy ∶ t = −1 βΣz ∶ t = −1

It can be easily veri�ed28 that a Hermitian time reversal symmetric (t = +1) or antisymmetric

(t = −1) operator Ω̂ represented in the Kramers restricted basis

Ω =
⎡⎢⎢⎢⎢⎣
⟨ϕp∣Ω̂∣ϕq⟩ ⟨ϕp∣Ω̂∣ϕ̄q⟩⟨ϕ̄p∣Ω̂∣ϕq⟩ ⟨ϕ̄p∣Ω̂∣ϕ̄q⟩

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
Ωpq Ωpq̄

Ω p̄q Ω p̄q̄

⎤⎥⎥⎥⎥⎦ (1.26)

has the structure∗

Ω =
⎡⎢⎢⎢⎢⎣
Ωpq Ωpq̄−tΩ⋆pq̄ tΩ⋆pq

⎤⎥⎥⎥⎥⎦ . (1.27)

�is means that for t = +1, time reversal symmetry allows to block diagonalize Ω and to reduce

the computational e�ort (and memory requirement) by a factor of two, however at the price

of introducing quaternion algebra. �is strategy is not restricted to Hermitian (h = +1) time

reversal symmetric (t = +1) operators since h = +1, t = −1 operators can be incorporated in the

symmetry scheme by extracting a purely imaginary phase, which makes them h = −1, t = +1.
Operators general with respect to time reversal symmetry can always be decomposed in to a

t = +1 and t = −1 part. To some extent time reversal symmetry recovers spin symmetry lost in

the relativistic framework.

It is a good exercise to verify the time reversal symmetry of the 16 Dirac matrices Mi j

(Tabs. 1.1 and 1.2) by checking t in

K̂Mi jK̂
−1 = tMi j, (1.28)

with the result listed in Tab. 1.4.

∗ In this context t does not represent the time.
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Spatial symmetry

�e use of time reversal symmetry allows to reduce the dimension of the problem by a factor

of two at the price of introducing quaternion algebra. Additional symmetry savings can be

achieved by the use of spatial symmetry which enables in some cases to reduce the algebra

from quaternion to complex or even real algebra (see for instance Ref. 53).

A good starting point for studying the spatial symmetry of the Dirac matrices Mi j is again

the free-particle Dirac Hamiltonian

ĥ0 = β
′mc2 + c(α ⋅ p), (1.29)

which transforms as the totally symmetric irreducible representation Γ0. �is means that β′,

the unprimed β, and (α ⋅ p), all transform as Γ0. �e momentum operator that transforms like

the coordinates (Γr) implies together with a totally symmetric (α ⋅p) that also the threematrices

αx , αy, and αz transform as the corresponding coordinates Γx , Γy, and Γz. �e transformation

of the chirality matrix γ5 as the parity inversion Γxyz can be deduced by writing γ5 as

γ5 = αxαyαz . (1.30)

�is is also in line with the requirement that the inversion of parity implies a switch of chirality.

Finally, remembering that

Σ = (M01,M02,M03) = γ5α (1.31)

means that Σ has to transform like the vector of rotations (ΓR).
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1.4 Eliminating relativistic e�ects

Relativistic e�ects can be de�ned as the di�erences between the physics at a �nite speed of light

(c ≈ 137.0359998 a0Eh/ħ) and the NR situation at c =∞.9 Relativistic e�ects are usually divided

into scalar relativistic and spin–orbit e�ects. Scalar relativistic e�ects are related to the change

in kinematics of electronsmoving at signi�cant fractions of the �nite speed of light. �e e�ect of

spin–orbit coupling can be regarded as magnetic induction, the coupling of the electron spin to

the inducedmagnetic �eld due to themoving charges of nuclei and other charged particles (e.g.

electrons) in the rest frame of the electron. InNR theory the spin and spatial degrees of freedom

are completely decoupled, and spin and—in the case of atoms—orbital angular momenta have

good quantum numbers. With spin–orbit coupling, this NR symmetry is lost.

�e di�erences between the physics at a �nite speed of light and the NR situation at c =∞
can not be measured in experiment. Nevertheless, the assessment of relativistic e�ects is more

than just a hypothetical discussion. If they are negligible, the computationally advantageous

NR approximation is a good approximation. However, especially for heavy elements where

core electrons obtain considerable velocities due to the signi�cant nuclear charge, relativistic

corrections have to be accounted for. Corrections due to scalar relativity can be included in

standard NR quantum chemical codes at almost no additional computational cost through the

use of relativistic pseudopotentials54 or approximate scalar relativistic Hamiltonians.55–59 �is

is not true in the case of spin–orbit coupling which requires a 2-component description and

complex algebra.

Having a 4-component code at hand it is possible to go in the other direction and start,

for instance, from a DC Hamiltonian and subsequently eliminate relativistic e�ects. Coming

back to the de�nition of relativistic e�ects, the obvious ansatz is to increase the speed of light.

�is will approach the NR limit and eventually eliminate all relativistic e�ects. Instead of elim-

inating all relativistic e�ects it is possible to separate out the spin–orbit interaction by keeping

scalar relativity and a 4-component framework.24, 60 �e problem of separating out the spin-

dependent terms from the Dirac equation

⎡⎢⎢⎢⎢⎣
V̂ c(σ ⋅ p)

c(σ ⋅ p) V̂ − 2mc2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ψL

ψS

⎤⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎣
ψL

ψS

⎤⎥⎥⎥⎥⎦ , (1.32)

given here in the 2-spinor form, is that the spin appears in the kinetic energy operator c(σ ⋅p).
�e ansatz independently proposed by Dyall61 and Kutzelnigg62 is the nonunitary transforma-

tion ⎡⎢⎢⎢⎢⎣
ψL

ψS

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
12×2 02×2
02×2 1

2mc2 (σ ⋅ p)
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ψL

ϕS

⎤⎥⎥⎥⎥⎦ , (1.33)
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leading to the so-called modi�ed Dirac equation

⎡⎢⎢⎢⎢⎣
V̂ T̂

T̂ 1
4m2c2 (σ ⋅ p)V̂(σ ⋅ p) − T̂

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ψL

ϕS

⎤⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎣
12×2 02×2
02×2 1

2mc2 T̂

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ψL

ϕS

⎤⎥⎥⎥⎥⎦ , (1.34)

where the NR kinetic energy operator

1
2m
(σ ⋅ p)(σ ⋅ p) = p ⋅ p

2m
= T̂ (1.35)

has been used. Spin-dependence can now be separated out using the Dirac identity (Eq. 0.2)

(σ ⋅ p)V̂(σ ⋅ p) = pV̂ ⋅ p + iσ ⋅ pV̂ × p, (1.36)

and themodi�edDiracHamiltonian ˜̂H can be given by a sumof a spin-free and a spin-dependent

term

˜̂H =
⎡⎢⎢⎢⎢⎣
V̂ T̂

T̂ 1
4m2c2
{pV̂ ⋅ p − T̂}

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
02×2 02×2
02×2 1

4m2c2
{iσ ⋅ pV̂ × p}

⎤⎥⎥⎥⎥⎦ . (1.37)

�is equation can be cast in quaternion formulation in a very simple form.60 �e contribution

due to spin–orbit coupling can then be eliminated by deleting the quaternion imaginary parts.

Another nonunitary transformation

⎡⎢⎢⎢⎢⎣
ψL

ψS

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
12×2 02×2
02×2 1

c 12×2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ψL

ϕS

⎤⎥⎥⎥⎥⎦ (1.38)

in the NR limit (c →∞)∗ yields the 4-component NR equation

⎡⎢⎢⎢⎢⎣
V̂ (σ ⋅ p)
(σ ⋅ p) −2m

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ψL

ϕS

⎤⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎣
12×2 02×2
02×2 02×2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ψL

ϕS

⎤⎥⎥⎥⎥⎦ (1.39)

proposed by Lévy-Leblond.65 �is equation is equivalent to the Schrödinger equation.64 Note

that both nonunitary transformations change the small-small block of the metric.28 Both the

spin-free modi�ed Dirac Hamiltonian and the Lévy-Leblond Hamiltonian will be frequently

used for the isolation and discussion of scalar relativistic and spin–orbit e�ects.

∗ With the restrictions: ∣E∣ ≪ c2 and a nonsingular scalar potential ϕ. In practice this means that attention is
restricted to the positive-energy solutions (a separate limit exists for negative-energy solutions63), and the NR

limit is only valid for extended nuclei.64
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1.5 Nonrelativistic vs. relativistic charge and charge current

density

In Section 1.2, p. 28, external �elds have been introduced through the external vector and scalar

potential,A and ϕ, respectively, invoking the Gell-Mannminimal electromagnetic substitution

prescription (Eq. 1.11) which gave the relativistic one-electron Hamiltonian (Eq. 1.13)

ĥR = β
′mc2 + c(α ⋅ p) + ec(α ⋅A) − eϕ. (1.40)

Starting from this 4-component relativistic (subscript “R”) one-electron Hamiltonian the 4-

component relativistic expressions for the central quantities in this thesis, the charge and charge

current density, will be identi�ed closely following Refs. 24 and 66. �is analysis will be per-

formed in parallel starting from the NR one-electron Hamiltonian in order to compare the NR

and relativistic �nal expressions. It will be convenient towrite theNR free-particleHamiltonian

in the form

ĥNR,0 =
p2

2m
=

1
2m
(σ ⋅ p)(σ ⋅ p), (1.41)

where the Dirac identity (Eq. 0.2) has been used “backwards”. Without an external vector po-

tential to interact with, the spin remains “hidden”. �e external potentials can be introduced

again using Eq. 1.11 which yields the NR one-electron Hamiltonian in the presence of external

�elds

ĥNR =
p2

2m
+ e

2m
(σ ⋅ p)(σ ⋅A) + e

2m
(σ ⋅A)(σ ⋅ p) + e2

2m
(σ ⋅A)(σ ⋅A) − eϕ. (1.42)

From now on attention will be restricted to the interaction parts of the corresponding Hamil-

tonians

ĥintNR =
e

2m
(σ ⋅ p)(σ ⋅A) + e

2m
(σ ⋅A)(σ ⋅ p) + e2

2m
(σ ⋅A)(σ ⋅A) − eϕ (1.43)

=
e

2m
[p,A]+ + e

2m
(σ ⋅ B) + e2

2m
(σ ⋅A)(σ ⋅A) − eϕ

ĥintR = ec(α ⋅A) − eϕ, (1.44)

and the corresponding interaction energies are

Eint
NR = −e⟨ψ∣[ϕ − 1

2m
[p,A]+ − 1

2m
(σ ⋅ B) − e

2m
A2]∣ψ⟩ (1.45)

Eint
R = −e⟨ψ∣[ϕ − c(α ⋅A)]∣ψ⟩. (1.46)
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Note that the NR Hamiltonian (or the corresponding energy) contains the so-called paramag-

netic term, which is linear in the vector potentialA, and the so-called diamagnetic term, which

is quadratic inA. �e simpler relativistic expression lacks this quadratic term and a distinction

in paramagnetic and diamagnetic contributions can not be made at this stage.

Using the relativistic interaction functional introduced by Schwarzschild67

Eint
R = ∫ dr [ϕρ −A ⋅ j], (1.47)

the charge and charge current densities can be identi�ed as the functional derivatives

ρ =
δEint

δϕ
and j = −δEint

δA
. (1.48)

Using Eqs. 1.45 and 1.46, the corresponding charge and current densities are given by∗

ρNR = −eψ†ψ (1.49)

ρR = −eψ†ψ (1.50)

and

jNR = − e

2m
(ψ†pψ − ψTpψ⋆) − e

2m
∇× ψ†σψ − e2

m
ψ†Aψ (1.51)

jR = −eψ†cαψ. (1.52)

�e �rst two right-hand side terms in Eq. 1.51 arise from the paramagnetic interaction con-

tribution, which has been separated into the spin-free orbital term and a spin-dependent (spin-

current density) termusing theDirac identity. �e latter is the curl of the spin density. �e third

right-hand side term in Eq. 1.51 is the diamagnetic current density. �e situation is again con-

siderably simpler in the relativistic case (Eq. 1.52).

A very similar expression to Eq. 1.51 can be achieved by the Gordon decomposition27, 68 of

the 4-component relativistic current density jR (here given for the time-independent case)

jR = − e

2m
(ψ†βpψ − ψTβpψ⋆) − e

2m
∇× ψ†βΣψ − e2

m
ψ†βAψ. (1.53)

�e corresponding Dirac matrices are de�ned in Tab. 1.2.

∗ Subscripts “NR” and “R” imply “NR” and “R” wave functions.
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More insight into the NR and relativistic current density expressions can be obtained when

remembering that for classical point charges q the charge current density is given by j = nqv =

ρv, with n being the particle density and v the average velocity. �e NR and relativistic velocity

operators can be obtained from Heisenberg equation of motion

dr
dt
= −i[r, ĥ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−i[r, ĥNR] = p

m

−i[r, ĥR] = cα = cσLS + cσSL

(1.54)

�e correspondence between the relativistic velocity operator, which has been further split up

into the large-small (LS) and small-large (SL) sub-blocks, and the corresponding current den-

sity operator is evident. It is however less clear how the second and third right-hand side terms

in Eq. 1.51 relate to the NR velocity operator.

Finally, the correspondence between the NR and relativistic velocity operators in Eq. 1.54

can be rationalized by recalling the NR limit of the coupling between the large and small com-

ponent (see for instance Ref. 64)

lim
c→∞

2mc ψS = (σ ⋅ p)ψL. (1.55)
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1.6 In�nite-order 2-component relativistic Hamiltonian

�epresentlymost rigorous treatment of relativistic e�ects is based on 4-component relativistic

Hamiltonians which are accurate to various orders in powers of c−2. �e relatively high com-

putational e�ort of 4-component relativistic calculations (albeit not the scaling with system

size) has motivated the development of less expensive 2-component relativistic Hamiltonians,

e.g. the Barysz-Sadlej-Snijders69, 70 (BSS) Hamiltonian and the popular Douglas-Kroll-Hess55–57

(DKH) and zeroth-order regular approximation58, 59 (ZORA) Hamiltonians.

Within the �nite basis approximation, the provocative “four-components good, two-com-

ponents bad!” attitude∗ is today superseded by 2-component schemes performed at the ma-

trix level, which o�er an arbitrary (including in�nite) order 2-component (IOTC) relativistic

Hamiltonians and completely avoid the so-called picture change error discussed for instance in

Ref. 66.

�e one-step IOTC Hamiltonian, employed in this thesis especially for development and

testing but also for production (Section 4, p. 77), has been developed by Jensen and Iliaš,71 and

by Iliaš and Saue.72 A similar scheme for obtaining an in�nite-order 2-component relativistic

Hamiltonian at the matrix level has been reported by Liu and Peng73 and by Kutzelnigg and

Liu74, 75 under the name of exact quasi-relativistic (XQR) theory.

�e decoupling of the positive and negative eigensolutions which leads to the IOTCHamil-

tonian can be achieved either by elimination of the small components or by a unitary decou-

pling Foldy-Wouthuysen (FW) transformation76, 77

Û†ĥRÛ =

⎡⎢⎢⎢⎢⎣
ĥ+ 0

0 ĥ−

⎤⎥⎥⎥⎥⎦ . (1.56)

It is useful63 to write the transformation matrix Û as the product of two transformations

Û = Ŵ1Ŵ2 =

⎡⎢⎢⎢⎢⎣
1 −R̂†

R̂ 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
N̂−1+ 0

0 N̂−1−

⎤⎥⎥⎥⎥⎦ , (1.57)

with N̂+ =
√
1 + R̂†R̂ and N̂− =

√
1 + R̂R̂†. �e �rst transformation Ŵ1 provides decoupling,

whereas the second, Ŵ2 ensures renormalization of the eigenvectors.

�e exact (state-speci�c) decoupling operator

R̂ =
1

2mc
B(E)(σ ⋅ p), with B(E) = [1 + E −V

2mc2
]
−1

, (1.58)

is energy dependent72 and known only a posteriori.† However, in the �nite basis approximation

the exact decouplingmatrix can be obtained by a solution of the one-electronDirac equation in

∗ �is is part of the title of Ref. 14. † Iliaš and Saue72 use the state-universal coupling operator a�er Heully et

al. 77
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a molecular �eld.72 �is is usually a modest investment compared to the computational savings

(see Ref. 72 for more details).

�e contribution of the 2-electron spin–orbit coupling can be introduced in a mean-�eld

fashion,78 for instance using the AMFI79 code.

1.7 Jacob’s ladder: DFT vs. WFT

Returning to Fig. 1.1, this sectionwill discuss the so-called Jacob’s ladder inDFT37, 80 (right panel

in Fig. 1.1) by a comparative contrasting with a corresponding “WFT Jacob’s ladder” (le� panel

in Fig. 1.1).

Within KS ground state DFT the system is assumed to be a noninteracting ensemble. For

a noninteracting system one occupation number (ON) vector is su�cient. �e clever idea of

Kohn and Shamwas however to de�ne this ON vector ∣0⟩ such that the density of the KS system
equals the exact density of the interacting system

⟨0∣n̂∣0⟩ = nKS = n = ⟨ψ0∣n̂∣ψ0⟩. (1.59)

All e�ects due to exchange and correlation are cast in the ground state exchange-correlation

(XC) energy EXC which can be proved35 to be a functional of the total electron density n. In the

KS formalism, the exact energy is expressed as

E0 = hii + 1
2
gii j j + EXC[n], (1.60)

with the orbital indices de�ned on p. 21. �is equation will be adapted later for hybrid func-

tionals. �e challenge is however that this XC energy functional is known neither exactly nor

as a systematic series of approximations converging in every case to the exact answer.37 �is

is probably the major practical di�erence between DFT andWFT.�e latter o�ers several sys-

tematic series (CC or CI) that converge to the exact answer in every case. �is does not mean

that this series can actually be followed all the way in practice but in contrast to DFT the chal-

lenge in going one step further along the series is purely technical. In the absence of the exact

XC energy functional, practical KS DFT approximates the XC energy by an integral over an

approximate XC energy density F

EXC = ∫ dr εXC[n] ≈ ∫ dr F({U}), (1.61)

where F depends on set of local arguments {U}. Depending on the actual set {U}, the approx-
imate XC functionals can be organized into the rungs of the Jacob’s ladder in DFT37, 80 (right
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panel in Fig. 1.1), which separates the Hartree world from the “heaven of chemical accuracy”.

�e �rst four rungs are the local density approximation (LDA)36

FLDA = FLDA(n↑, n↓),
the generalized gradient approximation (GGA)81

FGGA = FGGA(n↑, n↓,∇n↑,∇n↓),
the meta-GGA82

Fm-GGA = Fm-GGA(n↑, n↓,∇n↑,∇n↓, τ↑, τ↓),
and the hyper-GGA80

Fh-GGA = Fh-GGA(n↑, n↓,∇n↑,∇n↓, τ↑, τ↓, εX↑, εX↓).
Here ↑ (↓) represents the spin-up (-down) portion of the density (n), density gradient (∇n),
kinetic energy density (τ), and exact exchange energy density (εX). �e ground state energy of

semi-empirical global hyper-GGAs

E0 = hii + 1
2
[gii j j − λgi j ji] +∫ dr F (1.62)

(such as the popular functionals B3LYP83, 84 and PBE085), contains a fraction of orbital exchange

gi j ji , scaled by λ. Neglecting the XC contribution altogether and setting λ = 1 yields as a self-

consistent solution the HF energy. Finally, the ��h rung (generalized random phase approxi-

mation) utilizes all of the KS orbitals.37

An increasing number of ingredients is expected to enable the use of less and less empiri-

cal �t parameters and to satisfy an increasing number of exact constraints by providing more

�exibility, however at the cost of an increasing computational e�ort and more involved pro-

gramming, especially in the case of nonlinear response which is also addressed in this thesis.

One axis has been completely omitted in the right panel in Fig. 1.1: that is the integration

grid. A DFT user o�en simply trusts that the error from numerical integration is insigni�cant.

For DFT programmers, a clever design of the numerical grid for the problem under study is an

important part of the work and can be decisive for the scaling with respect to the system size.

�is scaling is one of few di�erences between the two panels of Fig. 1.1. Especially at the lower

rungs of the Jacob’s ladder DFT o�ers a scaling which makes DFT very attractive compared to

correlated WFT methods. �is also holds for DFT’s rather modest basis set requirements.
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1.8 Generalized density functional theories

In the previous section, spin density has been tacitly and implicitly introduced as an additional

local ingredient to the XC functional together with other generalized (number) density-like

variables. To make this more clear, consider again the LDA XC energy per particle, with

FLDA = FLDA(n↑, n↓),
where n↑ and n↓ are two such generalized densities. Equivalently, FLDA can be expressed using

other complementary variables like for instance the combinations

n↑ + n↓ = n (1.63)

and

n↑ − n↓ = s. (1.64)

�e �rst (Eq. 1.63) may be recognized as the (total) number density n. �e second expression

(Eq. 1.64) de�nes the spin density s which was already introduced as an additional variable in

the seminal paper of Kohn and Sham.36 In their paper it is used as an extension to the theory of

Hohenberg-Kohn35 (HK) to obtain self-consistent equations for the treatment of the spin sus-

ceptibility of an electron gas subject to an external magnetic �eld which led to the spin density

functional theory86, 87 (SDFT). In NR theory the spin and spatial degrees of freedom are com-

pletely decoupled and a quantization axis for the spin angular momentum can be freely chosen,

independently of the molecular orientation in space, for instance—as done conventionally to-

day and as done in the original formulation of KS—along the z-axis. With this choice the spin

density can be expressed as

s = ϕ†
i σzϕi , (1.65)

where σz is one of the Pauli spin matrices (Section 1.3, p. 30) and ϕi are the KS orbitals. Spin

density is an important ingredient in this thesis and Section 3.1, p. 63, will elaborate on this

variable in more detail and discuss its adaptation to the 4-component relativistic theory.

�e set of basic variables has been later enlarged∗ by the curl of the velocity (vorticity) which

led to the current density functional theory89, 90 (CDFT). Another extension of DFT91 enabled

the treatment of superconducting systems in terms of the Cooper pair condensate density.†

∗ �e remaining part of this section follows the very nice discussion in Ref. 88, pp. 346–348. † Gradients,

Laplacians, . . . , of (generalized) densities are not to be considered as additional generalized densities.
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Typically, generalized DFTs (or multi-density functional theories) consider the following

Hamiltonian87, 88, 92

Ĥ = T̂ + Û + V̂ , (1.66)

where T̂ and Û are the operators for the kinetic energy (or, more generally, the free-particle

energy) and the Coulomb interaction between the electrons, respectively, and where

V̂ =∑
i
∫ dr n̂iVi , (1.67)

with the generalized density operators n̂i which couple linearly to their conjugate �elds Vi . In

the case of FLDA the conjugate �elds of the basic variables n and s (de�ned as in Eq. 1.65), are

the scalar potential and the z-component of the magnetic �eld, respectively. Note that in the

NR domain CDFT does not quite �t into this scheme due to the presence of the diamagnetic

term which is quadratic in the external vector potential (Eq. 1.45).88

GeneralizedDFTs extend theHKuniversal functionalG[n] to a generalized universal func-
tional G[n1, n2, . . .] which is de�ned analogously93 as

G[n1, n2, . . .] =min⟨ψ∣T̂ + Û ∣ψ⟩, (1.68)

where the minimum is taken over all normalized antisymmetric wave functions ψ which give

rise to the generalized densities n1, n2, . . .. Making the assumption that the generalized densities

ni can be varied independently88 and applying the variational principle leads to the stationarity

conditions
δG[n1, n2, . . .]

δni

= −Vi , (1.69)

and the corresponding XC parts of KS potentials—one for each variable—which read as

vXC,i =
δEXC[n1, n2, . . .]

δni

. (1.70)

�e extension to generalizedDFTs is formany reasons not straightforward, for instance, the

question of nonuniqueness of the external potentials in generalized DFTs has been raised.94, 95

Spin density is an additional variable inmost present-day time-dependentDFT (TD-(S)DFT)

and almost all open-shell ground state DFT calculations—nonrelativistic and relativistic—and

the question is: why do we need and use SDFT and other generalized DFTs?

It is indeed possible to incorporate external �elds in the conventional (number density-

only) DFT, since the ground state wave function of the generalized Hamiltonian (Eq. 1.66) can

still be proved to be a functional of the conventional number density. �is would enable to

introduce a nonuniversal functional G[n;V2,V3, . . .], which depends on n and parametrically

on the external �elds V2,V3, . . ., analogously to the scalar potential created by the nuclei within
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the Born-Oppenheimer approximation. �e advantage of the corresponding generalized uni-

versal functional∗ G[n, n2, . . .] is that it allows the existence of (and computational access to)

nontrivial self-consistent solutions ni ≠ 0 even in the absence of the conjugate �elds thanks to

the presence of the corresponding self-consistent XC potentials. However, in the absence of the

corresponding “driving �eld” one may then question the de�nition of the generalized densities

ni . Returning to the example of SDFT, the spin-up (-down) portions of the number density are

no longer well-de�ned when there is no external magnetic �eld and therefore no logical spin

quantization axis. In order to use ni also when the magnetic �eld is absent, it is argued that an

in�nitesimal magnetic �eld can be introduced to stabilize the direction, along which n↑ and n↓

can be measured.87, 96

�e second reason for using SDFT and other generalized DFTs is the fact that additional

generalized density variables enlarge the functional space and give more �exibility in the vari-

ational procedure. �is is, for instance, vital for the study of open-shell systems for which

presently available (approximate) density-only functionals fail.96 In these systems, di�erent

states that arise from the same electron con�guration can have very similar number densities,

for a density-only functional these states “look” very similar. In contrast, SDFT obtains addi-

tional information by sampling the spin density as an additional variable and can thus correctly

distinguish these states by assigningmore exchange energy to the state having the highermulti-

plicity. Note however that in the presence of an externalmagnetic �eld, spin density functionals

which are constructed to depend on the square of the spin polarization

ζ =
s

n
, (1.71)

yield the same value for the state MS and −MS as pointed out by Savin.96 �e discussion of

spin density will be resumed in Section 3.1, p. 63, where it will be introduced as an additional

variable to the XC response formalism.

Another example for the success of generalized DFT is the solution of the long-standing

fundamental problem in density-functional theory for the treatment of degenerate states in

atomic systems.96 Consider for instance an atom with a p1 con�guration.† All three possible

ways of populating the real orbitals px , py, and pz will generate densities with di�erent orien-

tations, but with equivalent shapes. DFT will therefore correctly assign equal energies to the

three degenerate occupations. �e complex orbitals p±1, however, have toroidal densities that

are not equivalent to the densities obtained from real orbitals. �e approximate density func-

tionals that we are bound to use, have the di�cult task to generate the same energy from the

di�erent densities.96 �e open d-shells of transition elements are even more problematic, as

not even all real d-type orbitals produce equivalent densities. Becke has shown97–99 that using

∗ In this case n1 ≡ n. † In the following a scalar relativistic situation is assumed for simplicity.
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CDFT, which samples as an additional variable the nonzero current density present in nonzero

ML states, degeneracy is nearly restored for all single-determinantal angular momentum eigen-

states.

A success-story for TD-CDFT applied to molecular systems is the static electric dipole

linear polarizability of quasi-one-dimensional conjugated polymers, which is largely overes-

timated by presently available approximate local functionals. �e inclusion of the curl and the

divergence of the velocity as additional variables using the VK functional100 yields results in

excellent agreement with the best available correlated methods (see Ref. 101 for a review).
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1.9 Orbital rotations by exponential parametrization

During the optimization of variational parameters leading to a stationary HF or KS electronic

state or to obtain the response of such reference state to external perturbations it is necessary to

perform transformations between di�erent sets of orthonormal orbitals,47 which in the second

quantization formalism corresponds to unitary transformations of creation and annihilation

operators. �e variational exponential parametrization of the unitary transformation matrix∗

U = exp[−κ̂] (1.72)

in terms of an anti-Hermitian matrix κ turns out to be extremely useful.47, 102 �is choice of

parametrization o�ers an independent set of variational parameters (orbital rotation ampli-

tudes) κpq, appearing in

κ̂ = κpq â
†
p âq = κpq x̂pq . (1.73)

Here â†p and âq are the creation and annihilation operators, respectively, together they form

the excitation operator x̂pq introduced in Section 1.1, p. 26, p and q are general orbital indices.

�is set of orbital rotation amplitudes conserves orthonormality by construction, with a pri-

ori no restrictions on the allowed values of κpq. Such a parametrization allows to optimize the

variational parameters using unconstrained optimization techniques. It is nevertheless useful

in several situations to impose restrictions on certain orbital blocks of κpq, for instance to re-

strict attention to certain symmetry blocks or to identify and eliminate redundant parameters.

Rotations among occupied or among virtual orbitals do not contribute to the electronic gra-

dient and are therefore redundant for energy optimizations. �e remaining nonredundant set

contains in the closed-shell case only rotations between occupied and virtual orbitals, with the

indices for orbital classes de�ned previously (p. 21)

κ̂ = κai x̂ai − κ⋆ai x̂ia . (1.74)

In the 4-component relativistic framework there is a natural division between rotations with

positive energy virtuals and rotations with negative energy virtuals which can be associated

with “paramagnetic” and “diamagnetic” contributions familiar from NR theory.103, 104

∗ �eminus sign is conventional.
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Chapter 2

Response theory for approximate variational wave functions

Whenever you write, strive for originality, but if you have to steal,

steal from the best.

Woody Allen in Anything Else (2003)

In this section molecular properties will be de�ned in the framework of response theory

for approximate variational wave functions, that is HF and KS. In the time-independent limit,

molecular properties can be obtained by di�erentiation of the total energy. However, �nite per-

turbation methods cannot handle time-dependent perturbations, and there is no well-de�ned

energy in time-dependent theory on which a variational condition could be based. In addition,

it may be di�cult to obtain the desired numerical precision especially for larger systems and

for higher order properties.

If one restricts the perturbations of the Hamiltonian to be periodic, a variational so-called

time-averaged quasienergy framework can be formulated. Within the time-averaged quasi-

energy response theory, frequency-dependent molecular properties, excitation energies, and

transitionmatrix elements can be associated with response functions, their poles, and residues,

respectively. �e quasienergy reduces to the usual energy in the limit of a static perturbation.

Time-independent molecular properties can then be treated as a special case.

For this, the time-averaged quasienergy will be de�ned in the following and associated with

response functions. Based on response equations, the derivation of response functions becomes

then “a matter of straightforward di�erentiation a�er the quasienergy Lagrangian”.105 �e no-

tation will be kept as general as possible to accommodate both HF and KS theories. Explicit

implementation details of the XC contribution to response functions will be discussed sepa-

rately in Section 3.

49
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2.1 Kubo relation

�e starting point is again the time-dependent Dirac equation

i
∂

∂t
∣ψ(t)⟩ = [Ĥ + P̂(t)]∣ψ(t)⟩. (2.1)

�e explicitly time-dependent perturbation P̂(t)which has been set to zero in Section 1.1 to ob-
tain the stationary molecular electronic energy, is now included. By imposing the perturbation

P̂(t) to be periodic
P̂(t) = P̂(t + T), (2.2)

with T being the period, the perturbation can be written as a sum of monochromatic pertur-

bations:

P̂(t) = N∑
k=−N

exp[−iωk t]∑
X

fX(ωk)X̂ . (2.3)

Each of these is associated to a linear 4 × 4 matrix operator X̂ (see Section 1.3) and a corre-

sponding �eld amplitude fX . All frequencies ωk can be expressed as integer multiples of the

fundamental frequency ωT = 2π/T and the solutions of the Hamiltonian [Ĥ + P̂(t)] are then
restricted to so-called Floquet states.106, 107 One of the 2N + 1 frequencies is zero which means

that static perturbations may be included.

With a time-dependent Hamiltonian a system observable, such as an expectation value ⟨Â⟩
associated with the operator Â , becomes time-dependent

⟨ψ(t)∣Â∣ψ(t)⟩ = ⟨ψ(t)∣Â∣ψ(t)⟩(0) + ⟨ψ(t)∣Â∣ψ(t)⟩(1) + ⟨ψ(t)∣Â∣ψ(t)⟩(2) +⋯ (2.4)

and its time-dependence is typically described in a perturbation expansion in orders of the

perturbing �eld. �is is the Kubo relation,108 with

⟨ψ(t)∣Â∣ψ(t)⟩(0) = ⟨0∣Â∣0⟩ (2.5)

⟨ψ(t)∣Â∣ψ(t)⟩(1) =∑
k

exp[−iωk t]∑
B

⟨⟨Â; B̂⟩⟩ωk
fB(ωk) (2.6)

⟨ψ(t)∣Â∣ψ(t)⟩(2) = 1
2
∑
kl

exp[−i(ωk + ωl)t]∑
BC

⟨⟨Â; B̂, Ĉ⟩⟩ωk ,ω l
fB(ωk) fC(ωl) (2.7)

⟨ψ(t)∣Â∣ψ(t)⟩(3) = ⋯
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�e zeroth-order term corresponds to the unperturbed expectation value. �e expansion co-

e�cients of the Fourier components denoted as ⟨⟨Â; B̂⟩⟩ωk
, ⟨⟨Â; B̂, Ĉ⟩⟩ωk ,ω l

, . . . , are the linear-,

quadratic-, . . . , response functions, respectively, and can be associated with frequency-depend-

ent molecular properties. If one restricts the frequencies to one single zero frequency the static

limit is recovered with the static response functions being the expansion coe�cients of the Tay-

lor series which can be associated with static molecular properties.

It can be shown105 that switching the sign of all frequencies implies a complex conjugation

of the response function (Eq. 2.8) in order to preserve Hermiticity of the Hamiltonian.

⟨⟨Â; B̂, Ĉ ,⋯⟩⟩ωk ,ω l ,⋯ = ⟨⟨Â; B̂, Ĉ ,⋯⟩⟩⋆−ωk ,−ω l ,⋯ (2.8)

�is also implies that all static response functions have to be real. �e response functions are

the quantities of interest in this thesis.
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2.2 Quasienergy

�e time-dependent wave function ∣ψ(t)⟩may be written in the phase isolated form

∣ψ(t)⟩ = exp[−iF(t)]∣t̃⟩ (2.9)

where F is a real function of time. Also the phase isolated wave function ∣t̃⟩ is in general still a

function of time.

�e following requirements can be imposed105: In the unperturbed limit ∣t̃⟩ has to reduce

to the unperturbed wave function

∣t̃⟩ P̂(t)→0Ð→ ∣0⟩, (2.10)

and Eq. 2.9 has to reduce to the usual separation into a time-dependent phase and the time-

independent wave function, i.e.

exp[−iF(t)]∣t̃⟩ P̂(t)→0Ð→ exp[−iE0t]∣0⟩. (2.11)

It is now clear that the time derivative of F(t) which is called quasienergy Q(t) reduces to the
stationary energy in the unperturbed limit according to

∂F(t)
∂t
= ⟨t̃∣[Ĥ + P̂(t) − i ∂

∂t
]∣t̃⟩ ≡ Q(t) P̂(t)→0Ð→ E0 (2.12)

and it is tempting to regard the quasienergy Q(t) as the time-dependent analogue to the sta-

tionary energy. �ere are however at least two good reasons for not doing this105: these are the

time-dependent variational condition

δ⟨t̃∣[Ĥ + P̂(t) − i ∂
∂t
]∣t̃⟩ + i ∂

∂t
⟨t̃∣δt̃⟩ = 0 (2.13)

and the time-dependent Hellmann-Feynman theorem

dQ(t)
d fA(ω) = ⟨t̃∣Â∣t̃⟩exp[−iωt] − i

∂

∂t
⟨t̃∣ dt̃

d fA(ω)⟩. (2.14)

�e last terms in Eqs. 2.13 and 2.14 show that Q(t) does not take over the role of energy in

time-dependent theory. �ese terms vanish, however, if the time-average over the period T is

taken.109 �e wanted analogue is therefore the time-averaged quasienergy Q de�ned by

Q ≡ {Q(t)}T = T−1∫ T/2

−T/2
dt Q(t). (2.15)
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2.3 Molecular properties from quasienergy derivatives

�e link between response functions and the quasienergy is established by expanding the time-

averaged quasienergy derivative
dQ

d fA(ω)
in orders of the perturbing �eld:

dQ
d fA(ω) = ⟨Â⟩ (2.16)

+∑
k

∑
B

⟨⟨Â; B̂⟩⟩ωk
fB(ωk)δ(ω + ωk)

+ 1
2
∑
kl

∑
BC

⟨⟨Â; B̂, Ĉ⟩⟩ωk ,ω l
fB(ωk) fC(ωl)δ(ω + ωk + ωl)

+⋯
Frequency-dependent molecular properties can therefore be de�ned as derivatives of the time-

averaged quasienergy at zero �eld. To third-order these read

⟨Â⟩ = dQ
d fA(0) (2.17)

⟨⟨Â; B̂⟩⟩ωk
=

d2Q
d fA(−ωk)d fB(ωk) (2.18)

⟨⟨Â; B̂, Ĉ⟩⟩ωk ,ω l
=

d3Q
d fA(−ωk − ωl)d fB(ωk)d fC(ωl) . (2.19)

�e frequency of the measured response is minus the sum of external perturbations105

⟨⟨Â(−ωk − ωl −⋯); B̂, Ĉ ,⋯⟩⟩ωk ,ω l ,⋯. (2.20)

Furthermore, any pair of operators can be swapped (Â with B̂, B̂ with Ĉ, . . . ) if also the corre-

sponding frequencies are interchanged (−ωk − ωl − ⋯ with ωk, ωk with ωl , . . . ) and the same

response function is obtained.105
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2.4 Response functions

In this section we seek explicit expressions for the response functions, that is, for derivatives

of the time-averaged quasienergy Q = {Q(t)}T with respect to the �eld amplitudes fX at zero

�eld ( f = 0). �e time-averaged quasienergy Q de�ned in Section 2.2 can be written as

Q = Q0 + N∑
k=−N
∑
X

fX(ωk)X(ωk), (2.21)

having introduced the short-hand notation

Q0 = E0(0) − S (2.22)

S = {⟨t̃∣i ∂
∂t
∣t̃⟩}

T
(2.23)

X(ωk) = {⟨t̃∣X̂∣t̃⟩exp[−iωk t]}T . (2.24)

Using this notation �rst-order properties may be written as

dQ
d fA(ωA)∣ f=0 = [

dQ0

d fA(ωA) + A(ωA) (2.25)

+
=0 since f=0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N∑
k=−N
∑
X

fX(ωk) dX(ωk)
d fA(ωA)] f=0

which for a variational wave function reduces to the expectation value expression

dQ
d fA(ωA)∣ f=0 = A

(0)δ(ωA). (2.26)

Second-order properties may be written accordingly as

d2Q
d fA(ωA)d fB(ωB)∣ f=0 = [

d2Q0

d fA(ωA)d fB(ωB) +
dA(ωA)
d fB(ωB) +

dB(ωB)
d fA(ωA) (2.27)

+
=0 since f=0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N∑
k=−N
∑
X

fX(ωk) d2X(ωk)
d fA(ωA)d fB(ωB)] f=0,
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and third-order properties

d3Q
d fA(ωA)d fB(ωB)d fC(ωC)∣ f=0 = [

d3Q0

d fA(ωA)d fB(ωB)d fC(ωC) (2.28)

+ d2A(ωA)
d fB(ωB)d fC(ωC) +

d2B(ωB)
d fA(ωA)d fC(ωC) +

d2C(ωC)
d fA(ωA)d fB(ωB)

+
=0 since f=0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N∑
k=−N
∑
X

fX(ωk) d3X(ωk)
d fA(ωA)d fB(ωB)d fC(ωC)] f=0,

et cetera. �e over-braced terms vanish because the derivatives are taken at zero �eld ( f = 0).

�e response of the exponentially parametrized HF or KS determinant (see Section 1.9)

∣t̃⟩ = exp[−κ̂(t)]∣0⟩ (2.29)

is carried by the nonredundant orbital rotation parameters which can be collected in the vector

K(ωk) =
⎡⎢⎢⎢⎢⎣
p

q⋆

⎤⎥⎥⎥⎥⎦
with

pai = κai(ωk)
qai = κai(−ωk) (2.30)

�e expectation values Q0 and X(ωk)may be Baker-Campbell-Hausdor� expanded using the

vector K(ωk), which in turn may be expanded in the perturbing �eld amplitudes. �is step is

detailed for instance in Refs. 53 and 66.

Explicit expressions for the response functions can be found from the variational condition

∂Q

∂K(ωk) = 0 (2.31)

which should also hold true for any choice of �eld amplitudes. A�er some manipulations the

response functions can be identi�ed. Again, only the �nal result shall be given here for the

linear response function53, 66, 105

⟨⟨Â; B̂⟩⟩ω = −A(1)†(E(2)0 − ωS(2))−1B(1) (2.32)

and the quadratic response function66, 105, 110–112

⟨⟨Â; B̂, Ĉ⟩⟩ωB ,ωC
= N(A)†(ωB + ωC)E(3)0 N(B)(−ωB)N(C)(−ωC) (2.33)

+N(A)†(ωB + ωC)B(2)N(C)(−ωC)
+N(A)†(ωB + ωC)C(2)N(B)(−ωB)
+N(B)†(−ωB)A(2)N(C)(−ωC)
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in which appear the property gradients A(1) and B(1) with the structure

X(1) =

⎡⎢⎢⎢⎢⎣
g

g⋆

⎤⎥⎥⎥⎥⎦ ; gai = ⟨0∣[−x̂ia , X̂]∣0⟩ with X̂ = Â, B̂, (2.34)

the electronic Hessian E
(2)
0 and the property Hessians A(2), B(2), and C(2) with the structure

X(2) =

⎡⎢⎢⎢⎢⎣
A B

B⋆ A⋆

⎤⎥⎥⎥⎥⎦
;

Aai ,b j = ⟨0∣[−x̂ia , [x̂b j, X̂]]∣0⟩
Bai ,b j = ⟨0∣[x̂ia , [x̂ jb , X̂]]∣0⟩ with X̂ = Ĥ, Â, B̂, Ĉ , (2.35)

the generalized metric

S(2) =

⎡⎢⎢⎢⎢⎣
Σ ∆

−∆⋆ −Σ⋆
⎤⎥⎥⎥⎥⎦
;

Σai ,b j = ⟨0∣[−x̂ia , x̂b j]∣0⟩
∆ai ,b j = ⟨0∣[x̂ia , x̂ jb]∣0⟩, (2.36)

and the electronic third derivative tensor E(3)0 . �e response vectors N(A), N(B), and N(C) are

obtained by solving the linear response equations

N(X)(ωX) = [E(2)0 − ωXS
(2)]−1X(1) with X̂ = Â, B̂, Ĉ . (2.37)
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2.5 Solution of linear response equations

�edimensionality of the electronic Hessian E(2)0 which appears in the linear response function

⟨⟨Â; B̂⟩⟩ω = −A(1)†(E(2)0 − ωS(2))−1B(1) (2.38)

is generally too large to allow its explicit construction. �erefore, the linear response function

is rather obtained by an iterative solution of the response equation

(E(2)0 − ωS(2))N(B)(ω) = B(1), (2.39)

followed by the contraction of the response vector N(B)(ω) with the property gradient A(1) to

form

⟨⟨Â; B̂⟩⟩ω = −A(1)†N(B)(ω). (2.40)

�e linear response is carried by the �rst-order orbital rotation amplitudes that form the re-

sponse vector according to

N(B)(ω) = ⎡⎢⎢⎢⎢⎣
z

y⋆

⎤⎥⎥⎥⎥⎦ with
zai = κ

(B)
ai (ω)

yai = κ
(B)
ai (−ω), (2.41)

and it can be shown53 that a second solution exists

N(B)(−ω) = ⎡⎢⎢⎢⎢⎣
y

z⋆

⎤⎥⎥⎥⎥⎦ , (2.42)

obtained from the linear response equation of opposite frequency

(E(2)0 + ωS(2))N(B)(−ω) = B(1). (2.43)

In general, z and y⋆ (or y and z⋆) constitute elements of a general matrix with respect to Her-

miticity, in contrast to the upper and lower blocks of the property gradientsA(1) andB(1), which

are related by the Hermiticity of the corresponding property matrix. However, a general ma-

trix can always be decomposed into a Hermitian and an anti-Hermitian matrix. �erefore also

the response vector which contains elements of a general matrix may be written as a sum of a

Hermitian and anti-Hermitian contribution:

N(B)(ω) = N+(B)(ω) +N−(B)(ω) (2.44)

An analogous decomposition of vectors is also possible in terms of time reversal symmetry of

the generatingmatrix. Returning to the linear response equation (Eq. 2.39), consider a property
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gradient B(1) which is Hermitian and has a well-de�ned time reversal symmetry indicated by

the parameter t = ±1.∗ Note that in order to take full advantage of time reversal symmetry in

quaternion formulation (Section 1.3), in practice all property gradients are required to be time

reversal symmetric. For time reversal antisymmetric operators this can be achieved by the

extraction of an imaginary phase (thus making them anti-Hermitian). �e imaginary phase

is reintroduced in the �nal construction of the linear response function.53 �e end result is

that B(1) is well-de�ned with respect to both time reversal symmetry (t = ±1) and Hermiticity

(h = ±1).
�e linear response equation (Eq. 2.39) is solved by expanding the response vectorN(B)(ω)

in a set of N trial vectors wi

N(B)(ω) = N∑
i=1

wia
(B)
i (ω) (2.45)

followed by the solution of the N-dimensional reduced equation

(Ẽ(2)0 − ωS̃(2))a(B)(ω) = B̃(1) (2.46)

in which appear the reduced quantities

Ẽ
(2)
0 =W

†E
(2)
0 W (2.47)

S̃(2) =W†S(2)W (2.48)

B̃(1) =W†B(1) (2.49)

with WT = [w1 w2 ⋯ wN]. �e explicit construction of the Hessian is now bypassed by

instead calculating the so-called sigma vector σi = E
(2)
0 wi , which can be expressed in terms

of modi�ed Fock-, or KS matrices.53, 113 Similarly, the generalized metric S(2) is contracted with

trial vectors. One �nds that both E(2)0 and S(2) conserve the time reversal symmetry t of the trial

vector, however, the Hermiticity h is conserved only by E
(2)
0 , but reversed by S(2).53 �is im-

plies that in the static case the response vectorN(B)(0) has well-de�ned Hermiticity h which is

inherited from the property gradient along with the time reversal symmetry. In the frequency-

dependent caseN(B)(ω) keeps t, but has mixed Hermiticity andmay be decomposed following

Eq. 2.44. Next, consider the implications for a linear response function obtained by a contrac-

tion of the property gradient with the response vector, both with well-de�ned Hermiticities

hA, hN and time reversal symmetries tA, tN .

∗ +1: symmetric; −1: antisymmetric.
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�e property gradient has the structure53, 66

A(1)† = [a† b† tAa
T − tAbT hAa

T hAb
T hAtAa

† − hAtAb
†]. (2.50)

Similarly, the response vector has the structure53, 66

NhN(B)T(ω) = [cT dT tNc
† − tNd† hNc

† hNd
† hN tNc

T − hN tNd
T], (2.51)

and the linear response function is given by66

⟨⟨Â; B̂⟩⟩ω = −(1 + hAhN tAtN)(z + hAhNz
⋆), (2.52)

where z = (a†c + b†d).
�ree situations may be distinguished:

(i) hAhN = tAtN = +1
�e property operators Â and B̂ have the same symmetry under time reversal.

⟨⟨Â; B̂⟩⟩ω has contributions only from N+(B)(ω).
⟨⟨Â; B̂⟩⟩ω = −4Re(z)

(ii) hAhN = tAtN = −1
�e property operators Â and B̂ have the opposite symmetry under time reversal.

⟨⟨Â; B̂⟩⟩ω has contributions only from N−(B)(ω).
⟨⟨Â; B̂⟩⟩ω = −4iIm(z)

(iii) hAhN = −tAtN
�e property operators Â and B̂ have the opposite symmetry under time reversal.

�ere are no contributions from N−(B)(ω) at ω = 0.
⟨⟨Â; B̂⟩⟩0 = 0

In the static case trial vectors can be restricted to the Hermiticity of the property gradient

B(1). For the construction of the sigma vector, however, it is advantageous to select trial vectors

with well-de�ned Hermiticity also in the frequency-dependent case where the response vector

has mixed Hermiticity as this facilitates an e�cient implementation of the response code. For

instance, the XC contribution to linear and quadratic response has been implemented such

that contributions that are zero by Hermiticity of the trial vector, are not calculated (Section 3,

p. 61). �is separation also favors a more e�cient evaluation of perturbed density gradients

within TD-SDFT. With the same arguments, the separate manipulation of response vectors

with well-de�ned Hermiticity facilities the visualization of induced densities within the real-

space approach to molecular properties (Section 5, p. 89).
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Chapter 3

Response theory within TD-SDFT

And Nietzsche, with his theory of eternal recurrence. He said that

the life we lived we’re gonna live over again the exact same way for

eternity. Great. �at means I’ll have to sit through the Ice Capades

again.

Woody Allen in Hannah and Her Sisters (1986)

�e aim of this chapter is to document and to discuss the implementation of the closed-

shell linear and quadratic response theory within the adiabatic time-dependent spin density

functional theory (TD-SDFT), in which the density of electron spin angular momentum, spin

density, is considered an additional variable of the XC energy functional.

�e XC contributions to linear and quadratic response are derived by expanding the XC

electronic gradient in perturbing �eld amplitudes. Most of the notation and working equations

are contained in the collinear part (Section 3.2). In Section 3.3 the noncollinear formulation

will be introduced by a rather simple modi�cation of the collinear approximation.

�is approach closely follows the 4-component relativistic implementation of KS theory re-

ported by Saue and Helgaker114 and the implementation of linear response at the 4-component

relativistic density functional level reported by Sałek et al. 113 �is work is based on the 4-

component relativistic HF quadratic response implementation of Norman and Jensen115 and

has substantially bene�ted from the implementation of the XC contribution to electrostatic

quadratic response by Henriksson.116 �ree other linear response implementations of relativis-

tic TD-SDFT based on the noncollinear XC kernel have been reported, two of them using the

2-component ZORAHamiltonian—by the Ziegler group2 and by Liu and coworkers3—and one

4-component relativistic implementation by Liu and coworkers.4 However, so far the XC kernel

has been restricted to the LDA kernel. �e presented implementation also enables to employ

61



62 Response theory within TD-SDFT

adiabatic density gradient-dependent kernels. It is to our knowledge also the �rst relativis-

tic implementation of quadratic response within TD-SDFT. On the NR side, see for instance

Ref. 117 for quadratic response and also the cubic response implementation within TD-DFT by

Jansik et al. 118

�e presented implementation is in principle straightforward as it is highly repetitive and

recursive but it can also become very tedious and error-prone due to the increasing num-

ber of terms when going to higher orders in the perturbation expansion. For the derivation

of quadratic response, the repetitiveness and recursion have been turned into an advantage:

the working equations and expressions have been obtained and simpli�ed by extensive use of

PYTHON-driven119 MAXIMA120 scripts that have been developed during this work. At least

for the XC contribution to the response, these scripts make it possible to implement any desired

order in the future.

�e fundamental problem in quasienergy KS theory—that the time-periodic density of a

quasienergy steady-state does not uniquely determine the time-periodic potential (as pointed

out byMaitra andBurke121, 122)—is bypassed in the approximate �nite basismethodology adopted

here.122
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3.1 Spin density in the relativistic framework

�e motivation for including spin density in the relativistic domain is very similar to the NR

situation (see Section 1.8, p. 43). While there is in principle no need to introduce additional

variables in the absence of external vector potentials other than density alone, in practice, ad-

ditional variables like spin or current density improve relativistic density functional calculations

of open-shell systems.123, 124 Because genuine relativistic XC functionals that depend on the 4-

current are presently not available and because relativistic corrections to XC functionals have

been found to have only little e�ect on calculated valence properties,123–125 it is common practice

to use NR functionals even in 4-component codes, as done in this work. �e di�culty then is

in porting NR spin density functionals to the relativistic domain, since there is a fundamental

reason why they should not be used the same way they are being used in NR DFT implemen-

tations. In NR theory the spin and spatial degrees of freedom are completely decoupled and a

quantization axis for the spin angular momentum can be freely chosen, independently of the

molecular orientation in space—conventionally the quantization axis is chosen along the z-axis.

A simple adaptation of the NR spin density (Section 1.8, p. 43)

sNR = ϕ
†
i σzϕi , (3.1)

to the 4-component relativistic framework would be, for instance, to use the 4 × 4 operator
Σz =

⎡⎢⎢⎢⎢⎣
σz 02×2
02×2 σz

⎤⎥⎥⎥⎥⎦ (3.2)

and de�ne spin density as

s = mz = ϕ
†
i Σzϕi , (3.3)

which corresponds to the z-component of the spin magnetization vector

m = ϕ†
iΣϕi . (3.4)

It should be mentioned that this is not the only de�nition found in the literature. Other au-

thors4, 126, 127 use the operator βΣ and de�ne the spin magnetization vector accordingly as

m̃ = ϕ†
i βΣϕi . (3.5)

�is is justi�ed by the Gordon decomposition of the 4-component relativistic charge current

density27, 68 (compare Eqs. 1.51 and 1.53), but it is equally clear that Σ is the spin operator in the

4-component relativistic framework, not βΣ. In the following derivations and applications the

de�nition in Eq. 3.4 will be used. �is choice will a�ect neither the following discussion, nor

the results in Section 4, p. 77.∗

∗ We have implemented and tested both de�nitions—with no signi�cant e�ect on excitation energies reported in

Section 4, p. 77. A distinction may be expected when core excitations are considered.
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�e de�nition in Eq. 3.3 is called the collinear approach, which is a valid assumption if the

spin magnetization vector is collinear with the external magnetic �eld (∣m∣ = mz; B chosen

along z). However, with spin–orbit coupling, this is in general not the case. If spin–orbit cou-

pling is included, the collinear approach breaks the rotational invariance of the energy, which

is of course a very undesirable feature when performing a molecular DFT calculation. �is

has been demonstrated by vanWüllen128 together with the defect that the collinear approach is

in general not able to recover full spin polarization ζ (Eq. 1.71) of a relativistic one-electron or

quasi one-electron system where the spin density should be equal to the number density.∗ As

a solution, the so-called noncollinear approach is invoked where one considers a more general

de�nition of the spin density and the corresponding spin polarization by using the norm of the

spin magnetization vector,

s = ∣m∣; ζ =
∣m∣
n

(3.6)

which is invariant under rotations in real space.

In this work only closed-shell systems are considered, for which spin density does not enter

in either formulation for the energy and for electrostatic properties. However, as soon as vector

potentials or time-dependent scalar potentials are included as perturbations, �rst- and higher-

order spin densities will be induced. �e same distinction between collinear and noncollinear

approach and the same problems associated to the collinear approximation apply to the kernel

and its derivatives.�is is for instance the case when calculating excitation energies within TD-

SDFT.�e failure of the collinear XC kernel has been demonstrated by Gao et al. 4 �e example

taken from their work are the 6s2 → 6s16p1 excitation energies of Hg obtained with collinear

and noncollinear forms of the adiabatic XC kernel (Tab. 3.1).† �e performance of the XC po-

tentials and kernels compared to experimental values will be discussed in Section 4.2, p. 79.�e

important message at this point is that for atoms in the collinear approximation the di�erent

MJ components of an excited J state are not degenerate. �is is at odds with the fact that for

atoms the total angular momentum J is a good quantum number. �e collinear XC kernel does

not commute with the J2 operator4 because like the collinear XC potential it is not isotropic

in spin space. �is can again be corrected by using the corresponding noncollinear forms (see

Tab. 3.1). �e defect of the collinear approach is not limited to the relativistic framework as the

degeneracy is also broken for di�erentMS states in the NR domain. �is degeneracy is restored

using the noncollinear XC kernel (results not given here).

Finally, it should be warned that although we have a noncollinear de�nition of the spin

density based on the norm of the vector de�ned in Eq. 3.4 (or in Eq. 3.5), for the problem of
∗ With the de�nition in Eq. 3.5 a relativistic (quasi) one-electron system cannot be fully spin polarized by

construction. † �e LDA numbers presented have been calculated in this work and supplemented by BLYP

numbers. For computational details see Section 4.1, p. 78.
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Table 3.1: DC and IOTC 6s2 → 6s16p1 excitation energies (in eV) of Hg obtained with collinear (c-) and

noncollinear (nc-) forms of the LDA and BLYP kernels together with the corresponding XC potentials.

MJ is the sum of Kramers projections.

c-LDA nc-LDA c-BLYP nc-BLYP exp.a

Hamiltonian DC DC IOTC DC DC IOTC

∣MJ ∣ 0 1 2 all all 0 1 2 all all

J

0 5.13 4.87 4.85 4.99 4.74 4.73 4.67

1 5.56 5.23 5.08 5.06 5.38 5.08 4.94 4.93 4.89

2 5.90 5.98 6.12 5.67 5.65 5.68 5.74 5.86 5.47 5.46 5.46

1 6.55 6.54 6.53 6.51 6.31 6.30 6.30 6.28 6.70

a Ref. 129.

reconstructing the magnetization in a crystal from magnetic neutron-di�raction data or from

band-theoretical calculations, the de�nition of the magnetization∗ is not unique.130, 131 Landau

and Lifshitz132 de�ne magnetization in terms of the charge current density j and require thatm

satis�es the di�erential equation

∇×m = j (3.7)

together with the requirement thatm integrated over the volume of a sample gives its magnetic

moment and should vanish outside the sample. �is de�nition is not unique since a gauge

transformation

m→m′ =m +∇χ (3.8)

where χ is a continuous and di�erentiable function that is constant at the boundaries and be-

yond, will not a�ect the requirements given above. Stated di�erently, any magnetization can be

identi�ed as a density of e�ectivemagnetic dipole moments if it generates the correct transverse

charge current density by Eq. 3.8.130 And although this magnetic dipole moment density is in

principle observable, the contributions of the individual moments—spin angular moments or

orbital angular moments—cannot be distinguished.

A nice synthesis is given by Hirst in Ref. 130: “magnetization is only a device for encoding

information about the current density, and clari�cation of this encoding can have no impact

on quantities that could be discussed in terms of the current density itself ”. It is also clear that

in relativistic DFT, magnetization will be replaced by the 4-current as soon as such functionals

become available (see also Ref. 133 for a connection between SDFT and CDFT functionals).

∗ Magnetization is already a density, the term “magnetization density” should be avoided.130
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3.2 Collinear formulation

Recall that in the collinear SDFT formalism the LDA XC energy has been written as

ELDA
XC = ∫ dr F(n↑, n↓), (3.9)

and the XC energy of GGA functionals can be typically written as

EGGA
XC = ∫ dr F(n↑, n↓, ∣∇n↑∣, (∇n↑ ⋅ ∇n↓), ∣∇n↓∣), (3.10)

in both cases using an appropriate analytic function F as an approximation to the XC energy

density. �e scalar variable (∇n↑ ⋅ ∇n↓) appears in some GGA correlation functionals, for

instance in the LYP134, 135 functional. Deep inside the DFT evaluator modules of the DIRAC16, 113

code and certainly also in other programs, the analytic functions F are programmed exactly as

suggested by the authors of the respective functionals. �e DFT evaluator modules receive the

input parameters (n↑ and n↓, in the case of GGA functionals also ∣∇n↑∣, (∇n↑ ⋅∇n↓), and ∣∇n↓∣)
and return F, which is then numerically integrated to give EXC, and—if needed—return also

derivatives of F which contribute to the XC potential, kernel, and higher-order kernels. �e

working equation for linear and nonlinear response could be expressed using this variable set

{n↑, n↓, ∣∇n↑∣, (∇n↑ ⋅ ∇n↓), ∣∇n↓∣)}. �is can be found for instance in Refs. 117 and 136.

It is an important point for the following derivations to recognize that the program canwork

with another, but equivalent set of variables outside the DFT evaluator modules, for instance,

with the now familiar number and spin density n and s, instead of n↑ and n↓, and the three

scalar products,

Z = ∇n ⋅ ∇n (3.11)

Y = ∇n ⋅ ∇s (3.12)

X = ∇s ⋅ ∇s, (3.13)

instead of {∣∇n↑∣, (∇n↑ ⋅ ∇n↓), ∣∇n↓∣)}. �is has several advantages. �e use of scalar products

of gradients instead of their norm facilitates the derivation of the working equations and also

the distribution of functional derivatives in the Fock-type matrices and their transforms in the

code. Amajor advantage when using a closed-shell reference—which is always imposed in this

thesis—is the fact that using the variable set {n, s, Z ,Y , X} makes it easier to recognize when

terms become zero due to the symmetry of the perturbation (or trial vector). �is facilitates

the programing of a more structured and e�cient code. As an example, in the electrostatic case

all spin-dependence vanishes. �e vanishing terms can easily be skipped by ignoring all terms

that contain s or Y or X. However, this choice comes at a price and the price we have to pay
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is to transform derivatives of F with respect to {n↑, n↓, ∣∇n↑∣, (∇n↑ ⋅ ∇n↓), ∣∇n↓∣)}, which are

delivered by the DFT evaluator modules, to derivatives of F with respect to {n, s, Z ,Y , X}. For
higher order derivatives this can rapidly become cumbersome since the restriction to closed-

shellmay only be imposed at the end. �is transformation of expressions is described separately

in Note D, p. 193.

Passing on to the derivation of the working expressions, the starting point is the variational

condition of collinear SDFT

dEXC

dκai
∣
κ=0
= ∫ dr Kia = ∫ dr

δEXC

δn

dn
dκai
∣
κ=0
+∫ dr

δEXC

δs

ds
dκai
∣
κ=0

. (3.14)

In DIRAC,16, 113 the gradient elements dEXC
dκai

are elements of a generally quaternion matrix. �e

integrands Kia therefore split into generally four real contributions Kia,µ (µ = 0, x , y, z). In

collinear SDFT (with the quantization axis along z) only Kia,0 and Kia,z need to be considered.

However, for gradient-corrected functionals it is computationally not advantageous to express

Kia,0 and Kia,z using the explicit XC potentials as done in Eq. 3.14, since the explicit integration

may require the calculation of the Laplacian or the full Hessian of the density and spin density at

each quadrature point.114 �e computationally useful forms for the variable set {n, s, Z ,Y , X}
may be obtained based on a nonredundant exponential parametrization of the KS energy by

expanding the XC energy density and the functional variables in the orbital rotation elements114

or by partial integration of Eq. 3.14. �e computationally advantageous forms of Kia,0 and Kia,z

can be shown to have the general form of a scalar prefactor rµ times a generalized overlap

distribution Ωia,µ, with

Ωia,0 = ϕ
†
i ϕa and Ωia,k = ϕ

†
i Σkϕa; (k = x , y, z) (3.15)

and a vector prefactor qµ times the gradient ∇Ωia,µ, and are given by∗

Kia,µ = rµΩia,µ + qµ ⋅ ∇Ωia,µ (3.16)

using the scalar prefactors

r0 = Fn (3.17)

rz = Fs , (3.18)

and the vector prefactors

q0 = (2FZ∇n + FY∇s) (3.19)

qz = (2FX∇s + FY∇n). (3.20)

∗ We adopt the useful notation of Refs. 112 and 118.
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From here on out, the symbols FU , FUV , FUVW , . . ., will be used as a short-hand notation for

∂F

∂U
,

∂2F

∂U∂V
,

∂3F

∂U∂V∂W
, ⋯,

evaluated using n and ∣∇n∣ of the unperturbed closed-shell reference system. �e scalar and

vector prefactors simplify for a closed-shell reference to

r0 = Fn (3.21)

rz = 0 (3.22)

q0 = 2FZ∇n (3.23)

qz = 0 (3.24)

because in this case ∇s, Fs, and FY vanish. For closed-shell systems spin density does not con-

tribute to the electronic gradient.

For linear and quadratic response, the perturbed integrands K(B)ia,µ and K
(BC)
ia,µ are required.

In the second-quantization formalism these can be evaluated using commutators of the gener-

alized orbital overlap distribution with the orbital rotation operators κ̂ carrying the response,

Ω[B]ia,µ = [κ̂(B), Ωia,µ] (3.25)

Ω[BC]ia,µ = [κ̂(BC), Ωia,µ] + 1
2
([κ̂(B), [κ̂(C), Ωia,µ]] + [κ̂(C), [κ̂(B), Ωia,µ]]), (3.26)

together with densities of modi�ed matrices, scaled with functional derivatives and collected

into perturbed scalar and vector prefactors.

�e XC contribution to the linear response can be expressed in terms of 4 matrices,

K
(B)
ia,µ = rµΩ

[B]
ia,µ + qµ ⋅ ∇Ω[B]ia,µ (3.27)

+ r(B)µ Ωia,µ + q(B)µ ⋅ ∇Ωia,µ .

Correspondingly, one can see that the XC quadratic response contributionmay bewritten com-

pactly as

K
(BC)
ia,µ = rµΩ

[BC]
ia,µ + qµ ⋅ ∇Ω[BC]ia,µ (3.28)

+ r[B]µ Ω[C]ia,µ + q[B]µ ⋅ ∇Ω[C]ia,µ

+ r[C]µ Ω[B]ia,µ + q[C]µ ⋅ ∇Ω[B]ia,µ

+ r[BC]µ Ωia,µ + q[BC]µ ⋅ ∇Ωia,µ

+ r(BC)µ Ωia,µ + q(BC)µ ⋅ ∇Ωia,µ .

Before giving the explicit perturbed prefactors it is important to realize that the terms contain-

ing superscripts in square brackets, i.e. rµΩ
[B]
ia,µ, (qµ ⋅ ∇Ω[B]ia,µ), rµΩ[BC]ia,µ , (qµ ⋅ ∇Ω[BC]ia,µ ), r[B]µ Ω[C]ia,µ,
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(q[B]µ ⋅ ∇Ω[C]ia,µ), r[C]µ Ω[B]ia,µ, (q[C]µ ⋅ ∇Ω[B]ia,µ), r[BC]µ Ωia,µ, and (q[BC]µ ⋅ ∇Ωia,µ) need not be coded ex-
plicitly. With the exception of the last two terms these contain 1-index and 2-index transforms

of the molecular orbital overlap. �ese terms can be evaluated using Kia,µ (�rst 4 terms) and

K
(B)
ia,µ (last 6 terms) when provided with the appropriate density matrices. �e challenge is now

to �nd explicit expressions for the remaining perturbed parameters r(B)µ , q(B)µ , r(BC)µ , and q(BC)µ .

�e �rst-order prefactors r(B)0 and r
(B)
z read as

r
(B)
0 = Fnnn

(B) + Fnss(B) + FnZZ(B) + FnYY (B) + FnXX(B) (3.29)

and

r
(B)
z = Fsnn

(B) + Fsss(B) + FsZZ(B) + FsYY (B) + FsXX(B). (3.30)

For a closed-shell reference these reduce to

r
(B)
0 = Fnnn

(B) + FnZZ(B) (3.31)

and

r
(B)
z = Fsss

(B) + FsYY (B) (3.32)

because Fns, FnY , FsZ , and X(B) vanish.∗

�e �rst-order prefactors q(B)0 and q
(B)
z are given by

q
(B)
0 = 2FZn(∇n) n(B) + FYn(∇s) n(B) (3.33)

+ 2FZs(∇n) s(B) + FYs(∇s) s(B)
+ 2FZZ(∇n) Z(B) + FYZ(∇s) Z(B)
+ 2FZY(∇n) Y (B) + FYY(∇s) Y (B)
+ 2FZX(∇n) X(B) + FYX(∇s) X(B)
+ 2FZ∇n(B) + FY∇s(B)

and

q
(B)
z = 2FXn(∇s) n(B) + FYn(∇n) n(B) (3.34)

+ 2FXs(∇s) s(B) + FYs(∇n) s(B)
+ 2FXZ(∇s) Z(B) + FYZ(∇n) Z(B)
+ 2FXY(∇s) Y (B) + FYY(∇n) Y (B)
+ 2FXX(∇s) X(B) + FYX(∇n) X(B)
+ 2FX∇s(B) + FY∇n(B)

∗ �e functional derivatives are symmetric.
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For a closed-shell reference these reduce to

q
(B)
0 = 2FZn(∇n) n(B) (3.35)

+ 2FZZ(∇n) Z(B)
+ 2FZ∇n(B)

and

q
(B)
z = FYs(∇n) s(B) (3.36)

+ FYY(∇n) Y (B)
+ 2FX∇s(B)

since ∇s, FnY , FsZ , FZY , FY , and X(B) vanish.

�e second-order prefactors can be obtained analogously. Only the �nal closed-shell result

shall be given here:

r
(BC)
0 = 2[Fnnnn(B)n(C) + Fnsss(B)s(C) (3.37)

+FnnZ(n(B)Z(C) + Z(B)n(C)) + FnsY(s(B)Y (C) + Y (B)s(C))
+FnZZZ(B)Z(C) + FnYYY (B)Y (C)
+FnZZ(BC) + FnXX(BC)]

r
(BC)
z = 2[Fsns(n(B)s(C) + s(B)n(C)) (3.38)

+FsnY(n(B)Y (C) + Y (B)n(C))
+FsZs(Z(B)s(C) + s(B)Z(C))
+FsZY(Z(B)Y (C) + Y (B)Z(C))
+FsYY (BC)]

q
(BC)
0 = 4(∇n(B)) a(C)Z + 4(∇n(C)) a(B)Z + 4(∇n) a(BC)Z (3.39)

+ 2(∇s(B)) a(C)Y + 2(∇s(C)) a(B)Y

q
(BC)
z = 2(∇n(B)) a(C)Y + 2(∇n(C)) a(B)Y + 2(∇n) a(BC)Y (3.40)

+ 4(∇s(B)) a(C)X + 4(∇s(C)) a(B)X
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with the auxiliary parameters

a
(BC)
Z =FZZZZ

(B)Z(C) + FZYYY (B)Y (C) (3.41)

+FZnZ(n(B)Z(C) + Z(B)n(C)) + FZsY(s(B)Y (C) + Y (B)s(C))
+FZnnn(B)n(C) + FZsss(B)s(C)
+FZZZ(BC)

a
(P)
Z = FZnn

(P) + FZZZ(P) with P = B,C (3.42)

a
(P)
Y = FYss

(P) + FYYY (P) (3.43)

a
(P)
X = FXnn

(P) + FXZZ
(P) (3.44)

a
(BC)
Y = FYns(n(B)s(C) + s(B)n(C)) (3.45)

+ FYnY(n(B)Y (C) + Y (B)n(C))
+ FYZs(Z(B)s(C) + s(B)Z(C))
+ FYZY(Z(B)Y (C) + Y (B)Z(C))
+ FYYY (BC)

We have introduced the following perturbed variables

Z(B) = 2(∇n(B) ⋅ ∇n) (3.46)

Z(C) = 2(∇n(C) ⋅ ∇n) (3.47)

Z(BC) = 2(∇n(B) ⋅ ∇n(C)) (3.48)

Y (B) = (∇n(B) ⋅ ∇s) + (∇n ⋅ ∇s(B)) (3.49)

Y (C) = (∇n(C) ⋅ ∇s) + (∇n ⋅ ∇s(C)) (3.50)

Y (BC) = (∇n(C) ⋅ ∇s(B)) + (∇n(B) ⋅ ∇s(C)) (3.51)

X(B) = 2(∇s(B) ⋅ ∇s) (3.52)

X(C) = 2(∇s(C) ⋅ ∇s) (3.53)

X(BC) = 2(∇s(B) ⋅ ∇s(C)). (3.54)
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Note that the remaining terms in Z(BC), Y (BC), and X(BC), which arise by di�erentiation of Z,

Y , and X, are already cast in the terms r[BC]µ Ωia,µ and (q[BC]µ ⋅ ∇Ωia,µ) and therefore do not

appear here explicitly. �e �rst-order number and spin densities n(B), n(C), s(B), and s(C), and

their respective gradients are evaluated using the �rst-order density matrices ⟨0∣[κ(B), x̂pq]∣0⟩
and ⟨0∣[κ(C), x̂pq]∣0⟩, respectively (see Note B, p. 185).

Before turning to the discussion of the noncollinear implementation a few comments on the

structure of the code are pertinent. Consider for instance the closed-shell �rst-order prefactors

r
(B)
0 (Eq. 3.31), r(B)z (Eq. 3.32), q(B)0 (Eq. 3.35), and q

(B)
z (Eq. 3.36). �e �rst two and last two

contributions have very similar structures, not only on paper. With only minor modi�cations

an existing K(B)0 code can be adapted to evaluate K(B)z . All �rst-order densities n(B) (and their

gradients) have to be replaced by �rst-order spin densities s(B) (gradients). �e modi�cations

of the corresponding derivatives are minute (see Note D, p. 193).

�e analogy between these contributions was expected. In theNR regimeK(B)0 andK(B)z ap-

pear in the XC parts of the singlet and triplet coupled perturbed equations, respectively. �ese

singlet and triplet XC parts can be solved using a generic code where only the functional deriva-

tives are modi�ed.

At �rst glance the computational e�ort seems doubled when including spin polarization.

�is is not true in the static case since then the �rst-order density matrix, from which �rst-

order densities are extracted (see Note B, p. 185), is either Hermitian or anti-Hermitian and

corresponds to trial vectors of well-de�ned Hermiticity (Section 2.5, p. 58). �erefore only ei-

ther (r(B)0 , q(B)0 ) or (r(B)z , q(B)z ) can be nonzero and the remaining terms are in practice skipped.

�e blocking due to time reversal symmetry corresponds to some extent to the generalized

singlet/triplet blocking known from NR theory.

From the structure of the second-order prefactors Eqs. 3.37 to 3.45 it can be seen that in

the static case many terms become zero which can be exploited in the implementation of KS

quadratic response.

3.3 Noncollinear formulation

�e ansatz for a noncollinear formulation of SDFT is to use the noncollinear de�nition of spin

density, s = ∣m∣, and in this case we will require all four integrands Kia,µ (µ = 0, x , y, z), and

for simplicity start with LDA, for which we can use the SDFT variational condition (Eq. 3.14)

directly and obtain

Kia,µ = rµΩia,µ . (3.55)
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�e prefactor r0 is unchanged, and the remaining prefactors rk (k = x , y, z) become

rk = Fs
1
s
mk = Fssmk , (3.56)

where we have used the closed-shell relation

Fs
1
s
= Fss . (3.57)

Consequently, rk = 0 for a closed-shell system. Note that if one component of m equals s,

Eq. 3.56 reduces to the collinear case. �e noncollinear derivation of nonzero closed-shell pref-

actors r(B)µ and r
(BC)
µ runs in parallel to the collinear derivation, with the �rst-order prefactors

given by

r
(B)
0 = Fnnn

(B) (3.58)

r
(B)
k = Fssm

(B)
k , (3.59)

and the second-order prefactors given by

r
(BC)
0 = 2Fnnnn(B)n(C) + 2Fnss(m(B)x m

(C)
x +m(B)y m

(C)
y +m(B)z m

(C)
z ) (3.60)

r
(BC)
k = 2Fnss(n(B)m(C)k +m(B)k n(C)). (3.61)

Again, all expressions reduce to their collinear versions if only one component ofm is nonzero,

as they should.

At this point it is worthwhile to realize that although we have arrived at the �nal non-

collinear closed-shell LDA working equations starting from the de�nition s = ∣m∣, we could
have well developed starting from the �nal collinear equations by repeating all spin-dependent

operations also for the remaining two components ofm. �is observation is important for the

noncollinear GGA response. �e explicit XC potentials that appear in the SDFT variational

condition (Eq. 3.14) may not be computationally useful for an e�cient GGA implementation,

however Eq. 3.14 can be used as an argument to adapt the collinear gradient-dependent parts

of spin density response to the noncollinear case analogously to LDA, i.e. by repeating all spin-

dependent operations also for the remaining two components ofm.∗�is is particularly simple

when working with generally quaternion matrices. Each operation on one of the imaginary

parts is repeated for the remaining two quaternion imaginary parts—the modi�cation of the

collinear code isminimal. �e additional computational e�ort is a factor three in the evaluation

of perturbed spin-dependent densities and a factor of three in the accumulation of K(B)ia,k and

K
(BC)
ia,k , and certain intermediates that contribute to K

(B)
ia,0 and K

(BC)
ia,0 . �e evaluation of func-

tional derivatives is not modi�ed.

∗ We are currently checking the validity of this simple approach.
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3.4 Testing the implementation

�e implementation of the XC contribution to quadratic response is a nontrivial task because

it implies coding of many terms. At some stage the correct implementation has to be checked.

For the static case an obvious option is to check the quadratic response functions

βi jk(0, 0) = ⟨⟨µ̂i ; µ̂ j(0), µ̂k(0)⟩⟩ (3.62)

which are the elements of the �rst-order hyperpolarizability tensor, against �nite perturbation

results: these can be the third-order energy derivatives, the second-order derivatives of the elec-

tric dipole moment expectation value, or most conveniently, the �rst-order derivatives of the

linear polarizability obtained within static linear response. �e latter can be checked accord-

ingly. �e problem is that the �nite perturbation test, if properly set up, can only give informa-

tion indicating if everything is correct or if something is wrong but will not indicate where the

error is being made. We have therefore �rst obtained an automatically generated noddy code

that matches the �nite perturbation result. In parallel, we have written a more structured code

and have compared the two implementations by screening selected combinations of variables.

An additional di�culty is given by the fact that the static �nite perturbation approach tests

only terms containing exclusively the variables n and/or Z. Other contributions are zero in the

static case. In order to check the spin-polarization contribution to the quadratic response it is

possible to test the frequency-dependent

βi jk(ω, 0) = ⟨⟨µ̂i ; µ̂ j(ω), µ̂k(0)⟩⟩ (3.63)

where spin density contributes, against �nite perturbation results using the spin-polarized fre-

quency-dependent linear response functions ⟨⟨µ̂i ; µ̂ j(ω)⟩⟩. �e frequency-dependent linear

response functions without spin-polarization are documented in Ref. 113. In this case one has

to rely on a correct implementation of the spin density contribution to linear response, which

we believe we can, based on excitation energies (Section 4, p. 77) and the nuclear spin–spin

coupling constants (Section 5.5, p. 119) obtained in this work.

�e chosen test case for the above described spin-polarized KS quadratic response imple-

mentation is the frequency-dependent βzzz(ω, 0) in HCl compared to �nite perturbation re-

sults obtained from the �rst derivative of αzz(ω). �e results are listed in Tab. 3.2. We have

tested the contribution of spin density at various places in the implementation. �is gives three

approximations to the full response found in the rightmost column of Tab. 3.2. �e agreement

between the quadratic response and the �nite perturbation results, respectively, suggests that

the implementation is correct, both in the LDA and the GGA case. In addition, the results in
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Table 3.2: Frequency-dependent �rst-order hyperpolarizability component βzzz(ω, 0) in HCl, calcu-

lated by quadratic response (QR) and by �nite perturbation (FP) using αzz(ω) with ω = 0.22 Eh/ħ.
SDFT-LR means that we have included (1) or not included (0) the spin density contribution in the so-

lution of the linear response equations. [SDFT-QR] means that we have included (1) or not included

(0) the spin density contribution to the terms r[B]µ Ω[C]ia,µ, (q
[B]
µ ⋅ ∇Ω[C]ia,µ), r

[C]
µ Ω[B]ia,µ, (q

[C]
µ ⋅ ∇Ω[B]ia,µ),

r
[BC]
µ Ωia,µ, and (q

[BC]
µ ⋅ ∇Ωia,µ), where linear response code is being used. SDFT-QR means that we

have included (1) or not included (0) the spin density contribution to the genuine QR terms r(BC)µ Ωia,µ

and (q(BC)µ ⋅ ∇Ωia,µ). All values are in e3a30/E2
h.
a

spin density SDFT-LR 0 1 1 1

included in [SDFT-QR] 0 0 1 1

SDFT-QR 0 0 0 1

LDA QR 32.125849 32.282680 32.287046 32.286544

FP 32.125853 32.286557

BLYP QR 30.265355 30.914573 30.931585 30.931218

FP 30.265351 30.931240

a The field strengths are ±0.000005 Eh/ea0 using the uncontracted t-aug-cc-pVTZ137, 138 basis set for two functionals: LDA (SVWN5)45, 139 and the generalized gradient

correction functional BLYP.134, 135, 140 The molecule is oriented along the z-axis, with zCl = 0.0675 and zH = –2.3412 a0 . We have used the IOTC Hamiltonian72 with very

tight convergence thresholds for the self-consistent field and the response, no integral screening and a fine integration grid (DIRAC16 keywords: ANGINT = 65; RADINT =

1.0 × 10−15).

Tab. 3.2 show that for this example it is a good approximation to include spin density only in

the solution of the linear response equations (second column). We also note that the results in-

dicate that it seems to be a very good approximation to exclude spin density from the genuine

quadratic response terms r(BC)µ Ωia,µ and (q(BC)µ ⋅ ∇Ωia,µ) altogether, since they bring in only a

minute correction in this case. From the programmer’s point of view it is of course discourag-

ing to see the inverse proportionality between the contributions and the programming e�ort

but this situation can completely change for other properties with strong contributions from

spin density.
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Another useful sanity check∗ is to verify the quadratic response function symmetry

βi jk(ω, 0) = β jik(ω, 0). (3.64)

�e results of this test for βzxx(ω, 0) and βxzx(ω, 0) in HCl for the BLYP functional are sum-

marized in Tab. 3.3. We have introduced errors on purpose and checked whether the above

symmetry can be reproduced. �e results show that this test is only a necessary condition. A

“symmetric” error (like the error B in Tab. 3.3) remains undetected.†

Table 3.3: Frequency-dependent �rst-order hyperpolarizability components βzxx(ω, 0) and βxzx(ω, 0)
in HCl, calculated with the BLYP functional under the same conditions as detailed in Tab. 3.2. Error

A means that the �rst four right-hand side lines in Eq. 3.45 have been set to zero. Error B means that

the spin density contribution to the second-order parameters r(BC)µ Ωia,µ and (q
(BC)
µ ⋅ ∇Ωia,µ) has been

neglected (corresponds to third column in Tab. 3.2). All values are in e3a30/E2
h.

βzxx(ω, 0) βxzx(ω, 0) di�erence

implementation 24.34579659 24.34579726 –0.00000067

error A 24.32761315 24.32747057 0.00014258

error B 24.34569631 24.34569699 –0.00000068

∗ With thanks to J. Henriksson and P. Norman for pointing this out. † First observed by J. Henriksson.



Chapter 4

TD-SDFT at work: excitation energies

I awoke on Friday, and because the universe is expanding it took

me longer than usual to �nd my robe.

Woody Allen, Strung Out inMere Anarchy

In this chapter we wish to validate our noncollinear 4-component relativistic implemen-

tation of the spin density contribution to the closed-shell KS linear response (as detailed in

Section 3, p. 61 and following) by calculating electronic excitation energies of Zn, Cd, Hg, AuH,

and UO2+
2 . �is test set has been selected because it ful�lls two aspects: (i) it contains heavy

elements, including the post-transition metal U, and (ii) TD-SDFT results based on the non-

collinear XC kernel which have been published by other groups for this test set, can be used as

reference. �ese are 2-component relativistic studies using the ZORAHamiltonian byWang et

al. 2 (Zn, Cd, Hg), by Peng et al. 3 (AuH), and by Pierloot et al. 141 (UO2+
2 ), and a 4-component

relativistic study by Gao et al. 4 (Zn, Cd, Hg, AuH). So far the XC kernel has been restricted

to the LDA kernel. �e presented implementation also enables us to employ adiabatic density

gradient-dependent kernels. �erefore, we can extend the study of the electronic spectrum of

Zn, Cd, Hg, and AuH, reported by Gao et al. 4 and test the performance of other functionals,

also employing their corresponding gradient-dependent kernels.

77
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4.1 Computational details

�e excitation energies have been obtained as all-electron calculations using a development

version of the DIRAC16 code, as solutions of the eigenvalue equation142

(E(2)0 − ωS(2))N(ω) = 0, (4.1)

in which appears the electronic Hessian E
(2)
0 and the generalized metric S(2) (see Section 2.5,

p. 57 for further details). �e calculations have been carried out using the functionals LDA

(SVWN5),45, 139 GLLBsaopLBα (SAOP),143 LB94,144 BLYP,134, 135, 140 B3LYP,83, 84 CAMB3LYP,145

PBE,146 PBE0,85 and BP86.140, 147 LDA, SAOP, and LB94 have been used together with the non-

collinear LDAkernel. Other functionals are usedwith their corresponding noncollinear kernel.

�e integration procedure has been tested and the reported values can be considered free of er-

rors due to numerical quadrature. We have used the 4-component Dirac-Coulomb (DC) and

the in�nite-order 2-component (IOTC) Hamiltonians72 (see Section 1.6, p. 40), the latter with

the contribution of the 2-electron spin same-orbit coupling modeled in a mean-�eld fashion78

using the AMFI79 code. �is mean �eld contribution modi�es only the original KS matrix and

its index-transforms in the response formalism and no additional explicit contributions to the

response are considered. To obtain scalar relativistic excitation energies, e�ects due to spin–

orbit coupling have been eliminated as described in Refs. 24 and 60.

�e two-electron Coulomb integrals (SS∣SS), involving only the small components, have

been eliminated in both the SCF and the TD-SDFT part. Rotations between positive and neg-

ative energy solutions have been suppressed within the TD-SDFT module. A Gaussian charge

distribution has been chosen as the nuclear model using the recommended values of Ref. 148.

In order to allow a direct comparison to the results reported in Refs. 4 and 141, the same

Au–H (2.8913 a0) and U–O (3.2277 a0) distances have been used.
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4.2 Basis sets

�e comparison of excitation energies calculated within this work with the Zn, Cd, Hg, and

AuH excitation spectra calculated by Gao et al. ,4 and with the UO2+
2 excitation spectrum re-

ported by Pierloot et al. 141 is hampered by the fact that both groups have used Slater-type basis

set expansions. �erefore, a thorough validation of the here employed Gaussian-type basis set

deserves special attention in the following discussion of results.

In this project we can bene�t from extensive basis sets studies performed during previous

work on static and frequency-dependent electric dipole linear polarizabilities (see Paper III,

p. 167) and start out with the same basis sets for Zn, Cd, and Hg. Also the basis sets for the re-

maining atoms Au and U have been constructed in a similar fashion. �ese are aug-cc-pVTZ-

DK149 for Zn, triple-zeta and quadruple-zeta relativistic all-electron basis sets of Dyall150 for Cd,

Hg, Au, and U, including valence correlating and valence polarization functions. �e H basis

set is d-aug-cc-pVTZ.151 For Owe have used cc-pVTZ and cc-pVQZ.152 Additional di�use func-

tions are not needed for UO2+
2 . �e Zn basis set has been further augmented by 1s1p1d1f and

the Cd, Hg, and Au basis sets by 2s2p2d2f di�use exponents using the outermost quotient of

each angular momentum. �e small component basis set for the 4-component relativistic cal-

culations has been generated using unrestricted kinetic balance with restricted kinetic balance

imposed in the canonical orthonormalization step.60 All basis sets are used in the uncontracted

form.

4.3 Electronic spectrum of Zn, Cd, and Hg

�e ns2 → ns1np1 excitation energies (in eV) of group 12 atoms (n = 4 − 6 for Zn, Cd, and

Hg) calculated with various XC functional/kernel pairs and the DC Hamiltonian are listed in

Tab. 4.1. To test the performance of the various XC functional/kernel pairs and compare with

experimental values129 is only the secondary target of this study. Before turning to this perfor-

mance test, it must be the primary target to compare our LDA results with those reported by

Gao et al. 4 in order to check the validity of our implementation. At �rst sight this comparison

is disappointing (compare columns LDA and LDAb in Tab. 4.1).



80 TD-SDFT at work: excitation energies

�e �rst three excitation energies of Zn are 0.05 eV smaller than the reference values, the fourth

(scalar relativistically 1P) is 0.31 eV smaller than the reference. �e di�erences are less pro-

nounced for Cd and Hg, 0.02–0.04 eV, but again the fourth excitation energies deviate by 0.16

eV for Cd and 0.13 eV for Hg.

�e authors of Ref. 4 have used numerical atomic bispinors in combination with kinetically

balanced triple-zeta Slater-type functions, including two sets of polarization and one set of

di�use functions. Unfortunately we can not employ such basis sets in our calculations and

it was necessary to carefully check the quality of our Gaussian-type basis set which has been

done for Cd and Hg (see Tab. 4.2). Our �nal basis set choice which is the basis set used for

the results listed in Tab. 4.1, is designated d-aug-TZ+pol. in Tab. 4.2. We have tested the e�ect

of subsequently removing the valence polarization functions and the di�use functions. �is

changes the fourth excitation energy of Cd considerably and actually brings the Cd excitation

energies in very good agreement.

Table 4.1: �e ns2 → ns1np1 excitation energies (in eV) of group 12 atoms (n = 4−6 for Zn, Cd, and Hg)
calculatedwith various functionals and theDCHamiltonian. �e lower section of the table compares the

deviations of the calculated TD-SDFT excitation energies with the corresponding experimental values

from Ref. 129 (MAE: mean absolute error; MRE: mean relative error; ME: maximum error).

J exp.a LDA LDAb SAOP LB94 BLYP B3LYP CAMB3LYP PBE PBE0 BP86

Zn 0 4.01 4.32 4.37 4.68 4.92 4.22 4.02 3.89 3.76 3.42 4.02

1 4.03 4.35 4.40 4.71 4.95 4.25 4.04 3.92 3.78 3.44 4.04

2 4.08 4.40 4.45 4.77 5.03 4.30 4.09 3.97 3.83 3.50 4.09

1 5.80 5.76 6.07 6.37 6.76 5.61 5.58 5.60 5.58 5.49 5.67

Cd 0 3.73 3.95 3.97 4.27 4.57 3.85 3.66 3.48 3.47 3.15 3.66

1 3.80 4.02 4.04 4.35 4.67 3.92 3.73 3.56 3.54 3.22 3.73

2 3.95 4.17 4.19 4.53 4.88 4.06 3.88 3.72 3.69 3.39 3.88

1 5.42 5.34 5.50 5.89 6.34 5.18 5.14 5.12 5.14 5.05 5.22

Hg 0 4.67 4.87 4.89 5.19 5.40 4.74 4.51 4.27 4.45 4.09 4.63

1 4.89 5.08 5.12 5.43 5.67 4.94 4.73 4.51 4.66 4.33 4.84

2 5.46 5.67 5.69 6.14 6.48 5.47 5.31 5.14 5.21 4.94 5.42

1 6.70 6.53 6.66 7.16 7.56 6.30 6.27 6.21 6.32 6.25 6.42

MAE 0.16 0.23 0.58 0.89 0.02 –0.13 –0.26 –0.26 –0.52 –0.08

MRE (%) 4.0 5.4 12.8 19.5 1.2 –2.5 –5.5 –5.6 –11.7 –1.5

ME 0.32 0.37 0.69 1.02 –0.40 –0.43 –0.49 –0.38 –0.45 –0.28

a Ref. 129. b Ref. 4.
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However, this behavior is probably fortuitous as it is not paralleled for Hg. �e test in the

other direction consists of improving the basis set fromd-aug-TZ+pol. to d-aug-QZ+pol. Going

from triple- to the rather extensive quadruple-zeta basis sets is found to have no e�ect on the

calculated excitation energies in the reported signi�cant digits (Tab. 4.2).

A comparison of LDA, SAOP, and LB94 excitation energies for Zn, Cd, and Hg with 2-

component ZORA results reported by Wang et al. a is summarized in Tab. 4.3. �e di�erences

are smaller than 0.02 eV which is an excellent agreement given the fact that we compare two

di�erent noncollinear implementations. �erefore, we conclude with con�dence in our choice

of the basis set and in the here reported excitation energies. �e excitation energies reported

by Gao et al. 4 are probably not fully converged with respect to the basis set.

Table 4.2: LDA ns2 → ns1np1 excitation energies of Cd (n = 5) andHg (n = 5) using theDCHamiltonian

and di�erent basis sets. Comparison with results reported by Gao et al. 4 (all values in eV).

J d-aug-QZ+pol.a d-aug-TZ+pol.b d-aug-TZc TZd Gao et al. e

Cd 0 3.95 3.95 3.96 3.96 3.97

1 4.02 4.02 4.03 4.03 4.04

2 4.17 4.17 4.18 4.18 4.19

1 5.34 5.34 5.47 5.50 5.50

Hg 0 4.87 4.87 4.88 4.88 4.89

1 5.08 5.08 5.09 5.09 5.12

2 5.67 5.67 5.68 5.67 5.69

1 6.53 6.53 6.55 6.56 6.66

a Quadruple-zeta,150 augmented by 2s2p2d2f diffuse exponents.
b Triple-zeta,150 augmented by 2s2p2d2f diffuse exponents (identical to the basis set detailed in Section 4.2, p. 79).
c Triple-zeta,150 without valence polarization functions augmented by 2s2p2d diffuse exponents.
d Triple-zeta,150 without valence polarization functions and without additional diffuse exponents.
e Ref. 4.

Returning to Tab. 4.1, the slight discrepancy between our LDA excitation energies and those

reported by Gao et al. 4 does not a�ect the overall performance which is measured by the mean

absolute error (MAE), the mean relative error (MRE), and the maximum error (ME) with re-

spect to experimental values.129 LDA overestimates the excitation energies with the exception

of the fourth states (scalar relativistically 1P).�e deviations are largest for Zn with 0.32 eV and

relatively small for Cd and Hg. �e rather good performance of LDA for excitation energies

of Cd and Hg goes hand in hand with the good performance in frequency-dependent electric

dipole linear polarizability calculations as observed in Ref. 113 and in Paper III, p. 167. In terms

of statistics, LDA is rivaled only by two functionals with good accuracy: BLYP and BP86, the

latter with excellent performance for Zn. Admixture of exact exchange (compare BLYP with
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B3LYP and PBE with PBE0 in Tab. 4.1) lowers the excitation energies, overshooting in the case

of B3LYP and moving PBE results further away from experimental reference data. �e asymp-

totically correct LB94 overestimates all studied excitation energies with a MRE of 19.5%. �is

behavior is inherited by the interpolating SAOP potential with a MRE of 12.8%. �is observa-

tion is again in agreement with underestimated frequency-dependent electric dipole linear po-

larizabilities of these functionals found in Paper III, p. 167. For this atomic test set CAMB3LYP

gives no improvement over the B3LYP numbers.

Table 4.3: �e ns2 → ns1np1 excitation energies of group 12 atoms (n = 4 − 6 for Zn, Cd, and Hg)

calculated with LDA, SAOP, and LB94 and the d-aug-TZ+polb basis set. Comparison of the DC results

obtained within this work with 2-component ZORA results reported by Wang et al. a (all values in eV).

J LDA SAOP LB94

this work Wang et al. a this work Wang et al. a this work Wang et al. a

Zn 0 4.32 4.33 4.68 4.69 4.92 4.94

1 4.35 4.35 4.71 4.72 4.95 4.97

2 4.40 4.41 4.77 4.78 5.03 5.05

1 5.76 5.76 6.37 6.37 6.76 6.76

Cd 0 3.95 3.95 4.27 4.27 4.57 4.57

1 4.02 4.02 4.35 4.36 4.67 4.67

2 4.17 4.17 4.53 4.53 4.88 4.88

1 5.34 5.35 5.89 5.89 6.34 6.34

Hg 0 4.87 4.87 5.19 5.20 5.40 5.41

1 5.08 5.09 5.43 5.44 5.67 5.67

2 5.67 5.67 6.14 6.14 6.48 6.47

1 6.53 6.53 7.16 7.16 7.56 7.55

a Ref. 2. b Triple-zeta,150 augmented by 2s2p2d2f di�use exponents (identical to the basis set detailed in Section 4.2, p. 79).
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4.4 Electronic spectrum of AuH

To the best of our knowledge, �ve theoretical investigations on low-lying excited states of AuH

have been published.2–4, 153, 154 Among them are three TD-SDFT studies: 2-component relativis-

tic calculations based on the zeroth-order regular approximation performed by Wang et al. 2

and by Peng et al. ,3 and a 4-component study reported byGao et al. 4 Using the LDA and SAOP

results that are presented in Ref. 4 as reference values, the �rst 15 LDA and SAOP vertical exci-

tation energies of AuH are listed in Tab. 4.4. �e agreement of the vertical excitation energies

calculated within this work with the 4-component relativistic results reported by Gao et al. 4 is

quite good. Nevertheless, some excitation energies di�er from the reference values by as much

as 0.06 eV. Having achieved a very good agreement with reference values for the TD-SDFT cal-

culations on Zn, Cd, and Hg (Tab. 4.3), the slight disagreements in the case of AuHmight again

be a basis set e�ect or di�erences in the precision of the numerical integration procedure. �e

di�erence between the 2-component relativistic results based on the IOTC Hamiltonian and

the 4-component relativistic results based on the DCHamiltonian are at most 0.02 eV and—as

expected—independent of the functional (Tab. 4.4).

To complete the TD-SDFT studies of other groups2–4, 153, 154 on low-lying excited states of

AuH, we have employed the same set of XC functional/kernel pairs as for the TD-SDFT calcu-

lations on Zn, Cd, and Hg. �e results are summarized in Tab. 4.5 and compared to MRPT2

results obtained by Gao et al. 4 It can be seen that both SAOP and its asymptotic limit, LB94,

perform remarkably well with a mean relative error of less than 2%. Also the maximum errors

of SAOP and LB94 are the smallest among the studied set of functionals. For all other employed

functionals the statistics (measured by the mean absolute error, mean relative error, and maxi-

mum error) improve when taking higher-lying excitation into account. Note that all employed

XC functionals reverse the ordering of the excited states (II)0+ and (II)2 with respect to the

MRPT2 ordering. Other changes in the ordering also appear: LDA and SAOP reverse (III)1

and (II)0−, in addition B3LYP, CAMB3LYP, PBE, PBE0, and BP86 reverse (III)0+ and (III)1.

Other rearrangements appear for B3LYP, CAMB3LYP, PBE, and PBE0. It is interesting to note

that the calculated excitation energies are generally underestimated compared to MRPT2 re-

sults with generally comparable statistics—the only exceptions are SAOP and LB94 excitation

energies. It has been found that for this system GGA-type and hybrid functionals bring no

improvement to excitation energies obtained by LDA.
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Table 4.4: LDA and SAOP vertical excitation energies (in eV) of AuH, obtained using the DC and IOTC

Hamiltonians and compared with 4-component relativistic results reported by Gao et al. 4 �e three

lower sections of the table compare the deviations of the �rst 6, 12, and all calculated 15 TD-SDFT ex-

citation energies with the corresponding MRPT2 values from Ref. 4 (MAE: mean absolute error; MRE:

mean relative error; ME: maximum error).

Ω MRPT2a LDA SAOP transition

DCa DCb IOTCb DCa DCb IOTCb

0− 3.07 2.83 2.83 2.83 3.03 3.02 3.02 2σ1/2→3σ1/2
1 3.09 2.85 2.85 2.85 3.05 3.04 3.04 2σ1/2→3σ1/2
3 3.79 3.04 3.09 3.10 3.61 3.64 3.65 δ5/2→3σ1/2
2 3.81 3.10 3.15 3.16 3.67 3.70 3.71 δ5/2→3σ1/2

(II)2 3.89 3.46 3.44 3.45 3.98 3.95 3.95 δ3/2→3σ1/2
(II)0+ 3.46 3.39 3.36 3.37 3.70 3.65 3.65 2σ1/2→3σ1/2
(II)1 3.97 3.56 3.54 3.55 4.08 4.04 4.05 δ3/2→3σ1/2
(II)0− 4.81 4.50 4.45 4.46 4.91 4.85 4.86 π1/2→3σ1/2
(III)1 5.04 4.64 4.62 4.64 5.09 5.05 5.06 π1/2→3σ1/2
(III)0+ 4.91 4.66 4.61 4.63 5.10 5.04 5.06 π1/2→3σ1/2
(III)2 5.36 4.79 4.82 4.84 5.30 5.32 5.34 π3/2→3σ1/2
(IV)1 5.33 4.96 4.95 4.97 5.45 5.43 5.45 π3/2→3σ1/2
(III)0− 5.15 5.09 5.08 5.08 5.72 5.66 5.66 2σ1/2→2π1/2
(IV)0+ 5.35 5.13 5.12 5.12 5.75 5.70 5.70 2σ1/2→2π1/2
(V)1 5.44 5.24 5.23 5.23 5.90 5.84 5.84 2σ1/2→2π1/2 , 2π3/2

MAE –0.41 –0.40 –0.39 –0.01 –0.02 –0.01

MRE (%) �rst 6 –13.2 –12.8 –12.5 –0.4 –0.6 –0.5

ME –0.75 –0.70 –0.69 0.24 0.19 0.19

MAE –0.40 –0.40 –0.39 0.04 0.02 0.03

MRE (%) �rst 12 –10.9 –10.9 –10.6 0.7 0.2 0.4

ME –0.75 –0.70 –0.69 0.24 0.19 0.19

MAE –0.35 –0.36 –0.35 0.12 0.10 0.10

MRE (%) all 15 –9.3 –9.4 –9.2 2.2 1.7 1.8

ME –0.75 –0.70 –0.69 0.57 0.51 0.51

a Ref. 4. b �is work.
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Table 4.5: Vertical excitation energies (in eV) of AuH, calculated with various functionals and the DC

Hamiltonian. �e three lower sections of the table compare the deviations of the �rst 6, 12, and all

calculated 15 TD-SDFT excitation energies with the corresponding MRPT2 values from Ref. 4 (MAE:

mean absolute error; MRE: mean relative error; ME: maximum error).

Ω MRPT2a LDA SAOP LB94 BLYP B3LYP CAMB3LYP PBE PBE0 BP86

0− 3.07 2.83 3.02 3.02 2.66 2.63 2.50 2.65 2.58 2.74

1 3.09 2.85 3.04 3.04 2.68 2.65 2.52 2.67 2.60 2.76

3 3.79 3.09 3.64 3.52 2.91 3.15 3.06 3.03 3.33 3.07

2 3.81 3.15 3.70 3.59 2.98 3.22 3.13 3.10 3.37 3.14

(II)2 3.89 3.44 3.95 3.87 3.21 3.40 3.30 3.29 3.51 3.34

(II)0+ 3.46 3.36 3.65 3.65 3.20 3.23 3.11 3.29 3.32 3.33

(II)1 3.97 3.54 4.04 3.97 3.33 3.51 3.42 3.40 3.60 3.46

(II)0− 4.81 4.45 4.85 4.82 4.22 4.34 4.25 4.21 4.31 4.32

(III)1 5.04 4.62 5.05 5.02 4.40 4.56 4.47 4.45 4.61 4.52

(III)0+ 4.91 4.61 5.04 5.07 4.41 4.53 4.42 4.39 4.46 4.49

(III)2 5.36 4.82 5.32 5.31 4.62 4.86 4.76 4.70 4.91 4.76

(IV)1 5.33 4.95 5.43 5.42 4.75 4.96 4.87 4.84 4.93 4.91

(III)0− 5.15 5.08 5.66 5.85 4.91 4.95 4.86 4.77 4.79 4.92

(IV)0+ 5.35 5.12 5.70 5.89 4.95 4.99 4.91 4.85 4.91 4.98

(V)1 5.44 5.23 5.84 6.05 5.05 5.11 5.04 4.92 5.15 5.06

MAE –0.40 –0.02 –0.07 –0.58 –0.47 –0.58 –0.51 –0.40 –0.46

MRE (%) �rst 6 –12.8 –0.6 –2.1 –19.7 –15.6 –20.0 –17.2 –13.3 –14.9

ME –0.70 0.19 –0.27 –0.88 –0.64 –0.73 –0.76 –0.49 –0.72

MAE –0.40 0.02 –0.02 –0.60 –0.46 –0.56 –0.54 –0.42 –0.47

MRE (%) �rst 12 –10.9 0.2 –0.7 –17.1 –12.8 –16.3 –15.3 –11.5 –13.1

ME –0.70 0.19 –0.27 –0.88 –0.64 –0.73 –0.76 –0.50 –0.72

MAE –0.36 0.10 0.11 –0.55 –0.43 –0.52 –0.53 –0.41 –0.44

MRE (%) all 15 –9.4 1.7 1.5 –15.1 –11.5 –14.5 –14.1 –10.7 –11.8

ME –0.70 0.51 0.70 –0.88 –0.64 –0.73 –0.76 –0.50 –0.72

a Ref. 4.
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4.5 Electronic spectrum of UO2+
2

With their recent TD-SDFT study of the electronic spectrum of UO2+
2 and [UO2Cl4]2−, Pierloot

et al. 141 have presented the �rst application of relativistic TD-SDFT on compounds containing

an element heavier than a transition metal. In their study, spin–orbit coupling is included by

means of the 2-component relativistic ZORA Hamiltonian. �ey have obtained convincing

results for the SAOP functional, closely corresponding to both experiment and to CASPT2.

�is is a very positive message for future research on spectroscopic properties of heavy element

compounds.

Our primary aim is to test our implementation and to compare our TD-SDFT excitation

energies with the results reported by Pierloot et al. 141∗ For simplicity we consider only UO2+
2

and focus on the vertical excitation energies exclusively. Formaximumoverlapwith the work of

Pierloot et al. ,141 we choose the sameU–O bond distance and calculate all excitations out of the

bonding σ+u orbitals (formed by O2p and U6d orbitals) into the nonbonding δu or ϕu orbitals

(pure U5 f orbitals). For compatibility with the work of Pierloot et al. 141 and with experimen-

tal work, we maintain the D∞h single-group notation (Σ, Π, ∆, . . .) also for results including

spin–orbit coupling. For details on the electronic structure and on previous experimental and

theoretical work on this fascinating molecule the reader is referred to Refs. 141 and 155 and the

bibliography therein.

�eAMFI79 code—as presently implemented inDIRAC16—does not allow h- and i-functions

which are present in the U basis set. For consistency we have therefore chosen to carry out all

calculations using the DC Hamiltonian.† Based on previous studies (Section 4.4, p. 83) we can

expect di�erences of 0.01 or 0.02 eV between our 4-component results and the 2-component

reference values.

�e calculated LDA and SAOP vertical excitation energies of UO2+
2 are listed in Tab. 4.6

and compared to 2-component relativistic TD-SDFT and CASPT2 results reported by Pier-

loot et al. 141 While the agreement is quite good for SAOP excitation energies including spin–

orbit coupling (SO), our scalar relativistic (SR) results agree less consistently with the reference

values—especially for LDA and especially for the singlet excitations. �e SAOP singlet excita-

tion energies di�er by 0.08 and 0.17 eV. �e SR LDA numbers are throughout higher by 0.08–

0.23 eV. Also among the SO SAOP excitation energies we �nd a discrepancy of 0.08 eV for c ∆g ,

which in terms of the SR states141 is composed by 56% of 1∆g , which in turn deviates by 0.17 eV.

�e discrepancy between the SR and SO numbers—especially the disagreement between the

LDA results—is surprising since LDA is the “easier” functional. It should be mentioned that

∗ With thanks to K. Pierloot for providing us with very helpful information. † I am indebted to A. S. P. Gomes

for carrying out the here presented QZ calculations.
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LDA yields a smaller HOMO–LUMO gap (2.33 eV) than SAOP (3.24 eV; both SR). �e LDA

HOMO–LUMOgap agrees well with theHOMO–LUMOgap obtained by Pierloot et al. 141 who

kindly made this unpublished information available.

Although we are not able to use the same basis set as Pierloot et al. ,141 which is a Slater-type

quadruple-zeta all electron basis set with four polarization functions, we can be con�dent in

our triple-zeta results as the rather extensive quadruple-zeta basis set (37s34p27d20 f 8g5h2i on

U) yields practically the same results for LDA and same performance can be expected for SAOP.

We can exclude doubts about a di�erent (wrong) reference state. In addition, we have pulled

out all the stops to verify the convergence of the SCF and TD-SDFT parts and of the numerical

integration procedure.

Summing up, although we reproduce the SAOP excitation energies including SO quite well,

the conclusion of this test case leaves unfortunately a small questionmark. Additional studies—

possibly using both implementations—maybe necessary. Wedecidednot to employ other func-

tionals until this point is clari�ed.
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Table 4.6: LDA and SAOP vertical excitation energies of UO2+
2 calculated with the DCHamiltonian and

compared to 2-component relativistic TD-SDFT and CASPT2 results reported by Pierloot et al. 141 (all

values in eV; SR: scalar relativistic; SO: including spin–orbit coupling).

LDA SAOP CASPT2b

QZa TZa Ref.b TZa Ref.b

SR 3Φg 2.04 2.04 1.92 3.01 2.98 2.84
3∆g 2.38 2.38 2.29 3.24 3.21 2.79
1Φg 2.54 2.54 2.36 3.50 3.42 3.37
1∆g 3.22 3.22 2.99 4.10 3.93 3.76

SO a ∆g 1.49 1.49 2.49 2.52 2.38

a Φg 1.65 1.64 2.63 2.66 2.51

a Πg 2.04 2.04 2.92 2.95 2.49

b ∆g 2.26 2.26 3.14 3.15 2.76

a Γg 2.39 2.39 3.32 3.36 3.26

b Φg 2.63 2.62 3.51 3.53 3.15

c Φg 2.75 2.75 3.65 3.65 3.61

b Πg 2.81 2.81 3.78

b Γg 2.92 2.92 3.87

c ∆g 3.14 3.14 4.05 3.97 3.88

d Φg 3.15 3.15 4.10

a �is work. b Ref. 141.



Chapter 5

Real-space approach to molecular properties

�is . . . this, I think, has a kind of wonderful otherness to it, you

know.—Amarvelous negative capability. Kind of wonderful energy

to it, don’t you think?

Woody Allen inManhattan (1979)

Consider a molecule in the presence of perturbations, which could be potentials generated

by external electric ormagnetic �elds, or potentials generated by the nuclearmagneticmoments

for instance, or geometrical distortions. As a start, these perturbations can be restricted to

static external electric or magnetic �elds. In the time-independent limit, the molecular energy

is well-de�ned and will change upon perturbation. One can monitor the energy change to

speci�c perturbation amplitudes and de�ne (and obtain) static molecular properties as energy

derivatives with respect to speci�c perturbation amplitudes at zero �eld.

Depending on the perturbation, changes in the charge-, spin-, or charge current density

or other densities can be induced. �is chapter will demonstrate how the corresponding den-

sity derivatives can be used to calculate and visualize molecular properties and how to de�ne

molecular property densities. Frequency-dependent properties can be visualized employing

the quasienergy formalism.

�e static and frequency-dependent �rst-order densities and densities corresponding to

second-order properties are obtained from the linear response of the HF or KS determinant.

Further (static) perturbations may be imposed by using the �nite perturbation method, which

is described in Note C, p. 189. �e only limit is then the numerical precision.

A�er a methodological section the potential of the real-space approach to molecular prop-

erties will be illustrated in �ve examples: (i) charge density of Ne and the HFmolecule induced

89
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by a static electric �eld, (ii) the static and frequency-dependent polarizability of Ne from the

induced charge and current density, (iii) the induced current density in the group 15 heteroaro-

matic compounds (pyridine to bismabenzene), (iv) the nuclear spin–spin coupling density in

CO, and �nally (v), the parity-violating energy di�erence between the two enantiomers of CHF-

ClBr subject to a geometrical distortion along a vibrational mode, studied via the γ5 density.

5.1 Analytical �rst-order densities and property densities

�e frequency-dependent linear HF or KS response to the perturbation P is carried by the �rst-

order orbital rotation amplitudes that form the response vector according to (see Section 2.5,

p. 57 for more details)

N(P)(ω) = ⎡⎢⎢⎢⎢⎣
z

y⋆

⎤⎥⎥⎥⎥⎦ with
zai = κ

(P)
ai (ω)

yai = κ
(P)
ai (−ω) . (5.1)

�e vector elements are the nonredundant elements of a MO matrix and so properties of the

matrix are transferred to vector elements, e.g. Hermiticity and time reversal symmetry as dis-

cussed in Section 2.5, p. 57. �e response vector is accordingly expressed as a sumof aHermitian

and anti-Hermitian contribution

N(P)(ω) = N+(P)(ω) +N−(P)(ω) (5.2)

with well-de�ned time reversal symmetry (t = ±1). In the 4-component relativistic framework

there is a natural division between rotations with positive energy virtuals and rotations with

negative energy virtuals and it is useful to distinguish between contributions to the response

vector that contain only rotations with positive energy virtuals (positive-positive; pp) and con-

tributions that contain only rotations with negative energy virtuals (positive-negative; pn)

N(P)(ω) = N+(P)pp (ω) +N+(P)pn (ω) +N−(P)pp (ω) +N−(P)pn (ω). (5.3)

For a static time reversal symmetric perturbation only the Hermitian part is nonzero

N(P)(0) = N+(P)pp (0) +N+(P)pn (0), (5.4)

whereas for a static time reversal antisymmetric perturbation∗ the response vector reduces to

its anti-Hermitian part

N(P)(0) = N−(P)pp (0) +N−(P)pn (0). (5.5)

∗ Recall that in order to take full advantage of time reversal symmetry in quaternion formulation, t and h have

been reversed in this case by the extraction of an imaginary phase which is later reintroduced.
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From the elements of the Hermitian and anti-Hermitian part of the response vectorN+(P) and

N−(P), we construct the �rst-order (AO) density matrices

D
h(P)
λκ = cλpWpqc

⋆
κq (5.6)

of well-de�ned Hermiticity (Dh(P)†
λκ = hD

h(P)
κλ ), using the symmetric auxiliary matrix:

Wii = 0; Waa = 0; Wai = N
h(P)
ai ; Wia =Wai . (5.7)

In the static case there will be only one �rst-order h = +1 (h = −1) densitymatrix, corresponding

to a t = +1 (t = −1) perturbation. By considering only the pp (pn) part of the response vector

it is possible to construct a density matrix that describes—in NR terms—the “paramagnetic”

(“diamagnetic”) response (see also Section 1.9, p. 47).

Having a �rst-order density matrix Dh(P)
λκ of well-de�ned Hermiticity h = ±1 enables us to

calculate various (analytical) �rst-order densities ψ†Mtψ (Note B, p. 185), where Mt is one of

the Dirac matrices with well-de�ned time reversal symmetry t = ±1 (Tab. 1.4). �is possibility

will be explored further below in several examples. Combining Tabs. 1.4 and B.1, it is now

understood that only the combinations

M+ and D+(P)λκ

and

M− and D−(P)λκ

can give a nonzero density ψ†Mtψ.

Before turning to actual examples of induced �rst-order densities, it is possible to go one

step further andde�ne linear response property densities. For this start from the linear response

function ⟨⟨Â; P̂⟩⟩ω written as a linear variation of the expectation value A = ⟨Â⟩ under the
perturbation P,

⟨⟨Â; P̂⟩⟩ω = dA
d fB(ω) =

∂A

∂K(ω) ∂K(ω)∂ fB(ω) = −A(1)†Nh(P)(ω) (5.8)

with the property gradient

A(1) =

⎡⎢⎢⎢⎢⎣
g

g⋆

⎤⎥⎥⎥⎥⎦ (5.9)

which is always Hermitian and contains the elements

gai = −⟨ϕa∣Â∣ϕi⟩, (5.10)
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and a response vector of well-de�ned Hermiticity

Nh(P)(ω) = ⎡⎢⎢⎢⎢⎣
v

hv⋆

⎤⎥⎥⎥⎥⎦ . (5.11)

�e linear response function can be therefore written as

⟨⟨Â; P̂⟩⟩ω =∑
ai

[⟨ϕa∣Â∣ϕ(P)i ⟩ + ⟨ϕ(P)i ∣Â∣ϕa⟩] (5.12)

= −∑
ai
∫ dr [ϕ†

aÂϕivai + hϕ†
i v
⋆
ai Âϕa].

For Â choose for instance the operator of a uniform electric �eld F,

Â = er. (5.13)

With this speci�c choice Eq. 5.12 becomes

⟨⟨Â; P̂⟩⟩ω = −∫ dr er ΩκλD
h(P)
λκ , (5.14)

using Eq. 5.6 and the structure of the auxiliary matrixW in Eq. 5.7. Here Ωκλ = χκ χλ is the AO

overlap distribution. �e term ΩκλD
h(P)
λκ can be identi�ed with the induced �rst-order number

density n(P) which enables us to reexpress the linear response function with Â = er as

⟨⟨Â; P̂⟩⟩ω = −e ∫ dr rn(P) = ∫ dr rρ(P) (5.15)

and to obtain, for instance, a speci�c component αi j(ω) of the frequency-dependent electric
dipole linear polarizability tensor by

αi j(ω) = ⟨⟨Âi ; Â j⟩⟩ω = ∫ dr riρ( j)(ω) = ∫ dr αi j(r;ω) (5.16)

�e above exercise can be repeated for other responding operators Â, e.g. the uniformmagnetic

�eld B

Â = − 1
2
(rG × ĵ), (5.17)

to give

⟨⟨Â; P̂⟩⟩ω = − 12 ∫ dr (rG × j(P)), (5.18)

or for the nuclear magnetic dipole momentMK

ÂK = − 1
c2r3K
(rK × ĵ), (5.19)

to give

⟨⟨ÂK ; P̂⟩⟩ω = − 1
c2 ∫ dr

1
r3K
(rK × j(P)). (5.20)
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In the above two examples rG is the distance vector from the gauge origin, rK the distance vector

from the center of the nucleus K, and j(P) is the induced charge current density. �ese examples

(Eqs. 5.15, 5.18, and 5.20) are the �rst-order terms of the corresponding multipole expansions

(see Ref. 66).

�e approach outlined above enables us to visualize real-space property densities that cor-

respond to linear response functions. �is idea is however not new. �e concept of prop-

erty densities has already been introduced 1979 by Jameson and Buckingham156, 157 with nuclear

magnetic shielding density function and later enhanced by several groups158–167 to enable the

visualization of nuclear spin–spin coupling densities with di�erent methodological �avors.

�e formulation presented here suggests that it should be possible and relatively easy to de-

�ne property densities for arbitrary linear response functions. In contrast to NR realizations of

other implementations156–161, 163–167 this 4-component relativistic approach to property densities

allows for the extension of the scope to heavy-element systems including spin–orbit coupling

e�ects.
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Some general observations can already be made at this stage and will be outlined before

turning to a discussion of some examples:

(i) Property densities as de�ned in the above examples are in general not unique. �e inte-

gral over all space (the linear response function) has the symmetry

⟨⟨Â(−ω); P̂(ω)⟩⟩ = ⟨⟨P̂(ω); Â(−ω)⟩⟩, (5.21)

however, this symmetry is in general not given for the linear response function density

distribution in space.

(ii) Property densities in the present implementation are not gauge origin including, which

implies an ambiguity in the choice of gauge origin for magnetic property densities. Note,

for instance, that a change of origin ri → ri + d will not a�ect the induced electric dipole

moment

µ
(P)
i = ∫ dr riρ(P) (5.22)

µ
′(P)
i = ∫ dr (ri + d)ρ(P) (5.23)

= ∫ dr riρ(P) + d ∫ dr ρ(P) = µ(P)i ,

since the integral over ρ(P) must be zero (see next section). �e nuclear spin–spin cou-

pling density which will be discussed below is not a�ected by the choice of gauge origin

since it contains only reference to (well-de�ned) nuclear centers.

(iii) It is a trivial task to isolate (and plot) individual orbital contributions by using particular

elements of the corresponding response vectors for the construction of modi�ed density

matrices.

(iv) “Paramagnetic” and “diamagnetic” property densities can be de�ned exactly as the “para-

magnetic” and “diamagnetic” parts of linear response functions are calculated, by con-

sidering only the pp or pn parts of the corresponding response vectors.

(v) Scalar relativistic e�ects and spin–orbit coupling e�ects to property densities can be vi-

sualized exactly as they are calculated/eliminated in linear response calculations.
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5.2 Densities induced by a static electric �eld

�is section focuses on the �rst- and second-order charge density induced by a static external

uniform electric �eld F for which the total energy E(F) can be expanded in di�erent orders of

�eld strengths along the Cartesian directions i , j, k, l , . . .

E(F) = E(0) − µi(0)Fi − 1
2!
αi jFiF j − 1

3!
βi jkFiF jFk − 1

4!
γi jklFiF jFkFl −⋯. (5.24)

�e total electric dipole moment is given by

µi = − ∂E
∂Fi

= µi(0) + αi jF j + 1
2!
βi jkF jFk + 1

3!
γi jklF jFkFl +⋯. (5.25)

Here µi(0) is one component of the permanent electric dipole moment, and αi j, βi jk , γi jkl , . . .,

are the components of the electric dipole linear polarizability and the �rst-, second-, . . . , hyper-

polarizability tensor, respectively. �ese tensors are symmetric under permutation of indices,

e.g.

αi j = α ji (5.26)

βi jk = βik j = β jik = β jki = βki j = βk ji (5.27)

⋯ = ⋯
�e electric dipole moment component µi can be evaluated using the charge density

µi = −e⟨0∣r̂i ∣0⟩ = ∫ dr riρ. (5.28)

�is is the general expressionwhich can be expanded in the orders of �eld strengths and enables

us to write

µi = ∫ dr riρ(0) +∫ dr riρ( j)F j + 1
2! ∫ dr riρ( jk)F jFk + 1

3! ∫ dr riρ( jkl)F jFkFl +⋯, (5.29)
introducing the �rst-, second-, third-, . . . , order induced charge densities ρ( j), ρ( jk), ρ( jkl), . . ..

A comparison of Eq. 5.25 to Eq. 5.25 allows one to identify

αi j = ∫ dr riρ( j) (5.30)

βi jk = ∫ dr riρ( jk) (5.31)

⋯ = ⋯
Interchanging theCartesian directionswill not change the value of these integrals. However, the

full permutational symmetry does not hold for the integrands. Permutational symmetry holds,
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ρ(x) ρ(y) ρ(z)

Figure 5.1: First-order charge density ρ( j) of Ne (LDA, uncontracted t-aug-cc-pVTZ). Dark (light) iso-

surface corresponds to +0.05 (−0.05) e2/a20Eh. �e plots use the same scaling as in Fig. 5.3. �e addi-

tional arrow indicates the orientations of the perturbing electric dipole operator.

though, for the induced charge densities which are independent of the ordering of derivatives,

e.g.

ρ( jk) = ρ(k j) (5.32)

ρ( jkl) = ρ( jl k) = ρ(kl j) = ρ(k jl) = ρ(l jk) = ρ(l k j) (5.33)

⋯ = ⋯
In Fig. 5.1 the three �rst-order charge densities ρ( j) are plotted as isosurfaces for Ne, cor-

responding to the three Cartesian orientation of the perturbing electric dipole. �ese densi-

ties have been obtained analytically from linear response (Section 5.1, p. 90) using the LDA

(SVWN5)45, 139 functional together with the uncontracted t-aug-cc-pVTZ168 basis set. �is spe-

ci�c choice of functional is not important for the following qualitative discussion. �e perturb-

ing electric �eld cannot generate but only redistribute charge, which implies that ρ( j) and all

higher-order charge densities beyond the zeroth-order integrate to zero charge, order by order,

and therefore the plots always contain isosurfaces of both signs. Fig. 5.1 also demonstrates the

shell structure of the induced �rst-order charge densities. In the example of Ne three shells are

visible, although the inner isosurface (arising from 1s charge density) is small. �e �rst-order
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charge densities ρ( j) can be weighted with the three directions ri and integrated “visually” to

αi j. Doing this with the �rst-order charge densities in Fig. 5.1 con�rms the expectation that all

diagonal elements αii are equal and that all o�-diagonal elements vanish for Ne.

All elements βi jk must vanish for Ne, and this fact can be used to double-check the nine

second-order charge densities depicted in Fig. 5.2. �e �rst perturbation (operator B) has been

introduced within linear response whereas the response to the second (operator C) has been

obtained by �nite perturbation (Note C, p. 189). �e orientations of operators B and C are

represented by arrows in Fig. 5.2. Indeed, all “visually” integrated

βi jk = ∫ dr riρ( jk) (5.34)

vanish since, as expected, ρ( jk) are symmetric with respect to the plane normal to the Cartesian

direction i. It can also be veri�ed that the ordering of operators B and C does not matter such

that ρ( jk) = ρ(k j).

To obtain nonzero βi jk, the second-order charge densities ρ( jk) have been plotted for the

HFmolecule (Fig. 5.4), using the experimental bond length R = 0.9171 Å.169 �ese densities are

obtained by �nite perturbation di�erentiation from the analytical �rst-order charge densities

depicted in Fig. 5.3.

Again, “visual” integration of βi jk in Fig. 5.4 identi�es βxxz , βxzx , βzxx , βxxy , βxyx , βyxx , and

βzzz as the only nonzero components. For LDA (SVWN5)45, 139 with the uncontracted t-aug-

cc-pVTZ168 basis set they are βxxz = βxzx = βzxx = βxxy = βxyx = βyxx = 2.29 e3a30/E2
h and

βzzz = 10.65 e3a
3
0/E2

h.
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ρ(xx) ρ(xy) ρ(xz)

ρ(yx) ρ(yy) ρ(yz)

ρ(zx) ρ(zy) ρ(zz)

Figure 5.2: Second-order charge density ρ( jk) of Ne (LDA, uncontracted t-aug-cc-pVTZ). Dark (light)

isosurface corresponds to +0.1 (−0.1) e3/a0E2
h. �e plots use the same scaling as in Fig. 5.4. �e arrows

indicate the orientation of the perturbing electric dipole operators B and C.
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ρ(x) ρ(y) ρ(z)

Figure 5.3: First-order charge density ρ( j) of the HF molecule (LDA, uncontracted t-aug-cc-pVTZ).

Dark (light) isosurface corresponds to +0.05 (−0.05) e2/a20Eh. �e molecule (dark stick representation)

is oriented along the z-axis (top atom: H; bottom atom: F). �e additional arrow indicates the orienta-

tions of the perturbing electric dipole operator.
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ρ(xx) ρ(xy) ρ(xz)

ρ(yx) ρ(yy) ρ(yz)

ρ(zx) ρ(zy) ρ(zz)

Figure 5.4: Second-order charge density ρ( jk) of the HFmolecule (LDA, uncontracted t-aug-cc-pVTZ).

Dark (light) isosurface corresponds to +0.1 (−0.1) e3/a0E2
h. �e molecule (dark stick representation)

is oriented along the z-axis (top atom: H; bottom atom: F). �e arrows indicate the orientation of the

perturbing electric dipole operators B and C.
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As a conclusion, the plots in Figs. 5.1 to 5.4 are without doubt nice, but can they also be

useful?

(i) �e real-space plots actually show where in space the response has been sampled. For

instance the presented plots underline that the linear polarizability and the �rst nonlinear

hyperpolarizability are valence properties sampled in the outer valence region. �is can

be useful at least to demonstrate the basis set requirements of a speci�c property.

(ii) Interpretations of nonlinear properties can be elusive and the induced density isosurface

plots presented here may give additional insight to the problem up and above just the

numbers, for instance to discuss trends of properties among a class of molecules.
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5.3 Densities induced by a frequency-dependent electric �eld

�is section will demonstrate how the frequency-dependent electric dipole linear polarizability

can be visualized (and evaluated) using the induced charge density or alternatively using the

induced charge current density.

�e charge density ρ and the charge current density j obey the continuity relation

−∂ρ
∂t
= ∇ ⋅ j (5.35)

which in the frequency domain becomes

ρ(ω) = − i
ω
∇ ⋅ j(ω) (5.36)

with the frequency ω. As described in the previous section, the frequency-dependent electric

dipole linear polarizability component αi j(ω) may be evaluated from the �rst-order charge

density ρ( j)(ω) induced by the component F j of an external electric �eld according to

αi j(ω) = ∫ dr riρ( j)(ω), (5.37)

or alternatively, using Eq. 5.36, from the divergence of the �rst-order charge current density

∇ ⋅ j( j)(ω) according to
αi j(ω) = − i

ω ∫ dr ri∇ ⋅ j( j)(ω). (5.38)

Next, using integration by parts

αi j(ω) = i
ω ∫V dr j( j)(ω) ⋅ ∇ri − i

ω ∮S ri j( j)(ω) ⋅ ds, (5.39)

Eq. 5.38 reduces to

αi j(ω) = i
ω ∫ dr j

( j)
i (ω), (5.40)

assuming that j vanishes at in�nity. �e frequency-dependent electric dipole linear polariz-

ability component αi j(ω)may now be obtained by integrating the �rst-order induced j
( j)
i (ω).

�is argument is also used by van Faassen et al. to calculate static αi j(0)within current density
functional theory by extrapolating to zero frequency (see for instance Ref. 101 and references

therein). �is assumption is certainly valid for �nite systems within the �nite basis approxima-

tion. An interesting test case turns out be the representation of the continuity relation (Eq. 5.36)

in a �nite basis. To demonstrate this, we have calculated αzz(ω) of Ne with ω = 0.1 Eh/ħ, us-
ing the s- and d-aug-cc-pVNZ (N = D, T, Q, 5, 6) series of basis sets170, 171 in the uncontracted

form. In addition a family-type basis set has been generated where the even-tempered parent

set consists of 50 exponents

ηk = αβ
(50−k); k = 1, . . . , 50 (5.41)
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with α = 0.0005 and β = 1.6. �e respective exponent subsets {ks}, {kp}, {kd}, and {k f } are
7–42, 12–42, 29–39, and 30–38. �is basis set will be denoted ET (for even-tempered). We have

chosen the LDA (SVWN5)45, 139 functional together with the DC Hamiltonian, although this

speci�c choice of functional and Hamiltonian is not important for the following discussion.

�e induced charge and charge current density are obtained analytically following the outline

in Section 5.1, p. 90 using the Hermitian and anti-Hermitian parts of the response vector, re-

spectively (Eq. 5.2).

�e results are listed inTab. 5.1. Starting from (uncontracted) d-aug-cc-pVQZ, the frequency-

dependent polarizability can be considered converged to three signi�cant digits (3.10 e2a20/Eh).

�e agreement—using the s-aug-cc-pVDZbasis set—between the results obtained usingEq. 5.37

and Eq. 5.38, respectively, is rather poor (2.14 vs. 1.99 e2a20/Eh). Again, it requires to employ at

least d-aug-cc-pVQZ to get good agreement between these two approaches, which are related

by the continuity.

Table 5.1: LDA frequency-dependent (ω = 0.1 Eh/ħ) polarizability of Ne (in e2a20/Eh) obtained by nu-

merical integration from the induced charge density and from the induced charge current density. All

basis sets are uncontracted.

basis ∫ dr rzρ(z)(ω) − i
ω ∫ dr rz∇ ⋅ j(z)(ω)

s-aug-cc-pVDZ 2.1407 1.9892

d-aug-cc-pVDZ 3.0485 3.0549

d-aug-cc-pVTZ 3.0913 3.0940

d-aug-cc-pVQZ 3.1016 3.1022

d-aug-cc-pV5Z 3.1017 3.1018

d-aug-cc-pV6Z 3.1015 3.1016

ETa 3.1014 3.1012

a See p. 103.
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Figs. 5.5 and 5.6 show cuts through ρ(z)(ω) and − i
ω∇ ⋅ j(z)(ω) for several basis sets. �e

le�-hand panels of Figs. 5.5 and 5.6 correspond to cuts though the right panel of Fig. 5.1. �ey

look identical, the minute modi�cations when improving the basis set (compare with Tab. 5.1)

are not visible. �e situation is di�erent for − i
ω∇ ⋅ j(z)(ω) (right-hand panels). Especially in

the core region, the disagreement with ρ(z)(ω) and a slow convergence with respect to the

basis set cardinal number is clearly visible. Although the overall topology of the contour plots

and the nodal structure are reasonably represented in the induced − i
ω∇ ⋅ j(z)(ω), additional

nodal surfaces appear and only by using d-aug-cc-pV6Z or the dedicated ET basis set a visually

qualitative agreement is reached.

�is comparison is notmeant to disqualifymoderately sized basis sets for obtaining frequency-

dependent electric dipole linear polarizabilities from the induced charge current density. �e

position component ri which appears for instance in Eq. 5.38 favors the outer valence and there-

fore a disagreement in the core region is less important for this valence property (Tab. 5.1).

�e aim is to show that a systematic improvement of the basis set improves the representa-

tion of the continuity relation which holds only in a complete basis. �e chosen basis set series

d-aug-cc-pVNZmay not be the ideal choice being only slowly convergent and certainly not de-

signed for the property under study. �e most convincing plots have been obtained using the

ET basis set which shows that �exibility in the core region is needed rather than high angular

momentum exponents in this situation.
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d-aug-cc-pVDZ

d-aug-cc-pVTZ

d-aug-cc-pVQZ

ρ(z)(ω) − i
ω∇ ⋅ j(z)(ω)

Figure 5.5: LDA �rst-order charge density and divergence of the �rst-order charge current density of

Ne induced by a frequency-dependent (ω = 0.1 Eh/ħ) electric �eld, using di�erent basis sets (from top

to bottom: d-aug-cc-pVDZ, d-aug-cc-pVTZ, d-aug-cc-pVQZ; all uncontracted). Solid (dotted) contour

lines are plotted in the range from +0.01 to +0.1 (−0.01 to −0.1) e2/a20Eh in intervals of 0.01 e2/a20Eh.
�e dash-dotted contour line represents 0 e2/a20Eh. �e dimensions of the plots are 4 × 4 a0.
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d-aug-cc-pV5Z

d-aug-cc-pV6Z

ET

ρ(z)(ω) − i
ω∇ ⋅ j(z)(ω)

Figure 5.6: LDA �rst-order charge density and divergence of the �rst-order charge current density of Ne

induced by a frequency-dependent (ω = 0.1 Eh/ħ) electric �eld, using di�erent basis sets (from top to

bottom: d-aug-cc-pV5Z, d-aug-cc-pV6Z, ET; all uncontracted). Solid (dotted) contour lines are plotted

in the range from +0.01 to +0.1 (−0.01 to −0.1) e2/a20Eh in intervals of 0.01 e2/a20Eh. �e dash-dotted

contour line represents 0 e2/a20Eh. �e dimensions of the plots are 4 × 4 a0.
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Figure 5.7: Scalar relativis-

tic LDA electric dipole linear

polarizability αzz of Ne as a

function of frequency using

the ET basis set (see p. 103).

�e dotted line represents the

2p6 → 2p53s1 excitation en-

ergy (0.498 Eh; 13.56 eV).

Without the introduction of �nite lifetimes,172 the frequency-dependent electric dipole lin-

ear polarizability has singularities at frequencies that correspond to excitation energies (Fig. 5.7).

We have plotted the �rst-order charge and probability current density of Ne when approaching

and passing beyond the 2p6 → 2p53s1 resonance energy (0.498 Eh; 13.56 eV) which is depicted in

Fig. 5.7. Spin–orbit coupling has been eliminated to prevent close-lying excitation energies due

to small spin–orbit splitting of the p orbitals. �e resulting plots for the LDA functional with

the so far best-performing ET basis set are depicted in Figs. 5.8 and 5.9 for the frequencies 0.40,

0.47, 0.48, 0.49, 0.50, and 0.51 (all in Eh/ħ). �e �rst-order charge and probability current den-

sity are plotted side by side. With increasing frequency the charge density contour plots “blow

up”. Correspondingly, the line intensity of the probability current density streamline plots in-

creases. �e current density �eld has sources and drains (fading of the streamline intensity)

and these correspond to the induced charge density plots on the le� panels of Figs. 5.8 and 5.9

(recall Figs. 5.5 and 5.6). �e probability current density streamline plots contain vortices in the

core region, as well as in the valence region, which are moving closer together, as the frequency

approaches resonance and represent a toroidal vector �eld around the axis of the perturbing

electric dipole. When passing beyond resonance, the switching of phase is nicely observed by

the sign change of both �rst-order charge density and �rst-order probability current density.
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ω = 0.40 Eh/ħ

ω = 0.47 Eh/ħ

ω = 0.48 Eh/ħ

ρ(z)(ω) i
ωJ (z)(ω)

Figure 5.8: Scalar relativisticLDA�rst-order charge density and �rst-order probability current density of

Ne induced by a frequency-dependent electric �eld (ω from top to bottom: 0.40, 0.47, and 0.48 Eh/ħ).
Le� panels: solid (dotted) contour lines are plotted in the range from +0.01 to +0.1 (−0.01 to −0.1)
e2/a20Eh in intervals of 0.01 e2/a20Eh. �e dash-dotted contour line represents 0 e2/a20Eh. Right panels:
line intensity is proportional to i∣J (z)(ω)∣. �e dimensions of the plots are 4 × 4 a0.
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ω = 0.49 Eh/ħ

ω = 0.50 Eh/ħ
(≈ singularity)

ω = 0.51 Eh/ħ

ρ(z)(ω) i
ωJ (z)(ω)

Figure 5.9: Scalar relativistic LDA �rst-order charge density and �rst-order probability current density

of Ne induced by a frequency-dependent electric �eld (ω from top to bottom: 0.49, 0.50, and 0.51 Eh/ħ).
Le� panels: solid (dotted) contour lines are plotted in the range from +0.01 to +0.1 (−0.01 to −0.1)
e2/a20Eh in intervals of 0.01 e2/a20Eh. �e dash-dotted contour line represents 0 e2/a20Eh. Right panels:
line intensity is proportional to i∣J (z)(ω)∣. �e dimensions of the plots are 4 × 4 a0.
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5.4 Induced current density in the group 15 heteroaromatic

compounds

�e concept of aromaticity keeps fascinating chemists ever since the �rst isolation and char-

acterization of benzene by Michael Faraday in 1825.173 To a certain degree it remains to be an

elusive concept and Frenking calls it aptly “a typical example for a unicorn of the chemical

bondingmodels, because everybody seems to knowwhat it means although it is not an observ-

able quantity”.174, 175 Many criteria have been introduced in the past. Some became obsolete or

not general enough. Table 2 of Ref. 176 lists 61 important aromaticity criteria and key develop-

ments 1825–2005. �ey can be grouped into four classes: structural, energetic, reactivity, and

magnetic criteria. Being devoted to review the extensively used nucleus-independent chemical

shi� (NICS) aromaticity criterion Ref. 176 gives also a beautiful overview over the history of

aromaticity and is certainly an ideal entry point into the subject with a rich bibliography.

�e last entry in Table 2 of Ref. 176 is the criterion of integrated magnetically induced cur-

rents as aromaticity index, introduced by Jusélius, Sundholm, and Gauss.5 �e aromatic ring

current theory has already been established in 1936 by Pauling and others (see review177). Ab

initio current density plots have been pioneered by Lazzeretti and Zanasi178, 179 and widely ap-

plied by several groups to closed-shell systems (see reviews180, 181) and recently also to open-shell

molecules.182, 183 To the best of our knowledge, no 4-component relativistic ab initio current den-

sity plots have appeared so far. Inspired by the quantitative and general approach of Jusélius,

Sundholm, and Gauss5 in the NR framework, we wish here to �ll this gap and to apply our

4-component relativistic implementation for the study of the induced current density in the

group 15 heteroaromatic compounds C5H5E (E = N, P, As, Sb, Bi). �is series of heteroaromatic

compounds has been recently studied by Fernández and Frenking174 bymeans of energy decom-

position analysis. In an elegant approach, based on an energy decomposition analysis,184–188 the

authors have estimated the aromatic stabilization energy (ASE) and found a larger π stabiliza-

tion in pyridine (45.7 kcal mol−1) than in benzene (42.5 kcal mol−1). Other heterobenzenes were

found less stabilized (ASE descending to 29.4 kcal mol−1 in C5H5Bi), but still rather large. In an-

other study, on the basis of hydrogenation energies, NICS values, and lack of bond alternation,

Shobe189 concluded that the entire series appears to be aromatic and to a roughly equal degree.

A study of Salcedo190 based onNICS values and homodesmic reaction energies, concludes with

C5H5P being the most aromatic member of the series, again with roughly equal NICS values.
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Computational details

�e C5H5E (E = N, P, As, Sb, Bi) and C6H6 structures have been optimized using the GAUS-

SIAN191 program package. We have employed the B3LYP functional83, 84, 134 and the basis sets

aug-cc-pVTZ for H,151 C,151 N,151 P,192 and As,193 and the basis sets aug-cc-pVTZ-PP194 with ef-

fective core potentials195 for Sb and Bi.

�e induced current densities have been obtained and plotted using a development ver-

sion of the DIRAC16 program package. �e calculations have been carried out at the HF level

of theory and also using the density functionals B3LYP83, 84 and PBE.146 We have used the 4-

componentDirac-Coulomb (DC) and the 4-component nonrelativistic Lévy-Leblond65Hamil-

tonians. �e same basis sets have been used for H, C, N, and P, however in uncontracted form.

For As, Sb, and Bi, uncontracted all-electron TZ basis sets of Dyall196 have been used, includ-

ing the core and valence correlating and di�use exponents. �e small component basis set for

the calculations based on the DC Hamiltonian has been generated using restricted kinetic bal-

ance. �e calculations proceed in two steps. First we obtain the linear response of the HF or

KS determinant to the perturbing magnetic dipole operator. In a second calculation we use

the response vector to construct the �rst-order density matrix and to obtain the �rst-order

induced current density following the procedure outlined in Section 5.1, p. 90. �e response

calculations employ a common gauge origin, placed at the center of mass with the perturbing

magnetic dipole operator oriented perpendicular to the molecular plane. �e integration of

the induced current density has been carried out using the two-dimensional Gaussian or Lo-

batto quadrature detailed in Ref. 5. �e integration plane has been chosen perpendicular to

the molecular plane, extending from the ring center 10 a0 above, below and outward, perpen-

dicular to the C2 symmetry axis (dashed lines in Figs. 5.10 to 5.13). �e ring center has been

de�ned as Rcenter = (RE + RC)/2 where RE and RC are the position vectors of E and its oppos-

ing C atom, respectively. �e integration grid density has been increased and monitored until

reaching convergence in the signi�cant digits reported later in the discussion.

Discussion

Wewill proceed in two steps: we will start with a qualitative discussion of the induced probabil-

ity current density plots and later turn to a quantitative analysis of the integrated ring current

susceptibilities.

First, consider the induced 4-component relativisticHF probability current streamline plots

for C5H5N in Fig. 5.10. �e induced “paramagnetic” and “diamagnetic” probability current den-

sities are plotted separately—both are obtained in the molecular plane. �e line intensity is

chosen proportional to the norm of the probability current density vector, and the magnetic
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�eld vector points towards the reader. �e paratropic response (top panel) and the diatropic

response (bottom panel) are nicely seen. �e streamlines of the induced “diamagnetic” prob-

ability current are concentric around the gauge origin whereas the induced “paramagnetic”

probability current streamlines follow hexagonal patterns—one inside the carbon ring and one

outside the carbon ring shi�ed by 60 degrees. �e corresponding benzene streamline plots are

very similar (not given here). When summing up the “paramagnetic” and “diamagnetic” parts

to the total probability current densities, we arrive at Fig. 5.11 (top panel). Situated still in the

molecular plane, a diatropic probability current outside the carbon ring and the opposite parat-

ropic probability current inside the carbon ring are nicely seen. Between atoms one can observe

diatropic vortices. We can also “visually” integrate the induced ring current from the ring cen-

ter outward, following the dashed line in Fig. 5.11 and verify—as expected—that the diatropic

and paratropic contributions nearly cancel. �is is di�erent above and below the molecular

plane (Fig. 5.11; bottom panel), where the diatropic ring current of the π-system dominates the

streamline plot. �is characteristic aromatic diatropic response is present also when examin-

ing the heavier homologues C5H5P to C5H5Bi (Figs. 5.12 and 5.13). Starting with C5H5As, the

diamagnetic atomic contributions of the heteroatoms are increasingly visible in the streamline

plots. Also the pattern of the vortex domains inside the carbon ring changes for the heavier ho-

mologues. �e induced DFT probability current streamline plots and also the NR probability

currents are qualitatively quite similar and therefore not given here.

For amore quantitative analysiswe now turn to the discussion of the integrated induced ring

current susceptibilities listed in Tab. 5.2. With the exception of the B3LYP induced ring current

susceptibilities of C5H5Sb and C5H5Bi at the 4-component relativistic level, we obtain a consis-

tent picture. �e largest induced ring current susceptibilities are obtained for the prototypical

aromatic molecule C6H6. Slightly smaller are the numbers for C5H5N which then slowly de-

crease to C5H5Sb, but keep the order of magnitude. �e values for C5H5Bi are slightly above the

C5H5Sb induced ring current susceptibilities. �e only exception is the DCHF value. Although

the B3LYP numbers are signi�cantly larger than HF and PBE, the qualitative trend for the ho-

mologue series is quite comparable, again except the DC B3LYP numbers which drop abruptly

between C5H5As and C5H5Sb. Disregarding these two values for the moment, the di�erences

between the 4-component relativistic and the NR treatment are quite small. When comparing

the DC and NR values in Tab. 5.2, the relativistic e�ect seems minimized for C5H5As. In order

to elucidate this e�ect we have examined the “paramagnetic” and “diamagnetic” contributions

separately (Tab. 5.2).∗ �edi�erences between DC andNR values for C6H6, C5H5N, and C5H5P

are exclusively between the “diamagnetic” DC andNR contributions and can be interpreted as a

∗ Note that the “paramagnetic” and “diamagnetic” contributions should not be compared between di�erent com-

pounds since the gauge origin is placed at the center of mass which is then di�erent.
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Figure 5.10: Induced HF “param-

agnetic” (top panel) and “diamag-

netic” (bottom panel) probability

current density J in C5H5N, plot-

ted in the molecular plane (di-

mensions: 12 × 12 a0). �e mag-

netic �eld vector points towards

the reader. Line intensity is pro-

portional to the norm of J . Small

circles represent the atomic cen-

ters. Dashed line represents the

intersection with the integration

plane.
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Figure 5.11: Induced HF total

probability current density J in

C5H5N, plotted in the molecular

plane (top panel) and 1 a0 above

(or below) the molecular plane

(bottom panel; dimensions: 12× 12
a0). �e magnetic �eld vector

points towards the reader. Line

intensity is proportional to the

norm of J . Small circles represent

the atomic centers. Dashed line

represents the intersection with

the integration plane.
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Figure 5.12: Induced HF total

probability current density J in

C5H5P (top panel) and C5H5As

(bottom panel), plotted 1 a0 above

(or below) themolecular plane (di-

mensions: 12 × 12 a0). �e mag-

netic �eld vector points towards

the reader. Line intensity is pro-

portional to the norm of J . Small

circles represent the atomic cen-

ters. Dashed line represents the

intersection with the integration

plane.
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Figure 5.13: Induced HF total

probability current density J in

C5H5Sb (top panel) and C5H5Bi

(bottom panel), plotted 1 a0 above

(or below) themolecular plane (di-

mensions: 12 × 12 a0). �e mag-

netic �eld vector points towards

the reader. Line intensity is pro-

portional to the norm of J . Small

circles represent the atomic cen-

ters. Dashed line represents the

intersection with the integration

plane.
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defect of the basis sets for C, N, and P. �ese basis sets seem not to provide su�cient magnetic

balance for the resolution of identity which appears in the Sternheim approximation.24, 103, 197

�is seems not to be a problem for the heavier homologues, and for C5H5Sb and C5H5Bi the

rather small di�erences between DC and NR values are dominated by the “paramagnetic” con-

tributions. �e quite substantial di�erences when using the B3LYP functional are surprising.

We can exclude doubts about a di�erent (wrong) reference state. It can also be stated that the

di�erences are not possible artifacts of the numerical integration procedure as this abrupt trend

is also obtained in the calculated component χzz of themagnetizability tensor (results not given

here).∗ However, for the HF and B3LYP response calculations on C5H5Sb and C5H5Bi we have

detected a possible instability in the solution of the reduced response equations which can sig-

nal a triplet instability of the reduced electronic Hessian. �is interpretation is also consistent

with the fact that B3LYP contains a fraction of orbital exchange in contrast to the nonhybrid

PBE functional where such an instability is not signaled. �e calculatedHF and B3LYP induced

ring current susceptibilities of C5H5Sb and C5H5Bi clearly call for a closer analysis and must be

considered with reservation at this stage.

∗ �emagnetic �eld vector is oriented along the z-coordinate. �e component χzz of the magnetizability tensor

is obtained “for free” by contracting the response vector with the appropriate property gradient.
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Table 5.2: Induced ring current susceptibility (in nA/T) in benzene and the group 15 heteroaromatic

compounds C5H5E (E = N, P, As, Sb, Bi; DC: Dirac-Coulomb Hamiltonian; NR: nonrelativistic).

method Hamiltonian C6H6 C5H5N C5H5P C5H5As C5H5Sb C5H5Bi

HF DC total 13.35 12.69 12.25 11.66 10.48 10.41

para –33.20 –32.33 –43.44 –50.10 –66.19 –78.95

dia 46.55 45.02 55.69 61.76 76.67 89.36

NR total 13.82 13.14 12.40 11.70 10.59 11.17

para –33.20 –32.33 –43.44 –50.07 –66.16 –78.49

dia 47.03 45.48 55.84 61.78 76.75 89.66

DC – NR total –0.47 –0.45 –0.15 –0.04 –0.11 –0.75

para 0.01 0.01 –0.00 –0.02 –0.02 –0.46

dia –0.48 –0.45 –0.15 –0.02 –0.08 –0.29

B3LYP DC total 17.05 16.45 16.36 16.08 9.13 9.40

para –28.26 –27.38 –38.63 –45.40 –68.13 –81.12

dia 45.31 43.83 55.00 61.48 77.26 90.52

NR total 17.55 16.92 16.49 16.06 15.92 17.31

para –28.27 –27.39 –38.63 –45.38 –61.36 –73.35

dia 45.82 44.31 55.12 61.44 77.27 90.66

DC – NR total –0.50 –0.47 –0.13 0.01 –6.79 –7.91

para 0.01 0.01 –0.00 –0.02 –6.78 –7.77

dia –0.51 –0.48 –0.13 0.03 –0.01 –0.14

PBE DC total 12.12 11.58 10.78 10.06 8.86 9.09

para –33.13 –32.19 –44.22 –51.48 –68.55 –81.64

dia 45.25 43.78 55.00 61.54 77.41 90.73

NR total 12.62 12.05 10.91 10.06 8.92 9.62

para –33.14 –32.20 –44.22 –51.44 –68.48 –81.21

dia 45.75 44.25 55.12 61.50 77.41 90.83

DC – NR total –0.50 –0.47 –0.13 0.00 –0.07 –0.53

para 0.01 0.01 –0.00 –0.03 –0.07 –0.43

dia –0.51 –0.48 –0.12 0.04 0.00 –0.10
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5.5 Nuclear spin–spin coupling density in CO

To illustrate the real-space approach to the nuclear spin–spin coupling using our new imple-

mentation, we have chosen CO as a test example since it is a small molecule for which the

Fermi-contact (FC) contribution is not dominating and is on the order of the paramagnetic

spin–orbit (PSO) and the spin-dipole (SD) interactions.198, 199

First, we wish to validate the calculated reduced isotropic indirect nuclear spin–spin cou-

pling constant (NSSCC) of CO, obtained within the spin-polarized KS approach using the

BLYP134, 135, 140 functional, before turning to a discussion of the nuclear spin–spin coupling den-

sity itself. �e reduced isotropic indirect NSSCC between the nuclear spins of C and O, corre-

sponds to the static linear response function

K(C,O) = 1
3
∑
i

⟨⟨ÂC
i ; Â

O
i ⟩⟩0 (5.42)

where the sum over i runs over the three principal axes, with ÂK being the nuclear magnetic

dipole operator for nucleus K de�ned in Eq. 5.19. For implementation details of 4-component

relativistic calculations of isotropic indirect NSSCC the reader is referred to Ref. 200. �e 4-

component relativistic implementation of KS linear response is documented in Ref. 113. In con-

trast to Ref. 113, spin density contribution (Section 3, p. 61) is now included in the construction

of the sigma vector (Section 2.5, p. 58).

In order to compare the 4-component results withNR results reported by other groups,198, 199

it is possible to eliminate either all relativistic e�ects,65 or exclusively the spin–orbit interac-

tion24, 60within the 4-component framework (see also Section 1.4, p. 35). �e calculatedK(C,O)
are summarized in Tab. 5.3 and compared to results reported by Sychrovský et al. ,198 employ-

ing the same basis set H-III of Huzinaga201 modi�ed by Kutzelnigg et al. ,202 and the same C–O

distance of 2.1316 a0. While in the NR framework K(C,O) is obtained as a sum of four con-

tributions, which correspond to the �rst-order perturbation operators PSO, FC, SD, and the

second-order diamagnetic spin–orbit (DSO) operator, this separation is absent in relativistic

theory—for the description of NSSCC there is only one perturbation operator (Eq. 5.19; see

also Ref. 66 for a comparison of relativistic and NR one-electron perturbation operators). �e

isolation of the “paramagnetic” and “diamagnetic” contributions is on the other hand possible

in relativistic theory103, 104 (see Section 5.1, p. 90). Removing subsequently spin–orbit coupling

and scalar relativity and reintroducing the basis set contraction scheme brings our values rea-

sonably close to the results of Sychrovský et al. ,198 –55.13 vs. –55.17 SI units (Tab. 5.3). Note

that the NR diamagnetic contribution to the NSSCC (DSO term) is obtained as an expectation

value. �e e�ects due to scalar relativity and spin–orbit coupling are small, as expected for this

test case (compare values for the uncontracted basis set).
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Table 5.3: Reduced nuclear spin–spin coupling constants of CO, calculated with BLYP and the H-III

basis set (in SI units: 1019 m−2 kg s−2 A−2; NR: nonrelativistic Lévy-Leblond Hamiltonian; SR: scalar

relativistic; DC: Dirac-Coulomb Hamiltonian).

basis set spin-dependent total para PSO FC SD FC+SD dia

contracted contributions

deleted

Sychrovský et al. a yes no –55.17 –54.95 –35.51 –33.41 13.97 –19.44 –0.22

NR yes no –55.13 –54.90 –0.23

NR no no –53.73 –53.51 –0.23

SR no no –54.90 –54.66 –0.24

DC no no –55.02 –54.78 –0.24

NR yes yes –35.70 –35.47 –19.43 –0.23

NR no yes –35.58 –35.36 –18.15 –0.23

SR no yes –35.79 –35.48 –19.18 –0.30

a Ref. 198.

Saue has demonstrated24 how spin-dependence can be selectively removed and thereby the

PSO term recovered. Indeed, this separation applied on the paramagnetic contribution (lower

part of Tab. 5.3) yields –35.47 SI units compared to the reference PSO value of –35.51 SI units.

�e remaining part is the sum FC+SD with –19.43 SI units (the reference value is –19.44 SI

units).

Having validated our results, we are now ready to visualize the three contributions: PSO,

FC+SD, and DSO. For this we solve six linear response equations (Eq. 2.39) which correspond

to three principal components of both perturbations ÂC and ÂO, and obtain six response vec-

tors: N(C)i and N
(O)
i (Einstein summation over i). From these response vectors corresponding

�rst-order density matrices (Eq. 5.6) are constructed, from which the induced charge current

densities are calculated as described in Note B, p. 185. Having obtained the induced charge

current densities, K(C,O)may be calculated by

K(C,O) = ∫ dr
−1

3c2r3C
∑
i

(rC × j(Oi))i (5.43)

= ∫ dr kCO(r)
and consequently,

K(O,C) = ∫ dr kOC(r) (5.44)

by interchanging the perturbing with the responding nucleus. Eqs. 5.43 and 5.44 de�ne the

reduced isotropic indirect NSSCC densities kCO(r) and kOC(r) which are the target quantities
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here. �e paramagnetic and diamagnetic contributions to k(r) can be obtained by considering

only the pp or pn parts of the response vectors, respectively (Section 5.1, p. 90). In addition,

the corresponding PSO and FC+SD contributions can be recovered by selectively removing

spin-dependence24 as done in Tab. 5.3. We check all plotted densities k(r) by comparing the

numerically integrated values with the numbers listed in Tab. 5.3.

Contour plots representing cuts through the densities kCO(r) and kOC(r) are depicted in

Fig. 5.14. �ese densities possess cylindrical symmetry around the C–O bond axis. Compare

the top and bottom panels in Fig. 5.14 and observe that the density distributions depend on

the choice of the perturbing and responding nuclear spins. Independent of this choice are the

integrated values which correspond to numbers listed in the last line of Tab. 5.3. �e DSO con-

tributions kDSOCO (r) and kDSOOC (r) are very similar (right panels in Fig. 5.14). Indeed, in the NR

limit these contributions are obtained as expectation values and are therefore independent of

this choice. �e kDSOAB (r) = 0 isosurfaces are almost spherical (remember cylindrical symme-

try). It is a nice exercise to show that in the NR limit the isosurfaces are perfect spheres with the

diameter rAB, with a negative (positive) kDSOAB (r) inside (outside) this spherical isosurface. �e

sign of kDSOAB (r)—obtained as an expectation value—is determined by the scalar product riA ⋅riB.
All points ri for which riA ⋅ riB = 0, form a sphere centered at (rA+ rB)/2 with the diameter rAB.

�is is �ales’ theorem (already pointed out in Ref. 198, see also Refs. 203, 204, and 205). �e

kDSOAB (r) plots in Fig. 5.14 are not obtained as an expectation value and the deformation of the

otherwise spherical isosurfaces is a basis set e�ect. �e DSO term scans the charge anisotropy

around each of the coupling nuclei167 and although sizable kDSO(r) values are reached along the
C–O bond axis, the integral is two orders of magnitude smaller than the integral over kPSO(r)
or kFC+SD(r). A large DSO contribution may be anticipated for instance in certain transition

metal atoms featuring stronger charge anisotropy, as pointed out by Cremer and Gräfenstein.167

Passing on to the middle panels in Fig. 5.14, kFC+SD(r) contour plots nicely show the structure

of the dipole �eld with its shell structure, generated by the perturbing nuclear moment and

the double-cone structure at the responding nucleus which monitors the SD spin polarization

with a quadrupolar potential (see Ref. 167 for a nice discussion of these features along with a

separate visualization of the FC coupling density and for explicit NR expressions). �e remain-

ing densities kPSO(r) are depicted in the le� panels in Fig. 5.14. �ey are complementary to

kFC+SD(r) in the sense that they probe the induced orbital current in contrast to the FC and SD

mechanisms mediated by the spin-dependent part of the induced paramagnetic current. �e

densities kPSO(r) provide also complementary information to kDSO(r) as they probe not only
the density anisotropy but also the orbital structure close to the coupling nuclei.167 �e integral

is with –35.48 SI units slightly larger than the FC contribution with –33.41 SI units.
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kPSOCO (r) kFC+SDCO (r) kDSOCO (r)

kPSOOC (r) kFC+SDOC (r) kDSOOC (r)

Figure 5.14: BLYP reduced isotropic indirect NSSCC densities kCO(r) (top panels; O is the perturbing

nucleus) and kOC(r) (bottom panels; C is the perturbing nucleus) in CO.�e position of the C nucleus

is marked with “C”, the position of the O nucleus is marked with a cross. Solid (dotted) contour lines

are plotted in the range from +1 to +10 (−1 to −10) SI units: 1019 m−2 kg s−2 A−2, in intervals of 1 SI unit.

�e dash-dotted contour line represents k(r) = 0. �e dimensions of the plots are 4 × 4 a0.



Nuclear spin–spin coupling density in CO 123

Orbital contributions to k(r) could be easily plotted separately by allowing only speci�c

elements of the auxiliary matrixW in Eq. 5.7 to be nonzero. �is is not shown in this example

which has been chosen for testing purposes and as an illustration rather than to discuss the

NSSCC in CO.

To sum up this short illustration, it is pertinent to underline that this real-space approach

to NSSCC is not new and has been developed by other groups158–167 under di�erent names, with

di�erent notations and possibilities, all of them in the NR framework. �e aim was to show,

that it is possible to recover partly the corresponding NR densities. �e advantage of the here

presented approach is the possibility to address nuclear spin–spin coupling in heavy-element

systems on a sound theoretical basis. One interesting application might be to visualize and

study the important spin–orbit coupling e�ect present in the NSSCC of the TlX (X = F, Cl, Br,

I) series, as observed by Autschbach and Ziegler.206 Another interesting molecule might be

PbO, the heavy homologue of CO.
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5.6 Parity-violating energy shi� and the γ5 density

For an understanding of chemistry, fundamental forces other than the electromagnetic force

(namely the gravitational, strong, and weak force) can usually be safely neglected. It is never-

theless very tempting, albeit extremely challenging, to try to observe the in�uence of the weak

interaction on molecular systems directly, as this would enable low energy tests of the weak

interaction.207 �is extremely weak and short-ranged interaction is of particular interest since

it shows preference for particle helicity, for instance involving almost exclusively le�-handed

electrons.208 As nicely shown by Wu et al. in the β-decay of cobalt radionuclides209 the weak

interaction breaks parity symmetry as �rst proposed by Lee and Yang.210 �e consequence of

this parity symmetry breakdown, commonly called parity-violation (PV),makes the two “enan-

tiomers” of a chiral molecule strictly speaking diastereomers, thus causing an energy di�erence

between them.

�emain obstacle for the observation of PV e�ects is its tininess. For instance, in the case of

aminoacids, the theoretical PV energy di�erence (PVED) between the two enantiomers is on

the order of 10−16 kJ ⋅ mol−1,211, 212 which, combined with its signi�cant variation as a function

of molecular structure, precludes any direct link between PV and biohomochirality unless a

convincing ampli�cation mechanism can be found.213–215 �e measure of such minute values

furthermore calls for very accurate experiments which have to be dedicated to its observation.

Only a few scienti�c teams in the world have performed experiments aiming at detecting PV

e�ects in molecular systems, but with no clear-cut success so far.216–219

Apromising new experimental setuphas beenproposed byChardonnet and co-workers.220–222

It aims at detecting PV vibrational transition frequency di�erences by molecular beam spec-

troscopy using a two-photon Ramsey-fringes experiment. A sensitivity of 0.01 Hz is expected,

but the choice of the candidate molecule and the preparation of its enantiomers are crucial for

a successful experiment. �e ideal candidate chiral molecule for the experiment should: (i) be

available in large enantiomer excess or, ideally, in enantiopure form; (ii) show a large PV fre-

quency di�erence of an intense fundamental transition within the CO2 laser operating range

(850–1120 cm−1); (iii) not be too bulky since the sensitivity of the experiment will be largely

determined by the partition function of the molecules in a supersonic beam where the internal

degrees of freedom are frozen down to about 1 K; (iv) avoid nuclei with quadrupolar moments;

and (v) preferably sublimate without decomposition for injection into the Fabry-Perot cavity

of the experiment, although laser ablation techniques may also be envisaged.

Prior to 2002 small organic chiral molecules such as aminoacids, chiral conformations of

hydroperoxides,223, 224 or heterohalogenomethanes,221, 225–227 were extensively studied. Among
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the latter, bromochloro�uoromethane (CHFClBr) has drawn particular attention due to its

structural simplicity.228 However, such a chiralmolecule, although a goodmodel, shows too low

calculated PV e�ects227, 229–231 (a fewmHz) to be clearly observed considering today’s best exper-

imental resolution of around 1 Hz.232 Recently, chiral halogenated adamantanes and cubanes

have been synthesized, but they were found to show very low PV e�ects.233 Since 2002, chiral

metal transition complexes bearing heavy atoms have attracted particular interest. Consider-

ing that the PVED scales approximately as Z5 (where Z is the atomic number),234–237 theoretical

studies clearly favor chiral compounds with a heavy atom at or near the stereochemical center

for large PV e�ects. Indeed, chiral gold, mercury, iridium, osmium and rhenium complexes

were calculated to be favorable candidates for PV observation by Schwerdtfeger and cowork-

ers,238–240 as well as bismuth compounds by Lazzeretti and coworkers.241

�e aim of this section is actually to go back in time and to present already known num-

bers for an already disquali�ed candidate molecule CHFClBr, albeit from a new point of view.

�e molecule under study has been disquali�ed from being a realistic candidate molecule due

to PV e�ects for the C–F stretching mode only in the mHz range. �e here presented PV ef-

fects for the C–F stretching mode of CHFClBr within the 4-component HF theory have been

published by other authors225, 227 and this discussion will closely follow their choices of approxi-

mations. However, in contrast to previous studies the individual steps of such a calculation will

be discussed using the γ5 density

γ5(r) = ⟨0∣γ5(r)∣0⟩ (5.45)

�e hope of this discussion is that the γ5(r) density may give a di�erent and possibly helpful

view on the property under study by connecting the PV energy di�erence to the spatial struc-

ture of the γ5(r) density and its variation upon geometry distortion.

Starting from the weak neutral-current interaction Hamiltonian between electrons and nu-

clei (see Note A, p. 179) in the limit of zero momentum transfer and neglecting nuclear spin-

dependent terms, the PV electronic energy shi� P (= half of the energy di�erence between

two enantiomers) is given at the 4-component relativistic HF/KS level by the expectation value

expression

P =
GF

2
√
2
∑
K

QK
w∑

i

⟨ψi ∣γ5ρK(ri)∣ψi⟩ = GF

2
√
2
∑
K

QK
w ∫ dr γ5(r)ρK(r) (5.46)

in which appears the weak nuclear charge QK
w = ZK(1 − 4 sin2 θW) − NK with ZK and NK rep-

resenting the number of protons and neutrons in nucleus K, respectively, and sin2 θW = 0.2319

being the employedWeinberg parameter (themost recent value242 is sin2 θW = 0.2397(13)). �e

normalized nuclear charge densities ρK restrict the integration over electron coordinates ri to
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nuclear regions, and therefore provide a natural partitioning of the operator in atomic contri-

butions. �e Fermi coupling constant GF = 2.22254 ⋅ 10−14 Eha
3
0 demonstrates the minuteness

of the e�ect. Finally, γ5 is one of the Dirac matrices (see also Section 1.2, p. 31),

γ5 =
⎛
⎝
02×2 12×2
12×2 02×2

⎞
⎠ . (5.47)

Eqs. 5.45 and 5.46 de�ne the density γ5(r) and its evaluation is a straightforward task,

γ5(r) = ϕL†
κ (r)ϕS

λ(r)D0,SL
λκ + ϕS†

κ (r)ϕL
λ(r)D0,LS

λκ , (5.48)

when compared with the corresponding expression for the evaluation of the charge density

ρ(r) = −eϕL†
κ (r)ϕL

λ(r)D0,LL
λκ − eϕS†

κ (r)ϕS
λ(r)D0,SS

λκ . (5.49)

Here κ, λ are indices over large (L) or small (S) component atomic orbitals ϕ and D0
λκ is the

real part of corresponding quaternion atomic orbital density matrix. Having de�ned γ5(r)∗
makes it possible to obtain P numerically on a suitably chosen grid of points by integrating

γ5(r) weighted with the normalized nuclear charge densities and scaled with the appropriate

factors. In the approximation of point charge nuclei, which is a very good approximation (see

Tab. 5.4), P is given by

P ≈
GF

2
√
2
∑
K

QK
w ∫ dr γ5(r)δ3(r − rK) = GF

2
√
2
∑
K

QK
wγ

5(rK), (5.50)

and the integration grid turns out to be a sum of very few (in this case �ve) scaled densities,

evaluated at the nuclear centers rK (see rightmost column in Tab. 5.4). �e numerical approach

o�ers clearly zero computational advantage for the evaluation of P, but it makes it possible to

visualize γ5(r) on a 3-dimensional grid. As will be shown in the following it will be useful

to visualize the spatial structure of γ5(r) despite the fact that for the PV energy shi� γ5(r) is
sampled only at (or very close to) the nuclear centers

Before turning to the discussion of the γ5(r) density plots, it is useful to recapitulate what

experimentalists and theoreticians are aiming for in studies of PV e�ects in vibrational spectra.

�e goal is to detect the PV vibrational transition frequency shi�

P0→n = Pn − P0 with Pn = ⟨n∣P(q)∣n⟩ (5.51)

for the transition from the vibrational ground state (n = 0) to a vibrational excited state n,

particularly the PV shi� P0→1 that corresponds to the fundamental transition. Here q is the

∗ �e matrix γ5 and the density γ5(r) are distinguished by always specifying the coordinate argument for the

latter.
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Table 5.4: Atomic contributions to P(0) at the CCSD(T) equilibrium geometry of R-CHFClBr (HF, q =

0, all values in Eh). �e rightmost column contains values of the γ5(r) density evaluated at the nuclear

centers rK , scaled with GF
2
√
2
QK
w . �ese values are atomic contributions to P(0) in the approximation of

point charge nuclei.

GF

2
√
2
QK

w
GF

2
√
2
QK

w

nucleus K ∑i⟨ψ i ∣γ5ρK(ri)∣ψ i⟩ ×∑i⟨ψ i ∣γ5ρK(ri)∣ψ i⟩ γ5(rK) ×γ5(rK)

C –1.315 ×10−06 5.752×10−20 –1.315 ×10−06 5.752 ×10−20

H 4.942×10−09 2.812×10−24 4.942×10−09 2.812 ×10−24

F –1.198×10−05 8.798×10−19 –1.198×10−05 8.798×10−19

Cl 2.731 ×10−05 –3.598×10−18 2.731 ×10−05 –3.598×10−18

Br –2.514×10−05 8.191 ×10−18 –2.516×10−05 8.200×10−18

Cl + Br 4.593×10−18 4.602×10−18

sum = P(0) 5.530×10−18 5.539 ×10−18

Ref. 225 5.530×10−18

normal mode coordinate. Inter-mode coupling is thus neglected (but not the anharmonicity).

Although the weak neutral current interaction is extremely localized in space to domains of

nonvanishing nuclear charge, P is quite sensitive to the chemical environment and to its changes

along the normal mode coordinate q. It is a molecular property being a sum of localized atomic

contributions thanks to the nature of the weak interaction.

For our HF study of the PV fundamental vibrational transition frequency shi� in CFH-

ClBr we have adopted the same approximations as detailed in Ref. 225. �is means that we

have used the same basis sets and the same coupled cluster singles and doubles including per-

turbative triples (CCSD(T)) equilibrium geometry and normal mode displacement vectors.

We have calculated the CCSD(T) energy V and the PV shi� P at eleven values of q (q =

0,±0.018897,±0.037795,±0.094486,±0.188973,±0.472431, all a0) and obtained the MacLau-

rin expansion coe�cients V (k) and P(k) which appear in

V(q) = V(0) +∑
k=2

1
k!
V (k)(0)qk (5.52)

and

P(q) = P(0) +∑
k=1

1
k!
P(k)(0)qk (5.53)

by a polynomial �t of su�ciently high order (see Tab. 5.5).
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Table 5.5: MacLaurin expansion coe�-

cients V (k) (CCSD(T)) and P(k) (HF)

for V(q) and P(q) along the CCSD(T)
C–F stretch normal mode coordinate q

in R-CHFClBr.

k V(k)(0) P(k)(0)

1 –1.423223×10−17

2 4.609133 ×10−1 2.827622×10−17

3 –1.757234 ×10+0 –1.186713 ×10−17

4 5.882756 ×10+0 –1.564150×10−16

5 –2.000394×10+1 5.541905×10−16

6 –3.049929×10+0 4.750391×10−15

7 –1.480692×10+2

8 1.684608×10+4

Within the approximation of point charge nuclei the MacLaurin expansion of P(q) can be

reexpressed using expansion coe�cients of the γ5(r) density at the nuclear centers
P(k)(0) = GF

2
√
2
∑
K

QK
wγ

5(k)(rK) (5.54)

with

γ5(r, q) = γ5(r) +∑
k=1

1
k!
γ5(k)(rK)qk (5.55)

From second-order perturbation theory, starting from harmonic solutions, P0→1 is approx-

imately given by225

P0→1 =
ħ

µωe

[P(2)(0) − ħ

µω2
e

P(1)(0)V (3)(0)]. (5.56)

Using µ = 9.7031 amu and ωe = 1120.6555 cm−1 yields the 0→ 1 PV transition frequency shi� of

−1.405×10−19 Eh (−0.9245mHz). �ere is no reason to stop at this order of perturbational treat-

ment since the contribution from higher order V (k)(0) and P(k)(0) can be obtained by a nu-

merical solution of the vibrational Schrödinger equation using the Numerov-Cooley method,∗

which includes all higher order anharmonicity e�ects† and comes at a cost of CPU seconds. In

general, the contribution from higher orders is rather small, here: +0.032 × 10−19 Eh (+0.0212
mHz).�e reasonwhy this little exercise has been repeated here was to detail the atomic contri-

butions to P(1)(0) and P(2)(0), and to emphasize that an understanding of P(1)(0) and P(2)(0),
or equivalently γ5(1)(rK) and γ5(2)(rK), gives already a fair understanding of P0→1. Note that

P(0) (or γ5(rK)) is not sampled in a vibrational spectrum.

�e atomic contributions to P(1)(0) and P(2)(0) are listed in Tabs. 5.6 and 5.7. In both

cases the contributions from Cl and Br dominate, in the case of P(1)(0) by at least one order
of magnitude compared with the other atomic contributions. Although γ5(1)(rC) competes in

∗ We have used a grid of 5000 points in the range q = −1.2⋯+ 1.2 a0. † �e Numerov-Cooley solution includes
only those higher order anharmonicity e�ects that are actually cast by the polynomial expansion or other employed

interpolation.
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the order of magnitude with the values from Cl and Br, the value is quenched by the relatively

small weak nuclear charge of C (–5.5656 compared to –16.7692 of Cl or –41.4660 of Br). �e

same observation can be made for γ5(2)(rF).
Table 5.6: Atomic contributions to P(1)(0) at the CCSD(T) equilibrium geometry of R-CHFClBr (HF,

q = 0, all values in Eh). �e rightmost column contains values of the γ5(1)(r) density evaluated at the

nuclear centers rK , scaled with GF
2
√
2
QK
w . �ese values are atomic contributions to P(1)(0) in the approx-

imation of point charge nuclei.

GF

2
√
2
QK

w
GF

2
√
2
QK

w

nucleus K ∑i⟨ψ i ∣γ5ρK(ri)∣ψ i⟩(1) ×∑i⟨ψ i ∣γ5ρK(ri)∣ψ i⟩(1) γ5(1)(rK) ×γ5(1)(rK)

C –1.342×10−05 5.870×10−19 –1.342×10−05 5.870×10−19

H 6.787×10−08 3.861×10−23 6.787×10−08 3.861×10−23

F 7.377×10−06 –5.419×10−19 7.377×10−06 –5.419×10−19

Cl –4.937×10−05 6.506×10−18 –4.937×10−05 6.506×10−18

Br 6.378×10−05 –2.078×10−17 6.385×10−05 –2.081×10−17

Cl + Br –1.427×10−17 –1.430×10−17

sum = P(1)(0) –1.423×10−17 –1.423×10−17

Ref. 225 –1.424×10−17

With the exception of C and H, the atomic contributions PK show alternating signs for the

series PK(0), P(1)K (0), P(2)K (0). �is can be anticipated for F from the fact that the �eld around

F is reduced with an increasing q (= increasing C–F distance). A positive q shows however the

opposite e�ect for C which performs a counteracting motion combined with an increasing PK .

Due to the relatively high nuclear mass, the displacement vectors of Cl and Br are small. �e

overall series P(0), P(1)(0), P(2)(0) is of alternating sign.
It is now time to compare these observations with the corresponding isosurface plots of

γ5(r), γ5(1)(r), and γ5(2)(r), depicted in Figs. 5.16, 5.18, and 5.20. �ese have been obtained by

�tting a polynomial of sixth order to γ5(r, q) for 803 points in space. In these plots the C–H

bond points away from the reader and the correctR-con�guration243 can be veri�ed performing

a clockwise rotation around C when going from Br over Cl to F. �e isosurfaces in Figs. 5.16,

5.18, and 5.20. are colored according to the sign and the coloring would exactly switch in all

plots for the corresponding S-enantiomer.

At �rst sight, the γ5(r) density in Fig. 5.16 seems to have four lobes around each nucleus,

separated by two nodal surfaces. At a closer look (see detail in Fig. 5.17), the γ5(r) density
can be recognized to consist rather of two dumb-bell shaped isosurfaces around each atom,
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Table 5.7: Atomic contributions to P(2)(0) at the CCSD(T) equilibrium geometry of R-CHFClBr (HF,

q = 0, all values in Eh). �e rightmost column contains values of the γ5(2)(r) density evaluated at the

nuclear centers rK , scaled with
GF
2
√
2
QK
w . �ese values are atomic contributions to P(2)(0) in the approx-

imation of point charge nuclei.

GF

2
√
2
QK

w
GF

2
√
2
QK

w

nucleus K ∑i⟨ψ i ∣γ5ρK(ri)∣ψ i⟩(2) ×∑i⟨ψ i ∣γ5ρK(ri)∣ψ i⟩(2) γ5(2)(rK) ×γ5(2)(rK)

C 8.521 ×10−06 –3.726×10−19 8.521 ×10−06 –3.726×10−19

H –1.006×10−07 –5.723 ×10−23 –1.006×10−07 –5.723 ×10−23

F –1.875 ×10−05 1.378×10−18 –1.875 ×10−05 1.378×10−18

Cl 3.688×10−05 –4.859×10−18 3.688×10−05 –4.860×10−18

Br –9.861 ×10−05 3.213 ×10−17 –9.871 ×10−05 3.216 ×10−17

Cl + Br 2.727×10−17 2.730×10−17

sum = P(2)(0) 2.828×10−17 2.828×10−17

Ref. 225 2.806×10−17

separated by one nodal surface. �e γ5(r) density is nonzero at all �ve nuclear centers (see

Tab. 5.4) but “unfortunately” for the PV energy shi�, the maxima of abs(γ5(r)) are located at

four points outside the nuclear centers. �e largest isosurface is found around C. �e nodal

surfaces that separate the two γ5(r) isosurfaces of opposite sign are in all cases very close to the
nuclei. As an illustration, the γ5(r) density is plotted in the vicinity of the C nucleus in Fig. 5.15.

�is observation has two important implications: (i) there exist many chiral structures where

one or several, or even all nuclei lie on γ5(r) nodal surfaces and the total PV energy shi� can

become zero, and (ii) among di�erent methods it is possible to obtain very di�erent atomic

contributions of even opposite sign by only a tiny displacement of the nodal surface.

As stated above, γ5(r) is not monitored in a PV vibrational spectroscopy experiment, but

predominantly its �rst and second-order variation γ5(1)(r) and γ5(2)(r) (see Figs. 5.18 and 5.20

and details in Figs. 5.19 and 5.21). �e �rst-order variations are large for C and F, for the second-

order derivative of γ5(r) the relatively di�use helical isosurfaces of C and F dominate the picture

(see Fig. 5.20). It might come as a surprise that this observation is not re�ected in the actual

values at the nuclear centers (compare with Tabs. 5.6 and 5.6). Both γ5(1)(r) and γ5(2)(r) are
largest for Cl and Br having very small displacement vectors, in apparent disagreement with

the plots where the largest variation is found close to C and F. �is can only mean we do not

look close enough and that the centers C and F are again very close to nodal surfaces. Like in

the case of γ5(r), this signals that it can be di�cult to get agreement for γ5(1)(r) and γ5(2)(r)
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Figure 5.15: HF γ5(r) density in the vicinity of the C nucleus in R-CHFClBr. �e dimensions of the box

are 0.1×0.1×0.1 a0. �e center of theCnucleus is located at the origin (far corner). Solid (dotted) contour

lines are plotted following the series +0.5 × 10−6, +1.0 × 10−6, +1.5 × 10−6, ⋯ (−0.5 × 10−6, −1.0 × 10−6,
−1.5 × 10−6,⋯) a−30 . �e dash-dotted contour line represents the cut through the nodal surface.
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among di�erent methods, say HF and various density functionals. In a recent computational

study of the P0→1 shi� in chiral oxorhenium complexes we have met this di�culty.244

Few approaches to rationalize themagnitude and sign of γ5(r) by simple models exist.245, 246

�e challenge for the future is to rationalize γ5(1)(r) and γ5(2)(r). An understanding of these

densities will make it possible to tune the candidate molecule and the experimental setup such

that the tiny e�ect is maximized and hopefully within the reach of experimental resolution.
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Figure 5.16: HF γ5(r) density in R-CHFClBr from two perspectives (dark isosurface: +5× 10−7 a−30 , light

isosurface: −5 × 10−7 a−30 ).

Figure 5.17: Zoom into the HF γ5(r) density along the C–F bond in R-CHFClBr (dark isosurface: +5 ×
10−7 a−30 , light isosurface: −5 × 10−7 a−30 ).
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Figure 5.18: HF γ5(1)(r) density in R-CHFClBr from two perspectives (dark isosurface: +1 × 10−6 a−40 ,

light isosurface: −1 × 10−6 a−40 ).

Figure 5.19: Zoom into the HF γ5(1)(r) density along the C–F bond in R-CHFClBr (dark isosurface:

+1 × 10−6 a−40 , light isosurface: −1 × 10−6 a−40 ).
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Figure 5.20: HF γ5(2)(r) density in R-CHFClBr from two perspectives (dark isosurface: +1 × 10−6 a−50 ,

light isosurface: −1 × 10−6 a−50 ).

Figure 5.21: Zoom into the HF γ5(2)(r) density along the C–F bond in R-CHFClBr (dark isosurface:

+1 × 10−6 a−50 , light isosurface: −1 × 10−6 a−50 ).
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Concluding remarks and perspectives

Summing up, it is clear the future holds great opportunities. It also

holds pitfalls. �e trick will be to avoid the pitfalls, seize the oppor-

tunities, and get back home by six o’clock.

Woody Allen,My Speech to the Graduates in Side E�ects

Summing up, it has been a pleasure to watch several projects form connections with one an-

other, which have converged towards themain theme of this thesis: quantum chemistry beyond

charge density.

What has been achieved with the current project and what are the perspectives and chal-

lenges for the future?

A nice collection of tools has been presented that o�er a real-space approach to frequency-

dependent second-order molecular properties within the 4-component relativistic framework

with the possibility to impose other static perturbations and to visualize these e�ects.

Wehave presented implementationswhich allowus to calculate parity-violating (PV) e�ects

in nuclear magnetic resonance parameters at the 4-component relativistic HF and DFT level of

theory.

�e �rst tests of linear and quadratic response theory within noncollinear TD-SDFT look

very promising. We have successfully implemented two interpolation schemes for asymptoti-

cally shape-corrected functionals, i.e. the gradient-regulated asymptotic connection procedure

(GRAC) and the statistical averaging of (model) orbital potentials (SAOP).

Of course some problems remain to be solved. For the calculation of nuclearmagnetic reso-

nance shielding constants using SDFT, theDFT code needs to be adapted to enable gauge origin

including atomic orbitals (London orbitals)—for instance, following the NR implementation of

Helgaker et al. 247 �is also holds for the visualization routines which presently employ a com-

mon gauge origin. In order to study nondivergent response functions in the resonant regions

of optical frequencies, the response code needs to be adapted to take relaxation into account.172
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We have obtained an anomalous PV contribution to the nuclear magnetic resonance shielding

constant of 209Po in chiral H2Po2 and also anomalousmagnetizabilities forH5C5Sb, andH5C5Bi.

�ese incongruous results—in both cases including spin–orbit coupling—may signal triplet in-

stabilities. Although such instabilities can typically be avoided using nonhybrid DFT, it will be

important to introduce methods to detect such instabilities reliably in the future.

Also the noncollinear TD-SDFT linear and quadratic response is only a stopover on the

way to a genuine relativistic TD-CDFT. �e charge and charge current density, as part of the

4-current density, are mixed through a Lorentz transformation. �is strongly suggests that

density and current density functionals should have the same mathematical form in the rela-

tivistic domain which strongly favors the 4-component relativistic framework for the develop-

ment of new current density functionals. �e very �rst steps toward this goal have been made.

For the development of a 4-component relativistic TD-CDFT implementation we can greatly

bene�t from the available and well-tested TD-SDFT code structure. �e necessary modi�ca-

tions are truly minimal. What remains of course, is the formulation and programing of the

corresponding functional derivatives. A simple current density functional is the (vorticity-

dependent) LDA current functional suggested by Vignale, Rasolt, and Geldart89, 90, 248 (VRG).

�is functional has been successfully implemented in the DIRAC16 code and the calculated

Lévy-Leblond isotropic shielding constants in N2, F2, HF, CO, and H2O are in excellent agree-

ment with the results reported by Lee et al. 249 (see Tab. 5.8).

Up to this point, we have practiced mostly on “toy systems”, i.e. when calculating the exci-

tation energies we knew most results a priori. Having validated the implementations, it will be

very exciting to apply the presentedmethodology to “real problems”, i.e. where the performance

of TD-SDFT and the real-space approach to molecular properties within the 4-component rel-

ativistic framework are not yet known.
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A systematic four-component relativistic study of the parity nonconservation �PNC� contribution to

the �isotropic� NMR shielding constants of chiral molecules is presented for the P enantiomers of

the series H2X2 �X= 17O, 33S, 77Se, 125Te, 209Po�. The PNC contributions are obtained within a linear

response approach at the Hartree-Fock level. A careful design of the basis sets is necessary. The

four-component relativistic results based on the Dirac-Coulomb Hamiltonian are compared with the

nonrelativistic Lévy-Leblond results and those obtained by the spin-free modified Dirac

Hamiltonian. The calculations confirm the nonrelativistic scaling law Z2.4 of the PNC contribution

with respect to nuclear charge Z. However, the calculations also show that the overall scaling is

significantly modified by relativistic effects. The scalar relativistic effect scales as Z4.7 for the

selected set of molecules, whereas the spin-orbit effect, of opposite sign, scales better than Z6 and

completely dominates the PNC contribution for the heaviest elements. This opens up the intriguing

possibility of the experimental observation of PNC effects on NMR parameters of molecules

containing heavy atoms. The presented formalism is expected to be valuable in assisting the search

for suitable candidate molecules. © 2006 American Institute of Physics. �DOI: 10.1063/1.2218333�

I. INTRODUCTION

Physics is not symmetric under the parity operation. The

parity nonconservation �PNC� of the electroweak interaction

was first postulated by Lee and Yang
1

in 1956 and is today

well known in nuclear and particle physics. PNC can be

observed for instance in the � decay under very low tem-

perature in an external magnetic field �as first performed by

Wu et al.
2� or in the optical rotation in atomic heavy-metal

vapors.
3–5

The next logical but ambitious step has been to move the

attention towards chemical systems. In the realm of molecu-

lar physics the inclusion of the electroweak neutral-current

interaction leads to a minute energy difference between the

two enantiomers of a chiral molecule. The possible connec-

tion between this energy difference and the homochirality in

biomolecular life is subject to intensive discussion �e.g.,

Refs. 6–8�. However, an unequivocal experimental determi-

nation of this energy difference between two enantiomers has

not been achieved so far despite several claims.

While the current search for the experimental manifesta-

tion of PNC effects in molecules focuses mainly on differ-

ences in the infrared and electronic spectra of chiral mol-

ecules �see Refs. 9 and 10 for a review and references

therein�, their influence on NMR parameters such as the

shielding tensor or spin-spin coupling constants shows an

interesting and possibly complementary alternative despite

immense technical obstacles
11

which shall not be the subject

of this article. Gorshkov et al.
12

were apparently the first to

propose a search for PNC effects in magnetic-resonance ex-

periments on chiral molecules. Barra et al. independently

proposed and explored this possibility in the context of NMR

in a series of papers.
13–15

They formulated both the theory

within the relativistic �R� and the nonrelativistic �NR� frame-

work and performed the first calculations using a relativisti-

cally parametrized extended Hückel method. Since their pio-

neer work only very recently have a few theoretical ab initio

studies
16–18

been published.

A reinvestigation of this problem by an ab initio ap-

proach has been deemed necessary since the semiempirical

extended Hückel method used by Barra et al.
13,14

is known to

underestimate PNC energy differences by about an order of

magnitude. Independently Laubender and Berger
16

and Son-

cini et al.
17

have published the first ab initio calculations of

PNC NMR shielding constants—both of them in a NR for-

malism without the inclusion of spin-orbit coupling.

Laubender and Berger
16

have studied the chiral series H2X2

�X= 17O, 33S, 77Se� and 2-fluorooxirane. Soncini et al.
17

have

reported a NR formalism by calculating the PNC contribu-a�
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tions for H2
33S2 and m-1,2 dithiin, presenting expressions for

both diamagnetic and paramagnetic contributions to the

NMR shielding tensor. Recently, Weijo et al.
18

have reported

a study of PNC contributions to the �isotropic� NMR shield-

ing constants and indirect spin-spin coupling constants in

chiral halomethanes at the level of Hartree-Fock and density-

functional theory. They have shown significant effects of

electron correlation on the PNC contributions.

The recent publications of other groups
16–18

conclude

with negative results in the sense that the calculated PNC

contributions are several orders of magnitude below the

present resolution in NMR spectroscopy.
11

However, they

suggest, as did the results of Barra et al.
13–15

that such effects

may indeed be observable for molecules containing heavy

elements.This has motivated us to pursue the development of

this theoretical methodology by extending it to a four-

component relativistic framework which offers a solid theo-

retical basis for the treatment of heavy-element compounds

and which is found to be very successful in the calculations

of PNC energy differences in the infrared spectra.
19–22

This

will make it possible to verify the scaling of the PNC con-

tribution with respect to the nuclear charge for a series of

homologous molecules. This Z scaling �Z is the number of

protons� is expected
16

to be much smaller for the PNC NMR

shielding constants �Z2–Z4� compared with PNC energy dif-

ferences �Z5–Z6�. We shall see that this is not the case.

Here we present a systematic four-component relativistic

study of the PNC contribution to the �isotropic� NMR shield-

ing constants of chiral molecules for the P enantiomers of

the series H2X2 �X= 17O, 33S, 77Se, 125Te, 209Po� using a lin-

ear response approach at the Hartree-Fock level. We will

give the Hamiltonian employed in this study as well as its

nonrelativistic limit �NRL� and compare our results with the

work of other authors
16

and demonstrate where a NR treat-

ment is justified as well as its limitations. At several points

we will emphasize various approximations usually intro-

duced in the derivation of the Hamiltonian. The spin-orbit

coupling is naturally included in a four-component relativis-

tic framework—we will assess its effect by deleting the

quaternion imaginary parts of matrix representations of the

modified Dirac equation and property gradients as described

in Refs. 23 and 24, respectively.

The chosen set of molecules is not suitable for the ex-

perimental search of PNC effects due to stereomutation as

already pointed out in Ref. 16. However, this model set is

very well studied from the theoretical point of view and is

ideal for a systematic calibration of our implementation

which we expect to be valuable for future search of suitable

candidates for the experimental determination of PNC effects

in NMR spectra.

II. FORMALISM

The Hamiltonian employed in this study �1� for the elec-

troweak neutral-current interaction between electrons and

nuclei can be derived from the V-A �vector electron minus

axial vector nucleus� Fermi coupling neglecting the momen-

tum transfer between the electrons and the nuclei and con-

sists of nuclear spin-independent �ĥi
PNC� and nuclear spin-

dependent one-electron terms �ĥI,i
PNC� �1�. SI-based atomic

units are used throughout.

ĤPNC = �
i

�ĥi
PNC + ĥI,i

PNC�

=
GF

�2
�
i,A

	1

2
Qw,A�5�A�ri� − �A

��1 − 4 sin2 �W�� · IA�A�ri�
 . �1�

Here the indices i and A run over all electrons and nuclei,

respectively, GF=2.222 54·10−14Eha0
3 is the Fermi coupling

constant, Qw,A=ZA�1−4 sin2 �W�−NA is the weak nuclear

charge with ZA and NA representing the number of protons

and neutrons in nucleus A, respectively, and sin2 �W

=0.2319 is the employed Weinberg parameter �the most re-

cent value is sin2 �W=0.2397�13� �Ref. 25��.
�5 is one of the Dirac matrices �2� with 12�2 being the

2�2 identity matrix,

�5 = �02�2 12�2

12�2 02�2

�, � = �02�2 �

� 02�2

� . �2�

�A is the normalized nuclear charge density, and �A a

nucleus-dependent parameter close to unity.
9,26,27

� is given

in Eq. �2� with � being the Pauli spin matrices in the stan-

dard representation. Finally, IA is the spin of nucleus A. This

is only an approximation to the �unknown� nuclear spin den-

sity distribution. In the case of a positive experimental mea-

surement the theoretical PNC contribution could be used to

reveal or to verify various nuclear spin or charge density

distribution models �see, e.g., Ref. 28 and references

therein�. A more detailed discussion of the above operator is

found in Ref. 9.

In this paper we will consider only the nuclear spin-

dependent terms ĥI,i
PNC and defer the possible effect of the first

term ĥi
PNC to a later publication. We therefore set ĤPNC


 ĤI
PNC and obtain our final expression �3� by replacing the

nuclear spin by the nuclear magnetic moment MA=�AIA,

where �A is the magnetogyric ratio of nucleus A,

ĤPNC 
 ĤI
PNC

= −
GF�1 − 4 sin2 �W�

�2
�
i,A

	 1

�A

� · MA�A�ri�
 . �3�

For comparison with the work of Laubender and Berger
16

we

have set the nucleus-dependent parameter �A
1.0. The con-

tribution of the nuclear anapole moment
29

to the PNC shield-

ings has been neglected as well.

For later discussion it will be instructive to consider the

NRL of Eq. �3�. We employ the NRL of the small component

bispinor,

lim
c→�

c��S� =
1

2m
�� · p���L� , �4�

in conjunction with the Dirac identity,
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�� · P��� · Q� = P · Q + i� · �P � Q� , �5�

for arbitrary vectors P and Q to obtain

����� · MA�A�ri�����

= ��L��� · MA�A�ri����
S� + ��S��	 · MA�A�ri����

L�

=
1

2mc
���L��� · MA�A�ri���� · p���L� + ��L��� · p�

��� · MA�A�ri����
L�� . �6�

The NRL can then be expressed as

lim
c→�

cĤPNC = −
GF�1 − 4 sin2 �W�

2�2m

��
i,A

1

�A

�MA · �pi,

3�riA��+

− 2i�si � MA� · �pi,

3�riA��� . �7�

Here we have also made the transition from a finite nucleus

density �A�ri� to a point nucleus contact interaction described

by the Dirac distribution 
3�riA� with riA=ri−rA. s=� /2 de-

notes the electron spin, c the speed of light, �¯� the com-

mutator, and �¯�+ the anticommutator.

The nuclear magnetic shielding is defined as the second

derivative of the energy with respect to the nuclear magnetic

moment MA and the external uniform magnetic field B at

zero perturbation strength:

	A,�� = � �2E�MA,B�

�MA,��B�

�
MA=0,B=0.

�8�

At the four-component relativistic level the operator associ-

ated with an external magnetic field is usually chosen as

ĥB = −
c

2
B · �

i

�� � riG� with riG = ri − rG, �9�

where rG is the gauge origin. The PNC contribution to the

NMR shielding tensor is thereby given by the linear response

function

	A,��
PNC =

GF�1 − 4 sin2 �W�

2�A
�2c0

���c���A�ri�� ;c�� � riG����
=0.

�10�

In Eq. �10� two different c appear �c and c0�. By varying

c→� the fixed c0�137.036 a.u. guarantees the NRL em-

ployed in the literature. We will make use of this technique

later in this article. Note, however, that in the strict NRL the

PNC contribution �as well as the shielding itself� is zero, as

discussed in Ref. 24.

The static linear response function ��ĤA ; ĤB��
=0 is con-

structed from property gradients E
A

�1�
and E

B

�1�
according to

��ĤA;ĤB��
=0 = − EA
�1�†�E0

�2��−1EB
�1�, �11�

where E
0

�2�
is the electronic Hessian. In practice the explicit

evaluation of E
0

�2�
is computationally too demanding and the

linear response function is constructed by first solving the

response equation

E0
�2�XB�
� = − EB

�1� �12�

by expanding the solution vector XB �12� in trial vectors,

followed by contraction of XB with the property gradient

E
A

�1�
.
30

We will not show in detail how relativistic effects can be

eliminated in a four-component formalism using the spin-

free modified Dirac or the Lévy-Leblond Hamiltonian as this

has been done elsewhere.
24

III. COMPUTATIONAL DETAILS

All calculations have been carried out at the Hartree-

Fock level using a development version of the DIRAC

code.
31

The molecules H2X2 �X= 17O, 33S, 77Se, 125Te, 209Po�
have been investigated at various dihedral angles with the

bond lengths and H-X-X angles kept fixed and taken from

Refs. 16 and 32 for comparison. The X2 unit was aligned

along the y axis with the dihedral angle bisected by the yz

plane. We have used both �contracted� aug-cc-pV�D, T, Q�Z
basis sets for H, O, S, and Se as well as the even-tempered

basis sets developed by Laerdahl and Schwerdtfeger
32

for O,

S, Se, Te, and Po together with uncontracted aug-cc-pVDZ

for H. The even-tempered parent set consists of 26 expo-

nents. We will denote these basis sets as “s . p .d . f” where s,

p, d, and f represent the subsets with the respective angular

momenta.

The gauge origin has been placed at the center of the

nucleus under study �O, S, Se, Te, Po�. A Gaussian charge

distribution has been chosen as the nuclear model for the

Dirac-Coulomb and the spin-free calculations using the rec-

ommended values of Ref. 33. For comparison with the NR

calculations by Laubender and Berger
16

point-charge nuclei

have been used for the Lévy-Leblond calculations �wave

function and response� unless otherwise indicated. The small

component basis set for the calculations based on the Dirac-

Coulomb Hamiltonian has been generated using separately

unrestricted kinetic balance �UKB� and restricted kinetic bal-

ance �RKB�, respectively, for comparison with the spin-free

results. In the Dirac-Coulomb and the spin-free calculations

the �SS�SS� integrals have been eliminated in both the self-

consistent field �SCF� and the linear response part. Their

contribution to energies has been modeled by classical Cou-

lombic repulsion of small component atomic charges.
34

The

response equation �12� has been solved with respect to the

property gradient associated with the external magnetic field

B. Rotations between positive and negative-energy solutions

have been suppressed within the linear response module.

This approximation implies neglecting the diamagnetic con-

tribution as discussed in Ref. 35. In the nonrelativistic limit

the diamagnetic contribution to the PNC shielding constant

is zero, as shown by Soncini et al.
7

We find that the inclusion

of these rotations alters, for instance, the PNC contribution to

the NMR shielding constant of 77Se only by 1.3% �at the

dihedral angle of 45°�. The corresponding number for 209Po

is 0.008%. A tight convergence of the response vector is,

however, very important. We have used the value 1.0

�10−9 as threshold for the ratio of norms between the re-

sidual and property gradient vectors.
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IV. RESULTS AND DISCUSSION

We have tested our implementation by calculating the

PNC contribution to the �isotropic� NMR shielding constants

for the nuclei X= 17O, 33S, 77Se, 125Te, and 209Po in the P

enantiomers of H2X2 for the dihedral angle of 45° at the

Hartree-Fock level. These results are reported in Table I. The

PNC contribution is studied using the Dirac-Coulomb �DC�
Hamiltonian, the spin-free modified Dirac Hamiltonian, and

the Lévy-Leblond Hamiltonian.

The choice of the basis sets deserves a detailed discus-

sion. In Table I results for two different classes of basis sets

are reported. We have used aug-cc-pV�D, T, Q�Z basis sets

�using their original contraction scheme� in the first instance

for comparison with the work of Laubender and Berger.
16

We

confirm their observation that these basis sets are not con-

verged without the inclusion of high-exponent p functions

�results not shown here�. For four-component relativistic cal-

culations of H2
33S2 and its heavier homologs these basis sets

are qualitatively inappropriate. Rather than correcting these

basis sets by liberating or adding high exponents to the sets,

we have chosen even-tempered basis sets with a common

parent set as our reference. These even-tempered basis sets

are unbiased and have a greater flexibility in the core s and p

regions which in practice makes them superior to aug-cc-

pVNZ basis sets for this type of calculation. Somewhat to

our surprise we have found that the PNC NMR shieldings

are not converged with the even-tempered basis sets devel-

oped by Laerdahl and Schwerdtfeger
32

and that, in particular,

the inclusion of polarizing f functions is important. A repre-

sentative series of results for H2
77Se2 obtained during the

basis set optimization for Se is given in Table II. The basis

sets for the other elements have been obtained in a similar

fashion. They can be considered very close to the basis set

limit within Hartree-Fock.

For the DC calculations two values are given �UKB and

RKB� for each combination of molecule and basis set. The

generation of the small component basis set is usually real-

ized by RKB which is based on the nonrelativistic limit of

the coupling between the large and small components �4�.
Introducing an external vector potential A alters, however,

the coupling of large and small components and requires

“magnetic balance”
35

such that the use of a modest basis set

generated using RKB may lead to substantial errors for NMR

shieldings.
36

This can be corrected by applying UKB, which

considers the three components of the linear momentum p

separately and thus provides more flexibility to ensure that

the correct coupling can be attained. The difference between

UKB and RKB is known to decrease with increasing quality

of the basis set. We observe identical results for the best

performing even-tempered basis sets for UKB and RKB.

For hydrogen going beyond uncontracted aug-cc-pVDZ

is not needed. This to some extent indicates the rather atomic

nature of this property. Analysis of the linear response func-

tions contributing to the PNC NMR shielding constant for
77Se in H2Se2 shows that they are dominated by orbital ro-

tations between highest occupied molecular orbital

�HOMO�-lowest unoccupied molecular orbital �LUMO�
Kramer’s partners. Following the projection analysis de-

scribed in Ref. 37, the relevant molecular orbitals �k
mol may

TABLE I. PNC NMR shielding constant �in ppm� of the nuclei X= 17O, 33S, 77Se, 125Te and 209Po in the P enantiomers of H2X2 for the dihedral angle of 45°.

DC denotes the Dirac-Coulomb Hamiltonian, UKB and RKB the application of unrestricted and restricted kinetic balance, respectively, SF the use of the

spin-free modified Dirac Hamiltonian, and LL the use Lévy-Leblond Hamiltonian. PC denotes a point-charge model for the nucleus.

Basis set DC�UKB� DC�RKB� SF LL�PC�

H2
17O2 aug-cc-pVDZ 3.832�10−9 4.913�10−9 3.968�10−9 3.979�10−9

aug-cc-pVTZ 4.458�10−9 4.466�10−9 4.616�10−9 4.600�10−9

aug-cc-pVQZ 4.913�10−9 4.926�10−9 5.090�10−9 5.067�10−9

1-25.2-26.20-24.20-24 6.064�10−9 6.064�10−9 6.229�10−9 6.121�10−9

H2
33S2 aug-cc-pVDZ −6.348�10−8 −6.460�10−8 −7.011�10−8 −7.100�10−8

aug-cc-pVTZ −7.187�10−8 −7.351�10−8 −7.948�10−8 −8.036�10−8

aug-cc-pVQZ −7.235�10−8 −7.525�10−8 −8.141�10−8 −8.215�10−8

1-25.2-26.20-24.20-24 −9.977�10−8 −9.977�10−8 −1.049�10−7 −9.748�10−8

H2
77Se2 aug-cc-pVDZ −2.367�10−8 −2.403�10−8 −1.438�10−7 −1.652�10−7

aug-cc-pVTZ −2.674�10−8 −2.803�10−8 −1.725�10−7 −1.797�10−7

aug-cc-pVQZ −2.172�10−8 −2.573�10−8 −1.883�10−7 −1.866�10−7

1-25.2-26.15-25.20-24 1.255�10−8 1.255�10−8 −2.719�10−7 −2.005�10−7

H2
125Te2 1-25.2-26.15-25.19-25 −1.295�10−6 −1.295�10−6 6.128�10−7 3.146�10−7

H2
209Po2 1-25.2-26.12-25.15-24 1.277�10−3 1.246�10−3 −5.246�10−6 −9.953�10−7

TABLE II. Basis-set dependence of the Dirac-Coulomb unrestricted kinetic

balance PNC NMR shielding constant �in ppm� of the nucleus 77Se in the P

enantiomer of H2Se2 for the dihedral angle of 45°. The basis set 1-25.2-

26.15-25.20-24 has been chosen for further calculations.

Basis set

1-25.2-26.15-25 3.156�10−8

1-25.2-26.15-25.21-23 1.224�10−8

1-25.2-26.15-25.20-24 1.255�10−8

1-25.2-26.15-25.19-25 1.252�10−8

1-25.2-26.13-25.21-23 1.223�10−8

1-25.2-26.15-26.21-23 1.221�10−8
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be decomposed into orbitals �i
A calculated for each constitu-

ent atom according to

��k
mol� = �

i,A

��i
A�cik

A + ��k
pol� , �13�

where �k
pol is a polarization contribution which by definition

is strictly orthogonal to the chosen reference atomic orbitals.

Individual gradient elements of a property operator �̂

may then be decomposed into intra- and interatomic contri-

butions, e.g.,

��HOMO��̂��LUMO� = �
i,A

�
j,B

ciA
*

c jB��iA��̂�� jB�

+ polarization. �14�

We find that the HOMO-LUMO gradient elements of the

nuclear spin-dependent PNC operator �3� are dominated by

intra-atomic contributions �A=B above� from the selected Se

center, in particular, the Se 4p1/2 atomic orbitals coupling

with Se 4s1/2 and inner Se s1/2 atomic orbitals. The atomic

character of the gradient elements can be rationalized from

the presence of the nuclear charge density �Se in the operator

which restricts integration to a small volume around the se-

lected Se center. Perhaps somewhat less intuitive is the ob-

servation that the gradient elements of the property operator

�9� associated with the external magnetic field are dominated

by intra-atomic contributions as well, but this is readily un-

derstood by the presence of Dirac � matrices in the operator

coupling large and small components. Due to the atomic and

very local nature of the small components the gradient ele-

ments are almost exclusively restricted to intra-atomic con-

tributions, but this time from all centers. We find that the

property gradient elements are dominated by intra-atomic

coupling of 4p3/2 orbitals on the two Se centers. Note, how-

ever, that gradient elements coupling occupied positive-

energy solutions to virtual negative-energy solutions will

have a completely different character since the “small” com-

ponents of negative-energy solutions are in fact large and

delocalized.

Analyzing the values given in Table I we state that our

Lévy-Leblond results are in excellent agreement with the NR

results reported by Laubender and Berger,
16

except that the

latter authors have consistently the wrong sign in their

results.
38

The Lévy-Leblond PNC contributions are through-

out largest in magnitude for the even-tempered basis sets and

larger than the best �modified 5Z� basis sets used in Ref. 16

�results not shown here�. In the previous nonrelativistic stud-

ies �Refs. 16–18� the electron spin-dependent term of the

nonrelativistic PNC operator �second term in Eq. �7�� was

omitted. By selectively deleting the spin-dependent terms of

the corresponding property operator we have been able to

investigate the validity of this approximation and indeed find

no PNC contribution from this term. For the NR treatment of

H2
77Se2 we have furthermore examined the difference be-

tween a point-charge model and a Gaussian model for the

nucleus �Table III�. The difference is less than 1%.

Table III shows results for the nuclei X= 17O, 33S, 77Se,
125Te, and 209Po in H2X2 for various dihedral angles. Only

the results for the even-tempered basis sets are given. The

PNC NMR shielding constant is bound to be zero at the

dihedral angles of 0° and 180° due to mirror symmetry. The

sinusoidal trait for the dihedral angles between 0° and 180°

is typical and well known also for PNC energy differences or

optical rotation. The zero crossing is usually found near 90°.

A direct comparison of the DC �UKB� and the Lévy-

Leblond results in Table I shows that relativistic effects are

negligible for H2
17O2 �6.064�10−9 ppm R versus 6.121

�10−9 ppm NR�. Also for H2
33S2 the inclusion of relativity

is not necessary for qualitative results. The deviation is only

TABLE III. PNC NMR shielding constants �in ppm� of the nuclei X= 17O, 33S, 77Se, 125Te, and 209Po in the P enantiomers of H2X2 for various dihedral angles.

DC denotes the Dirac-Coulomb Hamiltonian, UKB the application of unrestricted kinetic balance, and LL the use of the Lévy-Leblond Hamiltonian. PC

denotes a point-charge model and GM a Gaussian model for the nucleus. The basis sets are 1-25.2-26.20-24.20-24 for O, 1-25.2-26.15-25.20-24 for S and Se,

1-25.2-26.15-25.19-25 for Te, and 1-25.2-26.12-25.15-24 for Po.

30° 45° 60° 90° 120° 150°

H2
17O2

DC�UKB� 5.306�10−9 6.064�10−9 5.219�10−9 1.634�10−10 −4.812�10−9 −4.888�10−9

LL�PC� 5.355�10−9 6.121�10−9 5.272�10−9 1.652�10−10 −4.912�10−9 −5.023�10−9

H2
33S2

DC�UKB� −8.336�10−8 −9.977�10−8 −9.532�10−8 −3.977�10−8 2.477�10−8 3.806�10−8

LL�PC� −8.251�10−8 −9.748�10−8 −9.170�10−8 −3.533�10−8 2.884�10−8 4.158�10−8

H2
77Se2

DC�UKB� 4.690�10−8 1.255�10−8 −3.458�10−8 −9.935�10−8 −1.502�10−7 −1.738�10−7

LL�GM� −1.694�10−7 −1.993�10−7 −1.841�10−7 −5.595�10−8 8.602�10−8 1.091�10−7

LL�PC� −1.704�10−7 −2.005�10−7 −1.852�10−7 −5.629�10−8 8.653�10−8 1.098�10−7

H2
125Te2

DC�UKB� −1.420�10−6 −1.295�10−6 −8.249�10−7 3.879�10−7 1.590�10−6 2.008�10−6

LL�PC� 2.675�10−7 3.146�10−7 2.915�10−7 9.472�10−8 −1.250�10−7 −1.640�10−7

H2
209PO2

DC�UKB� −7.244�10−4 1.277�10−3 3.043�10−4 −3.086�10−6 −3.395�10−4 5.709�10−4

LL�PC� −8.694�10−7 −9.953�10−7 −9.422�10−7 −3.130�10−7 3.932�10−7 5.248�10−7
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2% �−9.977�10−8 ppm R versus −9.748�10−8 ppm NR�.
For H2Se2 and its heavier homologs on the other hand the

discrepancy is evident. For these systems an appropriate in-

clusion of relativistic effects is substantial even for a quali-

tative treatment. For 77Se, 125Te, and 209Po a relativistic treat-

ment even changes the sign of the PNC NMR shielding

constant at several dihedral angles, as seen in Table III. More

insight can be gained by looking at the individual diagonal

components of the PNC NMR shielding tensor, as shown for

H2
77Se2 for the dihedral angle of 45° in Table IV. For all

Hamiltonians the xx and zz components have opposite signs.

The smaller yy component changes sign upon inclusion of

spin-orbit interaction, but scalar relativistic effects are non-

negligible as well.

In Fig. 1 we trace the PNC NMR shielding constant

	PNC, as well as 	yy
PNC and �	xx

PNC+	zz
PNC� /2 of 77Se in H2Se2

for the dihedral angle of 45°, at variable speeds of light c and

with or without the inclusion of spin-orbit coupling. At large

values of c the components go smoothly into the NR result.

The spin-free results are negative for all values of c and

decrease significantly for small values of c. However,

this effect is completely quenched by a dramatic spin-orbit

effect of opposite sign under ultrarelativistic conditions

�c�c0�137.036 a.u.�. We indeed observe for 209Po that

whereas scalar relativistic effects alter the shielding constant

from −9.953�10−7 to −5.246�10−6 ppm, spin-orbit cou-

pling amplifies the value by three orders of magnitude to

1.277�10−3 ppm. This corresponds to a line splitting of

about 30 mHz at a magnetic field of 1 T. This difference is

larger than the maximal theoretical resolution of 6 mHz

given in Ref. 11. We will in a future publication elucidate

these mechanisms by means of projection analysis.

The opposing trends of scalar relativistic and spin-orbit

effects make it difficult to extract an overall scaling of the

PNC NMR shielding constant with respect to nuclear charge

Z. Table V shows the PNC contributions to the reduced �iso-

tropic� NMR shielding constants �A	A
PNC for the different

nuclei as well as their Z scaling with respect to H2O2. The

observed scaling may be compared with the predictions of

Gorshkov et al.
12

based on atomic order of magnitude esti-

mates. Our values confirm the predicted NR Z-scaling law 2

�here 2.4� which was also observed by Laubender and

Berger.
16

Scalar relativistic effects provide significant en-

hancement, scaling as Z4.7. For the heavier elements the PNC

NMR shielding constants are, however, completely domi-

nated by the large spin-orbit contribution, of opposite sign.

According to Gorshkov et al.
12

the spin-orbit contribution

should scale as Z4. We indeed observe this scaling for H2S2,

but for the heavier elements the scaling is even more impor-

tant, rising to Z7.1 for polonium. We believe that this signals

the onset of second-order spin-orbit effects, not taken into

account in the estimates of Gorshkov et al.
12

and known to

lead to dramatic effects on bond lengths in molecules con-

taining superheavy elements �see, for instance, Ref. 39�. We

will investigate this effect closer in a forthcoming study.

V. CONCLUSION

We have studied the importance of relativistic effects

on the calculation of the PNC contribution to the �isotropic�

FIG. 1. Dependence of the PNC NMR shielding constant �in ppm� of the

nucleus 77Se in the P enantiomer of H2Se2 for the dihedral angle of 45° on

the speed of light c �in a.u.�. The symbols ��, �, and �� represent the

average trace 	PNC= �	xx
PNC+	yy

PNC+	zz
PNC� /3, 	yy

PNC, and �	xx
PNC+	zz

PNC� /2,

respectively. The vertical dashed line represents the true speed of light

c0�137 a.u.; the horizontal dashed line shows the nonrelativistic limit

�−1.993�10−7 ppm�.

TABLE IV. Components 	ii
PNC of the PNC NMR shielding tensor �in ppm�

of the nucleus 77Se in the P enantiomer of H2Se2 for the dihedral angle of

45°. DC denotes the Dirac-Coulomb Hamiltonian, UKB the application of

unrestricted kinetic balance, SF the use of the spin-free modified Dirac

Hamiltonian, and LL the use of the Lévy-Leblond Hamiltonian, PC denotes

a point-charge model for the nucleus.

DC�UKB� SF LL�PC�

xx −2.094�10−6 −1.830�10−6 −1.310�10−6

zz 1.908�10−6 1.220�10−6 8.766�10−7

xx+zz −1.867�10−7 −6.105�10−7 −4.330�10−7

yy 2.244�10−7 −2.052�10−7 −1.686�10−7

TABLE V. Reduced PNC NMR shielding constants �A	A
PNC=�A�	A,xx

PNC+	A,yy
PNC+	A,zz

PNC� /3 �in 10−6 a.u.� of the

nuclei X=O, S, Se, Te, and Po in the P enantiomers of H2X2 for the dihedral angle of 45°. Z is the number of

protons, LL denotes the use of the Lévy-Leblond Hamiltonian, SR is the contribution of scalar relativity

�SF-LL�, and SO the effect of spin -orbit coupling �DC-SF�. The numbers in parenthesis give the Z-scaling

exponent with respect to H2O2.

Z LL SR SO SR+SO

8 −1.263�10−12 −2.228�10−14 3.404�10−14 1.176�10−14

16 −1.139�10−11 �3.2� −8.672�10−13 �5.3� 5.996�10−13 �4.1� −2.677�10−13

34 −5.842�10−11 �2.6� −2.081�10−11 �4.7� 8.289�10−11 �5.4� 6.208�10−11

52 −1.522�10−10 �2.6� −1.443�10−10 �4.7� 9.232�10−10 �5.5� 7.789�10−10

84 −4.188�10−10 �2.5� −1.788�10−09 �4.8� 5.395�10−07 �7.1� 5.377�10−07
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NMR shielding constants for the nuclei X

= 17O, 33S, 77Se, 125Te, and 209Po in H2X2 at the Hartree-Fock

level. Comparing the results obtained within the Dirac-

Coulomb formalism and approximate frameworks with ei-

ther spin-orbit effects or all relativistic effects eliminated it

has been observed that spin-orbit effects are substantial even

for a qualitative treatment already for H2
77Se2, causing a sign

change of the PNC contribution. This dramatic difference

will be subject of a detailed analysis in a forthcoming paper

where also correlation effects will be addressed. One may

also consider the extension of the Dirac-Coulomb Hamil-

tonian by the Gaunt or Breit, thus introducing spin-other or-

bit coupling which may dampen the spin-orbit effect.

We have shown that the relativistic enhancement

factor
40,41

scales approximately as Z2 or higher, hence the

overall Z scaling is much higher than previously anticipated.

This scaling raises the hope for detecting parity violation

effects in NMR properties of chiral molecules including

heavy elements. Possible candidates are nuclei with nuclear

spin I=1/2 to avoid large line-broadening effects from

nuclear quadrupole coupling. Promising isotopes are there-

fore 187Os,
42 183W, 117Sn, and 119Sn as chiral centers. A sec-

ond possibility is to attach a heavy nucleus to a chiral center

containing a light atom. Here the single center theorem of

Hegstrom et al.
43

could enhance PNC effects in NMR prop-

erties.

We aim to apply the presented methodology for the

study of more realistic systems. These are often considerably

larger than the presented set of molecules which might re-

quire the use of more efficient �two-component� Hamilto-

nians. While the NMR technique seems to impose more ex-

perimental boundary conditions than high-resolution infrared

spectroscopy experiments
11

it offers a possibly complemen-

tary approach for the first experimental verification.
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We examine the quantum chemical calculation of parity-violating �PV� electroweak contributions to

the spectral parameters of nuclear magnetic resonance �NMR� from a methodological point of view.

Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated

for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis

set and the treatment of electron correlation, as well as the effects of special relativity, are studied.

All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the

electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory �DFT�
results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the

PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row

elements, special relativity is of importance for the PV NMR properties, shown here by comparing

perturbational one-component and various four-component calculations. In contrast to what is found

for nuclear magnetic shielding, the choice of the model for nuclear charge distribution—point

charge or extended �Gaussian�—has a significant impact on the PV contribution to the spin-spin

coupling constants. © 2007 American Institute of Physics. �DOI: 10.1063/1.2436886�

I. INTRODUCTION

Energy differences between two enantiomers of chiral

molecules caused by the parity-violating �PV� electroweak

neutral current have been studied theoretically for 20 years.

Since the early semiempirical studies,
1

computational meth-

ods have improved greatly. One-particle basis sets, inclusion

of electron correlation, and the use of relativistic approaches

have had a significant impact on the theoretical predictions.

For instance, in the H2O2 molecule, the estimated PV energy

difference has increased by almost two orders of magnitude

from the first nonrelativistic �NR� ab initio studies
2

to mod-

ern nonrelativistic and relativistic coupled-cluster �CC� and

multiconfigurational calculations.
3–6

Parity-violating effects in nuclear magnetic resonance

�NMR� spectral parameters,
7

that is, nuclear shielding and

indirect spin-spin coupling, have also gained interest over the

years. After the pioneering studies by Barra et al.
8,9

there has

been a resurgence of interest.
10–12

These studies have been

performed at the NR level and only the Hartree-Fock �HF� or

density-functional theory �DFT� methods were used. While

certain exchange-correlation functionals, such as hybrid

B3LYP, reproduce quite well the CC results for PV energy

differences,
6

it is not a priori certain whether present-day

DFT is generally sufficient for treating electron correlation in

PV contributions to other properties. For example, DFT and

second-order perturbation theory give clearly different esti-

mates on the contribution to the C–F stretching mode in

CHFClBr.
13

A four-component relativistic study
14

found a

significant difference between NR and relativistic PV NMR

calculations in molecules containing third-row elements, in

agreement with expectations based on PV energy differ-

ences. Very recently, a combined study of electron correla-

tion and basis-set effects in dihedral molecules was pub-

a�
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lished by Laubender and Berger.
15

They calculated PV

contributions to nuclear shielding using CC and complete

active space self-consistent field �CASSCF� methods, as well

as DFT for H2O2, H2S2, and H2Se2 molecules.

In this paper we systematically investigate all three as-

pects of quantum chemical calculations: the one-electron ba-

sis set, the choice of the Hamiltonian, and the N-electron

model. Within the NR framework, three families of Dun-

ning’s correlation-consistent basis sets are benchmarked and

the effects of electron correlation are systematically investi-

gated using the HF method, two CC models, as well as DFT

with both generalized gradient approximation and hybrid

exchange-correlation functionals. Calculations are carried

out for three dihedral molecules, H2O2, H2S2, and H2Se2.

Our NR results are in line with the previous studies
10,11,15

concerning PV contributions to the nuclear shielding, al-

though our dihedral angles are different and DFT methods

are benchmarked here more extensively. The effect of special

relativity is studied by performing one-component calcula-

tions based on the Breit-Pauli Hamiltonian
12

as well as four-

component calculations based on the Dirac-Coulomb �DC�
Hamiltonian, with and without spin-orbit �SO� coupling.

14

We further investigate the effect of the nuclear charge distri-

bution by comparing point-charge and extended �Gaussian�
models.

II. THEORY

A. Four-component relativistic parity-violating
Hamiltonian

The four-component relativistic calculations are based

on the Hamiltonian that describes the electroweak neutral-

current interaction between electrons and nuclei,

HPV = −
GF

�2
�1 − 4 sin2 �W��

i,K

��K

�K

� · MK�K�ri�� , �1�

where the indices i and K run over all electrons and nuclei,

respectively. GF=2.222 54�10−14 a.u. is the Fermi coupling

constant, sin2 �W=0.2319 is the Weinberg parameter, and �

are the well-known 4�4 Dirac matrices. For comparison

with previous studies of PV NMR effects, we have set the

nucleus-dependent parameters �K	1.0. For experimental

predictions, these factors could be approximated and the re-

sults scaled accordingly. �K, MK, and �K�ri� are the magne-

togyric ratio, the nuclear magnetic moment, and the normal-

ized nuclear charge density of nucleus K, respectively.

In the formalism of response theory,
16

the elements of

the PV contribution to the nuclear shielding tensor are given

by the linear response function

�K,��
PV =

1

�K

GF	

2�2
�1 − 4 sin2 �W�

�c���K�r��;c��

� rO����
=0, �2�

with rO=r−O. The first operator in Eq. �2� corresponds to

the PV interaction and the second is the relativistic Zeeman

operator. The gauge origin O is placed at the nucleus under

study �O	rK�. We have introduced the fine structure con-

stant 	=1/c0 such that when varying the speed of light c

→�, the fixed c0�137.036 a.u. guarantees the correct non-

relativistic limit employed in the literature.

The PV contribution to the indirect spin-spin coupling

between the nuclei K and L can be cast within the linear

response theory framework in the form

JKL,��
PV =

1

2�

GF	3

�2
�1 − 4 sin2 �W��RKL,�� + RLK,��� , �3�

with

RKL,�� = �L

�c���K�r��;
�� � rL��

rL
3 ��


=0

. �4�

Here, the latter operator in the linear response function is the

relativistic hyperfine interaction in the approximation of

pointlike distribution of the magnetic moment of nucleus L.

It is possible to eliminate either all relativistic effects
17

or, exclusively, the SO interaction within the four-component

framework.
18,19

This is useful for the discussion and for mak-

ing the distinction between scalar relativistic effects and SO

coupling using the same basis set. Reference 20 contains a

discussion on the separation of scalar relativistic and SO ef-

fects.

B. Perturbational one-component treatment

1. Leading-order contributions

At the nonrelativistic limit, the leading-order PV contri-

butions to NMR shielding and coupling constants are ob-

tained from the nuclear-spin-dependent part of the two-

component PV Hamiltonian,
1,12,21

HK
PV�2� = �

�

hK,�
PV�2�

IK,�,

hK,�
PV�2� = −

GF	

2�2
�K�1 − 4 sin2 �W��

i

�− i�i,�,
�riK��+, �5�

where the anticommutator �A ,B�+=AB+BA appears and IK

is the nuclear spin operator. The operator �5� can be com-

bined with the relevant magnetic operators for the calcula-

tion of PV contributions to NMR parameters. The leading-

order PV contribution to the isotropic nuclear shielding

constant �K
PV=Tr �K

PV /3 can be expressed as a linear re-

sponse function
8,12

�K,��
PV =

1

�K



hK,�
PV�2�;hB0,�

OZ ��
=0, �6�

where

HB0

OZ = �
�

hB0,�
OZ

B0,� �7�

is the NR orbital Zeeman interaction, with

hB0,�
OZ =

1

2
�

i

�iO,�, �8�

where �iO is the angular momentum operator of electron i

with respect to the gauge origin. According to Soncini et al.
10

Eq. �6� covers the leading-order contribution if the gauge

origin is placed at the nucleus in question.

074107-2 Weijo et al. J. Chem. Phys. 126, 074107 �2007�
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PV contributions to the indirect spin-spin coupling con-

stant JKL
PV=Tr JKL

PV /3 can also be written as linear response

functions. The leading-order correction is a combination of

the orbital hyperfine paramagnetic nuclear spin-electron orbit

�PSO� operator,
8,12

HK
PSO = �

�

IK,�hK,�
PSO, hK,�

PSO = 	2�K�
i

�iK,�

riK
3 , �9�

and the PV term in Eq. �5�, giving rise to

JKL,��
PV =

1

2�
�

hK,�

PV�2�;hL,�
PSO��
=0 + 

hL,�

PV�2�;hK,�
PSO��
=0� .

�10�

Other leading-order contributions do not contribute to the

isotropic part of the tensor.
12

2. Higher-order contributions to shielding

The operator combinations that lead to beyond-leading-

order relativistic PV contributions within the Breit-Pauli

framework have been listed for nuclear shielding and indi-

rect spin-spin coupling in Ref. 12. Some of the higher-order

terms of indirect spin-spin coupling are explicitly divergent

in the approximation of pointlike nuclear magnetic moment,

and some of the contributions to both nuclear shielding and

spin-spin coupling contain divergent operator contributions

such as two delta functions located at the same nucleus.

Strictly speaking, no well-defined values can be found for

these terms at the limit of large uncontracted basis sets.
22

Due to the inherent problems described above, the treat-

ment of higher-order contributions by the perturbational ap-

proach cannot be complete. We presently focus on scalar

relativistic corrections to the PV shielding expression of Eq.

�6� as well as on the SO correction, three terms of a total of

12 in the next-to-leading-order PV contributions.
12

The pres-

ently considered scalar relativistic corrections, namely, mass-

velocity �mv� and one-electron Darwin terms, contribute

through the following quadratic response functions:

�K,��
PV,mv =

1

�K



hK,�
PV�2�;hB0,�

OZ ,hmv��
1=0,
2=0 �11�

and

�K,��
PV,Darwin =

1

�K



hK,�
PV�2�;hB0,�

OZ ,hDarwin��
1=0,
2=0, �12�

where

hmv = −
1

8
	2�

i

�i
2, hDarwin =

�

2
	2�

i,N

ZN
�riN� . �13�

It should be noted that the response functions in both Eqs.

�11� and �12� are, in principle, divergent, but it will be infor-

mative to evaluate their contributions when using contracted,

medium-sized basis sets that cannot fully describe this diver-

gence. The SO effect is included by using the one-electron

field-free spin-orbit operator

h�
SO =

1

4
	2ge�

i,K

ZK

riK
3 si,��iK,�, �14�

where ge is the electron gyromagnetic ratio and si is the

electron spin. It contributes together with the orbital Zeeman

and the electron spin-dependent part of the PV operator
12

HK
PV�3� = �

���

����hK,��
PV�3�

IK,�,

hK,��
PV�3� = i

GF	

�2
�K�1 − 4 sin2 �W��

i

si,��− i�i,�,
�riK��−,

�15�

within the quadratic response function

�K,��
PV,SO =

1

�K
�
��

����

hK,��
PV�3�;hB0,�

OZ ,h�
SO��
1=0,
2=0. �16�

In the above expressions, �	�� is the Levi-Civita symbol.

Some of the other nondivergent response functions resulting

from beyond-leading-order PV contributions
12

were evalu-

ated during the course of the work, but these terms were

found to be insignificant.

III. COMPUTATIONAL DETAILS

A. Geometries

Geometries were optimized at the coupled-cluster

singles and doubles with noniterative triples �CCSD�T��
level of theory with augmented correlation-consistent polar-

ized valence triple-zeta �aug-cc-pVTZ� basis sets
23–25

for H,

O, and S. For Se, the Stuttgart energy-adjusted

pseudopotential
26

with the related aug-cc-pVTZ valence ba-

sis set
27

was used. Equilibrium geometry parameters are de-

tailed in Table I. The available experimental equilibrium ge-

ometries �Ref. 28 for H2O2 and Ref. 29 for H2S2� are listed

for comparison. The computational geometries are in good

agreement with the experiments, as expected at this level of

theory.

B. Perturbational one-component calculations

The isotropic part of perturbational PV contributions to

nuclear shielding and indirect spin-spin coupling were evalu-

ated using the DALTON quantum chemistry program.
30

The correlation-consistent polarized valence

�cc-pVXZ�,23,24
sets augmented with diffuse functions

�aug-cc-pVXZ�, and correlation-consistent polarized

TABLE I. Calculated equilibrium geometries for P-H2X2 �X=O, S, and Se�.
rKL denotes the K-L distance �in a.u.�, 	 the X-X-H angle �deg�, and � the

dihedral angle �deg�. The experimental reference data �Refs. 28 and 29� are

in parentheses.

Molecule rXX rXH 	 �

H2O2 2.761 �2.767� 1.826 �1.824� 99.85 �99.4� 112.16 �111.8�

H2S2 3.938 �3.895� 2.542 �2.536� 97.66 �97.51� 90.79 �90.76�

H2Se2 4.447 2.781 95.770 90.254
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weighted core-valence basis sets
31 �cc-pwCVXZ� were used.

Here X=D, T, Q, 5, and 6 denote double- to hextuple-zeta

basis sets.

The wave-function-based methods used were the

Hartree-Fock self-consistent field method as well as the ap-

proximate coupled-cluster singles and doubles
32 �CC2� and

coupled-cluster singles and doubles �CCSD� models.
33

These

methods form a hierarchy in both systematically increasing

accuracy and computational cost. The PV contributions were

also evaluated with DFT, using the BP86 �Ref. 34 and 35�
and the nonempirical PBE �Ref. 36� functionals that repre-

sent the generalized gradient approximation �GGA�. In addi-

tion, two hybrid functionals were employed: PBE0, which is

constructed from PBE by adding one-fourth of HF

exchange,
37

and the widely used Becke three-parameter hy-

brid functional �B3LYP�.38–40
The gauge origin was placed at

the nucleus in question �17O, 33S, and 77Se� during the cal-

culations of the shielding contributions.

C. Four-component calculations

All four-component computations at the relativistic

Dirac-Coulomb �DC� and spin-free �SF� as well as nonrela-

tivistic Lévy-Leblond �LL� levels were carried out using the

HF self-consistent field of theory with a development version

of the DIRAC code.
41

Even-tempered basis sets were used for O, S, and Se, as

detailed and discussed in Ref. 14. They are based on the

even-tempered family of sets developed by Lærdahl and

Schwerdtfeger.
3

For H we used the uncontracted aug-cc-

pVDZ basis. The basis-set convergence of PV contributions

to nuclear shielding based on the DC Hamiltonian has been

discussed elsewhere,
14

and we will presently only include the

basis-set converged results for the purposes of comparison.

In the DC calculations, the small-component basis set was

generated using unrestricted kinetic balance. In the DC and

SF calculations the �SS
SS� class of two-electron integrals

was eliminated in both the wave function optimization and

linear response phases. Rotations between positive and nega-

tive energy orbitals have been suppressed in the linear re-

sponse module. These approximations have been discussed

earlier.
14

We used the same convergence criteria as in Ref.

14. The common gauge origin in the shielding terms was

placed at the nucleus under study.

A Gaussian charge distribution was chosen as the

nuclear model for the relativistic DC and SF calculations,
42

both in the optimization of the reference wave function and

in the PV operator. For the four-component NR LL calcula-

tions, both point-charge and Gaussian models were used. It

should be noted that the used relativistic hyperfine operator

corresponds to a pointlike nuclear spin distribution regard-

less of the nuclear model employed in the PV operator.

IV. RESULTS AND DISCUSSION

A. Effects of electron correlation

1. Nuclear shielding

The leading-order PV shielding contributions are pre-

sented at the best applicable basis-set levels in Table II. Fig-

ure 1 illustrates the results as functions of the basis set. The

HF results are in line with the earlier NR studies.
10,11,15

These results deviate significantly from those obtained by

correlated methods, however. For H2O2, CC2 and CCSD

produce quite similar results, which are in turn over 25%

larger in magnitude than the HF data. For H2S2 and H2Se2,

the difference is even larger, although this time in the oppo-

site direction: The results of the CC methods are about one-

half of what is obtained at the HF level. There is, however, a

notable difference between CC2 and CCSD; i.e., the full in-

clusion of singles and doubles excitations is important. Of all

the methods employed here, CCSD can be considered to be

the most accurate. Our results are qualitatively similar to

those of the previous study,
15

although it appears that elec-

TABLE II. Effects of electron correlation to the leading-order parity-violating contributions to the nuclear shielding constants �10−10 ppm� and indirect

spin-spin couplings �nHz�. The basis sets used are cc-pwCV5Z for H2O2 and H2S2, as well as cc-pV5Z for H2Se2, unless otherwise noted.

Molecule Property HF CC2 CCSD B3LYP BP86 PBE0 PBE

H2O2 �17O

PV
29.12 37.37 38.08 46.84 52.11 44.02 53.26

1JOH
PV 0.0207 0.0156 0.0181 0.0232 0.0237 0.0227 0.0243

2JOH
PV 0.1094 0.0881 0.0781 0.0982 0.0941 0.1009 0.0947

3JHH
PV 0.0003 −0.0002 0.0006 0.0005 0.0005 0.0005 0.0005

1JOO
PV −0.4157 −0.3532 −0.3432 −0.4714 −0.4734 −0.4540 −0.4786

H2S2 �33S

PV
92.03 43.11

a
60.00

a
35.50 13.18 42.20 16.13

1JSH
PV −0.0077 −0.0094

a
−0.0073

a
−0.0068 −0.0063 −0.0073 −0.0063

2JSH
PV 0.0385 0.0458

a
0.0239

a
0.0410 0.0461 0.0453 0.0461

3JHH
PV −0.0000 −0.0001

a
−0.0000

a
−0.0000 −0.0000 −0.0000 −0.0000

1JSS
PV −0.2454 −0.1085

a
−0.1370

a
−0.1253 −0.0903 −0.1540 −0.0949

H2Se2 �77Se

PV
256.13 102.59

b
139.86

b
116.78 60.54 128.64 68.57

1JSeH
PV −0.0190 −0.0272

b
−0.0184

b
−0.0118 −0.0101 −0.0147 −0.0101

2JSeH
PV 0.0778 0.0952

b
0.0270

b
0.0631 0.0782 0.0824 0.0803

3JHH
PV −0.0000 −0.0002

b
−0.0001

b
−0.0000 −0.0000 −0.0000 −0.0000

1JSeSe
PV −6.6063 −2.5581

b
−3.1805

b
−3.0380 −1.9430 −3.7946 −2.0805

a
These contributions are calculated with the cc-pwCVQZ basis set due to program limitations.

b
These contributions are calculated with the cc-pVQZ basis set due to program limitations.
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tron correlation effects are more prominent near the equilib-

rium geometry than at other specific values of dihedral angle.

Overall, from the DFT functionals used here, hybrid

functionals are more accurate than GGAs. For H2O2, both

hybrid functionals overestimate the magnitude of the effect

by an amount almost of the size of the difference between

HF and CCSD data. For H2S2 and H2Se2, however, B3LYP

and PBE0 results agree rather well with CCSD, slightly un-

derestimating and overestimating, respectively, the CCSD re-

sults. Both GGA functionals, on the other hand, clearly over-

estimate electron correlation effects in the present cases and

cannot be considered reliable for this property. A similar in-

accurate behavior has earlier been observed with the GGA

BLYP functional.
15

The dependence of the PV contribution to the isotropic
17O NMR shielding constant on the dihedral angle of H2O2

obtained with different methods is presented in Fig. 2. The

effect of electron correlation on the angular dependence is

twofold. First, while the HF calculations show a symmetric

sinusoidal curve with a zero crossing at 90°, electron corre-

lation shifts this point to a smaller angle. The CC and DFT

curves cross zero at almost identical values. Another effect of

electron correlation is the asymmetry of the curve. Whereas

the HF results peak at almost the same height at angles 45°

and 135°, the other methods produce clearly asymmetric

curves. The CCSD method gives, for instance, the value of

−34.4�10−10 ppm at 45° compared to 47.1�10−10 ppm at

135°. The DFT functionals produce even larger asymmetry

effects. Again, the GGA functionals overestimate the effect

as compared to hybrid functionals. The HF and CC data in

the figure are similar to those found in previous studies.
11,15

2. Spin-spin coupling contributions

In Table II we also investigate the effect of electron

correlation to the PV contributions to indirect spin-spin cou-

pling constants. The nuclei are ordered as H1–X2–X3–H4

�X= 17O, 33S, and 77Se�, and 1JXH, 2JXH, 3JHH, and 1JXX de-

note the X2H1, X3H1, H1H4, and X2X3 coupling constants,

respectively. Figures 3–5 illustrate the PV contributions to

spin-spin couplings in H2O2, H2S2, and H2Se2, respectively,

as functions of the basis set.

FIG. 1. Effect of basis-set quality in the parity-violating contribution to the

nuclear shielding constants �in 10−10 ppm� of �a� 17O in H2O2, �b� 33S in

H2S2, and �c� 77Se in H2Se2 calculated with cc-pwCVXZ �cc-pVXZ for

H2Se2� �X=D, T, Q, and 5� basis sets.

FIG. 2. Calculated dependence of the leading-order parity-violating contri-

bution to NMR shielding constant �10−10 ppm� in H2O2 on the dihedral

angle �deg� at different computational levels using the cc-pwCVTZ basis

set.

FIG. 3. Effect of basis-set quality in the parity-violating contribution to the

spin-spin coupling constants �in nHz� of H2O2 molecule calculated with

cc-pwCVXZ �X=D, T, Q, and 5� basis sets. �a� 3JHH, �b� 1JOH, �c� 1JOO, and

�d� 2JOH.

FIG. 4. Effect of basis-set quality in the parity-violating contribution to the

spin-spin coupling constants �in nHz� of H2S2 molecule calculated with

cc-pwCVXZ �X=D, T, Q, and 5� basis sets. �a� 3JHH, �b� 1JSH, �c� 1JSS, and

�d� 2JSH.
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In H2O2 electron correlation generally decreases the

magnitude of the PV spin-spin coupling contributions. The

two CC methods give results similar to each other, apart

from the case of the tiny 3JHH
PV . Contrary to the case of PV

nuclear shieldings, DFT is not able to reproduce the correla-

tion contributions but gives results similar to the HF data.

Comparing the CCSD and HF values, we find that the overall

magnitude of the effect of electron correlation is 10%–30%.

For the two heavier molecules, H2S2 and H2Se2, corre-

lation effects in the PV coupling contributions are dramatic

and, in particular, the CC2 results are far from the CCSD

data. For 2JXH
PV �X=S and Se�, CC2 even gives correlation

contributions of the opposite sign as compared to CCSD.

Also in these cases, the DFT functionals fail in general, with

the exceptions of 1JSS
PV and 1JSeSe

PV , where B3LYP and PBE0

give results that are within 11% of the CCSD data.

B. Basis-set effects

1. Shielding contributions

The basis-set convergence in NR calculations of isotro-

pic nuclear shielding constants is presented in Fig. 1. In the

H2O2 molecule, the magnitude of the HF-level PV contribu-

tion increases only by a few percent when the basis set is

enhanced from a QZ to a 5Z quality. Even the step from a

DZ to a 5Z basis set leads maximally to an increase of 17%

in magnitude �in the HF data�. There are no qualitative dif-

ferences between different correlation methods in their basis-

set convergence behavior. The other two molecules, on the

other hand, exhibit very different behaviors when moving

upward in the basis-set hierarchy. In H2S2, practically no

convergence is found in the studied range, and differences

between various N-electron models are large. In addition, the

GGA DFT contributions decrease in magnitude by approxi-

mately 60%, whereas the contributions by the hybrid DFT

functionals decrease in magnitude by 38% �B3LYP� and

32% �PBE0�. Contributions calculated with the two CC

methods also show large differences between the TZ and QZ

levels. The results are qualitatively similar in H2Se2, al-

though the relative differences are smaller. In this case the

5Z contributions are fairly well converged at the HF level.

Although the difference between TZ and QZ levels is 23%,

the magnitude of the PV contribution decreases only by 4%

between the QZ and 5Z quality basis sets. The DFT results

are not quite as well converged when going from the QZ to

the 5Z level; they decrease in magnitude by 25% and 11%

with GGAs and hybrid functionals, respectively. Similar to

H2S2, the convergence of the CCSD data follows the B3LYP

results somewhat closely.

The role of the choice of the basis-set family is exam-

ined at the HF level of theory, with cc-pwCVXZ, cc-pVXZ,

and aug-cc-pVXZ basis sets, as presented in Fig. 6. In H2O2

the differences between the basis-set families are not very

large. The biggest difference occurs at the DZ level, and

when the basis-set quality increases, the differences are ex-

pectedly reduced. At the 5Z level, the difference between

cc-pwCV5Z and aug-cc-pV5Z basis sets is only 2%, the cc-

pV5Z result being in between. At the 6Z level, the cc-pV6Z

and aug-cc-pV6Z contributions are identical to within less

than 1%. In H2S2, the differences between basis-set families

are more pronounced; e.g., the aug-cc-pVDZ contribution is

only 39% of the cc-pwCVDZ contribution. Again, the differ-

ences between the basis-set families become smaller with

increasing X. At the 5Z level, the cc-pV5Z and cc-pwCV5Z

contributions are identical to within 1% accuracy, whereas

FIG. 5. Effect of basis-set quality in the parity-violating contribution to the

spin-spin coupling constants �in nHz� of H2Se2 molecule calculated with

cc-pVXZ �X=D, T, Q, and 5� basis sets. �a� 3JHH, �b� 1JSeH, �c� 1JSeSe, and

�d� 1JSeH.

FIG. 6. Effect of basis-set family in the parity-violating contribution to the

nuclear shielding constants �in 10−10 ppm� of �a� 17O in H2O2, �b� 33S in

H2S2, and �c� 77Se in H2Se2 calculated with cc-pVXZ, cc-pwCVXZ, and

aug-cc-pVXZ �X=D, T, Q, 5, and 6� basis sets.
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the aug-cc-pV5Z contribution is only 86% of the cc-

pwCV5Z contribution. The difference persists at the 6Z

level, where the aug-cc-pV6Z contribution is 87% of the

cc-pV6Z contribution. Hence, the augmentation with diffuse

functions seems to have a larger impact than the presence of

high-exponent primitives in the set. For H2Se2, no core-

valence or 6Z sets are available. Similarly with H2S2, there is

a notable difference between the augmented and nonaug-

mented sets at the 5Z level.

2. Spin-spin coupling contributions

As with the nuclear shielding contributions, a monotonic

basis-set dependence in PV spin-spin coupling is found in

H2O2, as illustrated in Fig. 3. The difference between the QZ

and 5Z levels is around 10%, and thus the 5Z results cannot

be considered fully converged.

A systematic trend is also found for H2S2, with the ex-

ception of the small 3JHH
PV , as shown in Fig. 4. In both 33S1H

coupling contributions, we observe a decreasing slope of the

basis-set dependence starting from the TZ level. Conver-

gence in 1JSS
PV is rather complete at all levels of theory, with

differences of less than 8% between the TZ and QZ sets and

of the order of 1% between the QZ and 5Z sets.

Finally, Fig. 5 summarizes the corresponding results for

H2Se2. Both one- and two-bond 77Se1H couplings are far off

at the DZ and TZ levels when compared to the larger basis

sets. The combination of DFT and small basis sets can even

give the wrong sign, as is the case in 1JSeH
PV . While the differ-

ence between the QZ and 5Z quality basis sets in 2JSeH
PV cal-

culated with HF is around 2%, the results with other methods

differ by 7%–13% for both 1JSeH
PV and 2JSeH

PV . In 1JSeSe
PV , the

basis-set dependence is slightly misleading with all the meth-

ods. The DZ quality basis sets somewhat underestimate the

contribution, as compared to the larger basis sets. Compari-

son of TZ and QZ results may give a false impression of

convergence, while the results at the 5Z level in fact deviate

again more. Differences between QZ and 5Z quality basis

sets are around 7% with all methods.

C. Relativistic effects

1. Shielding contributions

In order to discuss the effect of special relativity on the

PV contribution to the NMR shielding, we have performed

four-component relativistic DC and SF calculations at the HF

level for H2O2, H2S2, and H2Se2 at the equilibrium geom-

etries given in Table I. In addition, we have calculated the

nonrelativistic Lévy-Leblond values both with an extended

Gaussian and a point-charge model for the nuclei using the

same even-tempered basis set, as in the DC and SF calcula-

tions for a consistent comparison. Scalar relativistic effects

can then be identified as the difference between SF and NR

results, and the contribution due to spin-orbit coupling as

the difference between DC and SF. The results are given in

Table III.

In H2O2 and H2S2, the results for the heavy-atom PV

NMR shielding extrapolate the �rather slowly� convergent

trend of the results obtained with the cc-pwCVXZ basis sets

in one-component calculations. For the PV NMR shielding

of Se, the NR results for the cc-pV5Z �256.13�10−10 ppm�
and the even-tempered basis �257.42�10−10 ppm� are very

close to each other. Scalar relativity increases the PV contri-

bution in all systems, whereas spin-orbit coupling contribu-

tions are negative in H2O2 but positive in H2S2 and H2Se2.

While the SF results are close to the NR HF contributions,

spin-orbit coupling alters the contribution dramatically only

in H2Se2 �342.42�10−10 ppm at the DC level compared to

255.78�10−10 ppm at the SF level�. At the studied equilib-

rium geometry, spin-orbit coupling does not change the sign

of the PV NMR shielding contrary to what was observed in

Ref. 14.

We also evaluated selected higher-order terms in the

shielding constant within the Breit-Pauli scheme at the HF

level using the cc-pV5Z basis set. In Table III we have listed

the combined contributions of scalar relativistic corrections

�Eqs. �11� and �12�� in column scalar relativity �SR�. Al-

though divergent with large uncontracted basis sets, the di-

vergent character of these terms is not yet visible at the cc-

TABLE III. Impact of the treatment of relativistic effects as well as the model used for the nuclear charge

distribution to the parity-violation-induced isotropic NMR shielding constant of 17O, 33S, and 77Se in H2O2,

H2S2, and H2Se2, respectively, at the calculated equilibrium geometries at the Hartree-Fock level of theory.

Results in 10−10 ppm.

Wave function
a

Nuclear model
b

SR+SO
c

SR
d

NR

17O 1-C�BP� PC 29.17 30.13 29.12

4-C GM 31.67 34.05 32.90

4-C PC 32.86
33S 1-C�BP� PC 105.83 93.75 92.03

4-C GM 92.92 85.18 84.38

4-C PC 84.58
77Se 1-C�BP� PC 328.00 221.52 256.13

4-C GM 342.42 276.62 255.78

4-C PC 257.42

a
Four-component �4-C� calculations using the even -tempered set detailed in Ref. 14 for O, S, and Se, as well

as the uncontracted aug-cc-pVDZ set for H. Perturbational one-component �1-C� calculations with the Breit-

Pauli Hamiltonian using the cc-pV5Z basis set.
b
PC denotes point-charge and GM Gaussian charge distribution.

c
Dirac-Coulomb �DC� calculations including scalar relativistic and spin-orbit interaction effects.

d
Spin-free �SF� relativistic calculations including scalar relativistic effects.
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pV5Z level, and these corrections seem to be reasonable in

H2O2 and H2S2. In H2Se2, on the other hand, these contribu-

tions have the wrong sign. The spin-orbit terms of Eq. �16�
are included in the column SR+SO. Again, in H2O2 and

H2S2 the corrections due to spin-orbit coupling are in rela-

tively good agreement with four-component calculations.

The spin-orbit correction is overestimated in H2Se2, but it

seems that the combination of scalar relativistic and spin-

orbit corrections coincides with the four-component results.

2. Spin-spin coupling contributions

The preceding conclusions are somewhat modified when

considering the PV spin-spin coupling contributions pre-

sented in Table IV. The details of Hamiltonians are similar to

those in the shielding contributions. The difference between

NR and SF results is pronounced, especially in 1JHX
PV and

1JXX
PV . In H2O2 and H2S2, the inclusion of SO contributions

�the step from SF to DC� is in the same direction as scalar

relativistic effects, smaller in magnitude in the former and

larger in the latter. In H2Se2, spin-orbit coupling is utterly

non-negligible and qualitatively changes 1JSeH
PV , 2JSeH

PV , and
1JSeSe

PV . Relativistic effects in the 3JHH
PV contributions are to-

tally negligible in all the studied systems.

Mainly due to the differences in the used basis sets, the

four-component NR values using a pointlike nuclear model

for the 1JOO
PV and 1JSS

PV are smaller and 1JSeSe
PV is considerably

larger in magnitude as compared to one-component NR val-

ues.

D. Choice of the nuclear model

For PV NMR shieldings the difference between the re-

sults obtained with the Gaussian nuclear charge distribution

and point-charge nuclei is negligible: the largest deviation

�0.6%� appears for Se. However, the difference between the

two models is significant for the PV contribution to spin-spin

coupling, especially for the interchalcogen couplings �e.g.,

−0.888 nHz using the Gaussian model, as compared to

−0.373 nHz using point charge for 1JOO
PV �. In Table V we

have studied the dependence of the leading-order nonrelativ-

istic PV contribution to the 1JOO coupling constant on the

exponent of the Gaussian nuclear charge distribution at the

HF level.

The observed trend indicates that the chosen nuclear

model is very important for the study of the PV contribution

to spin-spin couplings. However, to observe the difference

between a point-charge and a Gaussian distribution, high-

exponent basis sets such as in the employed even-tempered

set are needed. Without sufficiently high exponents for de-

scribing the wave function close to the nuclei, the difference

between results obtained by these two nuclear models is neg-

ligible. For brevity, these test calculations are not shown

here.

In passing, we note that the contribution from the finite

nuclear model arises mainly from the treatment of the PV

operator, while the nuclear model used in the optimization of

the wave function has a minor role. For example, 1JOO
PV =

−0.4634 nHz is obtained for a finite nucleus in the SCF op-

timization but a pointlike charge model for the PV operator.

V. CONCLUSIONS

In our study all aspects of a quantum chemical

calculation—the choice of the electron correlation method,

TABLE IV. Effects of the relativistic treatment of parity-violation contributions to the spin-spin coupling

constants of H2O2, H2S2, and H2Se2. Calculations were made at different levels of theory: four-component

nonrelativistic with point-charge nuclear model �NR-PC�, and the following levels with Gaussian nuclear charge

distribution: four-component nonrelativistic, four-component spin-free, and four-component Dirac-Coulomb

Hamiltonians. All values are in nHz. �See footnotes in Table III.�

Molecule Coupling SR+SO SR NR NR-PC 1-C
a

H2O2
1JOH 0.0258 0.0233 0.0039 0.0212 0.0207
2JOH 0.1265 0.1224 0.1086 0.1140 0.1094
3JHH 0.0003 0.0003 0.0003 0.0003 0.0003
1JOO −0.5037 −0.4792 −0.8882 −0.3732 −0.4157

H2S2
1JSH −0.0028 −0.0085 −0.0226 −0.0105 −0.0077
2JSH 0.0433 0.0425 0.0354 0.0402 0.0385
3JHH 0.0000 0.0000 0.0001 0.0001 0.0000
1JSS −0.1565 −0.2692 −0.3068 −0.2085 −0.2454

H2Se2
1JSeH 0.1378 −0.0256 −0.0495 −0.0172 −0.0190
2JSeH 0.0041 0.0882 0.0546 0.0349 0.0778
3JHH −0.0002 0.0000 0.0000 0.0000 0.0000

1JSeSe 12.9293 −8.2238 −7.5414 −9.2640 −6.6063

a
One-component Hartree-Fock calculation using the cc-pwCV5Z �cc-pV5Z for H2Se2� basis.

TABLE V. Effect of the exponent of the Gaussian nuclear charge distribu-

tion model on the parity-violating contribution �in nHz� to the indirect 1JOO

spin-spin coupling constant in H2O2 at the calculated equilibrium geometry.

A four-component Lévy-Leblond calculation.

Exponent 1JOO

	0=5.863�108 −0.8882

10	0 −0.7920

20	0 −0.5796

100	0 −0.3733

1000	0 −0.3732

� −0.3732
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the basis set, and the Hamiltonian—were found to affect the

calculated PV contributions to NMR shielding and spin-spin

couplings constant of H2X2 �X=O,S,Se� molecules. One-

component nonrelativistic calculations were performed using

the HF level of theory and different coupled-cluster models

�CC2 and CCSD�. Also DFT exchange-correlation function-

als, BP86 and PBE belonging to the GGA category and

B3LYP and PBE0 being hybrid functionals, were bench-

marked against the CCSD results. Four-component calcula-

tions were performed at the HF level using different Hamil-

tonians.

The adequate treatment of electron correlation was

found to be very important: the CCSD results can differ by

45% from the HF data. In the nuclear shielding calculations,

all DFT functionals were found to overestimate electron cor-

relation effects. In general, hybrid functionals perform much

better than GGAs and produce accuracy approaching the CC

methods. Therefore, our results are in partial disagreement

with the conclusions of Laubender and Berger
15

on the per-

formance of DFT: the hybrid DFT functionals perform well

in this property. With spin-spin couplings the results show

larger variation, from 1JSS
PV, where the B3LYP data are within

10% from the CCSD results, to 1JOO
PV , where all functionals

produce an electron correlation effect with an opposite sign

as compared to CCSD.

From the previous studies of PV contributions to NMR

shieldings,
10–12,15

it is known that the choice of the one-

particle basis set can be crucial. Our results confirm this

observation. The basis-set dependence of both the PV

nuclear shielding and spin-spin coupling is amplified by the

use of a correlated electronic-structure method. The use of

DFT and small basis set can even result in a wrong sign in

the PV spin-spin coupling contributions. Also, the rate of

basis-set convergence is, in general, worse with correlated

methods than with HF. Our study indicates that specially

tailored basis sets should be used. Their quality may be

judged by studying the convergence of property matrix ele-

ments for individual atoms. Unfortunately, this may lead to

the use of very large basis sets—both in the exponent range

and the l values covered—for even qualitative estimates.

This makes the study of these effects unfeasible for very

large systems.

Relativistic effects do not appear to play a major role in

the PV contribution to the nuclear shielding constant in mol-

ecules containing only light elements, here H2O2 and H2S2.

For H2Se2, four-component relativistic HF calculations with

the spin-free Hamiltonian produce results similar to those of

the nonrelativistic HF calculations, but the effect of the spin-

orbit interaction can be comparable in size to the effect of

electron correlation. In the case of indirect spin-spin cou-

pling, the conclusions are more varied. The most significant

deviation between the four-component Dirac-Coulomb and

nonrelativistic HF calculations was, not surprisingly, found

for H2Se2, where relativity changes the magnitude of 1JSeSe
PV

by 40% and, most importantly, changes its sign. Only the
3JHH

PV contributions are practically unaffected by relativistic

effects in all systems.

We found the choice of the nuclear model—point-charge

or extended �Gaussian� charge distribution—to have a sig-

nificant impact on the parity-violating contribution to indi-

rect spin-spin couplings. In contrast to what is found for PV

contributions to nuclear magnetic shielding, the pointlike

nuclear charge distribution is an oversimplified model for the

calculation of PV spin-spin couplings.
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1. Introduction

It is the cost/performance ratio that makes density functional

theory (DFT) today’s most popular method in computational

chemistry. Although a hierarchy of physical sophistication

exists for the present day’s approximate functionals, this hierar-

chy does not guarantee convergence towards exact solutions,

in contrast to wavefunction-based methods with a limit that is

known (full configuration interaction) but for most practical

purposes is out of reach. The performance of DFT has to be

tested and any shortcomings addressed by identification of

the missing physics.

Time-dependent DFT (TDDFT)[1] enables the calculation of

the modification of observables by external (periodical) time-

dependent perturbations as well as the evaluation of electronic

excitation energies via the poles of linear response functions,

for instance the electric dipole–dipole polarizability (from now

on, polarizability for short). This is the property of interest

herein.

The efficient handling of electron correlation makes (TD)DFT

all the more attractive for the treatment of systems containing

heavy elements, where electron correlation is certainly no less

important when compared to light atoms and where its accu-

rate description becomes even more expensive, as a result of

the large number of electrons and the typically large active

spaces required in multiconfiguration approaches. For these

systems, the quality of the calculation is not only limited by

the treatment of electron correlation, but also relativistic ef-

fects become significant and have to be accounted for—ideally

by using the four-component relativistic Hamiltonian, which is

typically approximated by the Dirac–Coulomb (DC) Hamilton-

ian [Eq. (1)]:

Ĥ ¼
X

i

ĥD;0ðiÞ þ V̂extðiÞ
h i

þ
1
2

X

i 6¼j

ĝCði; jÞ þ Vnn
ð1Þ

where V̂extðiÞ is the external potential operator for electron i,

Vnn is the classical nuclear electrostatic repulsion, and the free-

particle Dirac operator ĥD;0 reads [Eq. (2)]:

ĥD;0 ¼
02�2 cðs � pÞ

cðs � pÞ �2c212�2

" #

ð2Þ

The two-electron interaction operator ĝði; jÞ is in the Cou-

lomb gauge approximated to zeroth order by the instantane-

ous Coulomb interaction [Eq. (3)]:

ĝCði; jÞ ¼ 14�4 	 14�4ð Þr�1
ij ð3Þ

We test the performance of four-component relativistic density

functional theory by calculating the static and frequency-depen-

dent electric dipole–dipole polarizabilities of all (ground-state)

closed-shell atoms up to Ra. We consider 12 nonrelativistic func-

tionals, including three asymptotically shape-corrected function-

als, by using two smooth interpolation schemes introduced by

the Baerends group: the gradient-regulated asymptotic connec-

tion (GRAC) procedure and the statistical averaging of (model)

orbital potentials (SAOP). Basis sets of doubly augmented triple-

zeta quality are used. The results are compared to experimental

data or to accurate ab initio results. The reference static electric

dipole polarizability of palladium has been obtained by finite-

field calculations using the coupled-cluster singles, doubles, and

perturbative triples method within this work. The best overall per-

formance is obtained using hybrid functionals and their GRAC

shape-corrected versions. The performance of SAOP is among the

best for nonhybrid functionals for Group 18 atoms but its preci-

sion degrades when considering the full set of atoms. In general,

we find that conclusions based on results obtained for the rare-

gas atoms are not necessarily representative of the complete set

of atoms. GRAC cannot be used with effective core potentials

since the asymptotic correction is switched on in the core region.
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where the 4 B 4 identity matrices 14B 4 emphasize the four-com-

ponent structure of this operator. The operator provides spin-

same, but not spin-other orbit interaction.

As the generic form of the DC Hamiltonian is independent

of the model for the one- and two-electron interaction, DFT

can (at least formally) be readily extended to the four-compo-

nent relativistic framework. The source of electromagnetic

fields in Maxwell’s equations is the four-current density jm=

(jx , jy, jz , ic1), which should be the basic variable for relativistic

DFT. However, until relativistic density functionals depending

on the four-current density become available, the common

practice of relativistic quantum chemistry packages is to use

nonrelativistic (NR) functionals that depend on the (number)

density, and possibly its gradient, and kinetic energy density

for the calculation of the exchange-correlation (XC) energy. For

spectroscopic constants, electronic excitation energies, and po-

larizabilities, this is a good approximation since these proper-

ties probe only the valence region, where the effect of relativ-

istic corrections to XC functionals is insignificant.[2, 3] Implemen-

tations of (TD)DFT based on two- or four-component relativis-

tic Hamiltonians using the noncollinear magnetization, in addi-

tion to the density in combination with NR functionals, have

been reported by several groups.[4–9]

In addition to the finite basis set problem (and possibly the

treatment of relativity), practical (TD)DFT imposes limitations

owing to the use of approximate XC functionals, potentials,

and kernels, since their exact forms are not known. A uniform

quality is not provided for lowest, higher-lying, and especially

electronic excitation energies associated with long-range

charge transfer.[10–15]

Approximate functionals are often used beyond their “trust

region”. This is especially true for heavy elements, as the

widely used G2 and G3 test sets[16, 17] consist of molecules with

chlorine being the heaviest element. However, systematic

TDDFT benchmark studies including heavy elements are

scarce.

In the NR regime conventional functionals have known defi-

ciencies within TDDFT (see refs. [14, 18, 21–30], and references

therein). In their seminal paper,[31, 32] Perdew et al. extended

DFT to noninteger particle numbers and demonstrated that

the exact XC potentials differ by a system-dependent constant

Dxc over all space, including the asymptotic region (contrary to

what is stated in ref. [27]), at the electron-deficient and elec-

tron-abundant sides of integer electron number N. The exten-

sion also fixes the potential such that the exact XC potential of

an N-electron system, taken as the electron-deficient limit,

goes strictly to zero,[37] that is [Eq. (4)]:

lim
r!1

lim
d!0

vxcðN � dÞ ¼ 0; lim
r!1

lim
d!0

vxcðN þ dÞ ¼ Dxc ð4Þ

(Note that the order of limits is important for the electron-

abundant side.[26, 33, 34]) Continuum functionals such as LDA and

GGA do not feature derivative discontinuities and their XC po-

tentials therefore approximately average the exact XC poten-

tials at the electron-deficient and electron-abundant sides of

integer electron number in energetically important regions

(bulk).[26, 30, 33–35] Hybrid functionals, with a fraction g of orbital

exchange, only partially recover the derivative discontinuity.

The long-range behavior of continuum and hybrid functions is

ideally[24, 27, 36] represented by Equation (5):

lim
r!1

vxcðrÞ ¼
g� 1

r
þ vxcð1Þ: ð5Þ

in contrast to the -1/r behavior of the exact XC potential.[37, 38]

The potential asymptote vxc(1) is the sum of the ionization

potential (IP) and the HOMO orbital energy eHOMO, that is,

eHOMO�vxc(1)=m=�IP, where the latter equality follows from

the use of the electron-deficient limit of the chemical potential

m. The XC potential of most continuum functionals goes

asymptotically to zero and falls off faster than the Coulombic

decay indicated above.[18, 39, 40] Their HOMO orbital energy eHOMO

is generally found to be higher than �IP, in contrast to exact

Kohn–Sham values, which reflects the averaging behavior in

the bulk region discussed above. There is indeed numerical

evidence[19, 20] that GGA functionals can at best display the

average behavior over electron-deficient and electron-abun-

dant sides, and should therefore be constructed to go asymp-

totically to a nonzero positive constant approximating half the

derivative discontinuity. These features of approximate func-

tionals lead to errors in, for instance, polarizabilities, hyperpo-

larizabilities, and Rydberg excitation energies. Various asymp-

totic corrections to standard XC potentials have therefore

been proposed in the literature.[24, 27–29, 41] In this work, we

tested the performance of two interpolation schemes for

asymptotic corrections: the gradient-regulated asymptotic con-

nection (GRAC) procedure[29] and the statistical averaging of

(model) orbital potentials (SAOP).[28] Note, however, that accu-

rate Rydberg excitation energies can alternatively be obtained

by extracting the quantum defect from orbitals at intermediate

distances,[42] or by using explicitly orbital-dependent XC func-

tionals that treat exchange interactions exactly.[43, 44]

The correct long-range behavior can also be introduced by a

partitioning of the two-electron operator, which introduces

100 % exchange and thus correct behavior at long range. The

CAMB3LYP functional[45] uses a more general partitioning

[Eq. (6)]:

1
r12

¼
aþ berf mr12ð Þ½ 


r12
þ

1 � aþ berf mr12ð Þ½ 


r12

ð6Þ

than the original proposal by Hirao and coworkers,[46, 47] the

latter corresponding to a=0.0, b=1.0, and m=0.33. The a and

b parameters of CAMB3LYP were fitted to atomization ener-

gies, giving a=0.19 and b=0.46. Although a nonzero a is cru-

cial for improved atomization energies, the condition a+b=1

must be satisfied for correct asymptotics.[48, 49]

Herein, we tested the performance of 12 XC functionals, in-

cluding GRAC, SAOP, and CAMB3LYP, within the four-compo-

nent relativistic Kohn–Sham framework by calculating static

and frequency-dependent polarizabilities of all (ground-state)

closed-shell atoms up to Ra. The results are compared to ex-

perimental data or to accurate ab initio results. The reference

static electric dipole polarizability of Pd was obtained by finite-

446 www.chemphyschem.org ; 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 2008, 9, 445 – 453
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field calculations using the coupled-cluster singles, doubles,

and perturbative triples method [CCSD(T)] .

2. Calculation of Frequency-Dependent
Polarizabilities

The applied formalism of closed-shell linear response at the

four-component relativistic density functional level is outlined

in ref. [50] . Here, we recapitulate only the expressions impor-

tant for later discussion of our results. The implicit summation

of repeated indices is employed. In the following we use indi-

ces i,j,… for occupied orbitals, indices a,b,… for virtual orbitals,

and indices p,q,… for general orbitals.

The linear response of the electric dipole operator to a peri-

odic external electric field at frequency w is formally given by

[Eq. (7)]:

Â; B̂
� �� �

w¼ �E
½1
y
A E

½2

0 � wS½2


� 	�1
E
½1

B ð7Þ

where E
½1

A is the property gradient of the operator Â, E

½2

0 the

electronic Hessian, and S[2] the so-called generalized metric

(see ref. [50] and references therein for details). Here, Â= B̂ is

the electric dipole operator. For closed-shell atoms it is suffi-

cient to consider only one component. Instead of calculating

the electronic Hessian E
½2

0 explicitly, the linear response equa-

tions are solved iteratively, where the key step is the contrac-

tion s ¼ E
½2

0 b of E

½2

0 with a trial vector b to form the so-called

s vector.

The elements of the XC contribution to the s vector can be

expressed by Equation (8):

sxc;ai ¼ � F
f1g
xc;ai þ Gxc;ai

� 	

ð8Þ

Here, Ff1g
xc;pq are the elements of the one-index transformed XC

part of the Kohn–Sham matrix with [Eq. (9)]:

Ff1g
xc;pq ¼ BptFxc;tq � Fxc;ptBtq;

Bij ¼ 0; Bia ¼ �bia

Bai ¼ bai; Bab ¼ 0
ð9Þ

where Fxc;pq denotes a matrix element of the XC potential in

the MO basis.

The second term on the right-hand side of Equation (8) can

be written as [Eq. (10)]:

Gxc;pq ¼ Wxc;pq,rsbsr ð10Þ

and contains the matrix elements Wxc;pq,rs of the XC kernel. In

addition, hybrid functionals contribute with minus the ex-

change term gACHTUNGTRENNUNG(psjrq)bsr to Gpq, where g represents the weight

of Hartree–Fock (HF) exchange. A particularity of the present

implementation is a quaternion symmetry scheme that auto-

matically provides maximum point-group and time-reversal

symmetry reduction of the computational effort.[51] As dis-

cussed in refs. [50] and [52], trial vectors are classified accord-

ing to time-reversal symmetry and hermiticity. To accommo-

date time-antisymmetric operators in the quaternion symmetry

scheme, a purely imaginary phase is extracted such that the

operator becomes time symmetric and antihermitian. In con-

trast to the calculations published in ref. [50] , the contribution

of time-reversal symmetric antihermitian trial vectors as a

result of HF exchange is now included within the calculations

of frequency-dependent polarizabilities. On the other hand,

spin polarization owing to the antihermitian part of trial vec-

tors b is currently neglected in the calculation of frequency-de-

pendent polarizabilities.

3. Connecting Potentials: Gradient Regulation
versus Orbital Density Control

Baerends and co-workers have introduced two smooth inter-

polation schemes to correct the asymptotic part of the XC po-

tential : the GRAC procedure[29] and SAOP.[28] They connect a

bulk XC potential vbulk
xc with an asymptotically correctly behav-

ing outer potential vouter
xc according to the interpolation formula

[Eq. (11)]:

vxcðrÞ ¼ 1 � f ðrÞð Þ vbulk
xc ðrÞ � vshift


 �

þ f ðrÞvouter
xc ðrÞ 1 � gbulk

� 


ð11Þ

where a suitably chosen interpolation factor f(r) (0� f(r)�1)

switches between these two potentials. The HF exchange op-

erator naturally corrects the unphysical coulombic self-interac-

tion for the occupied states, and so the weight of HF exchange

gbulk has to be subtracted from the outer potential in the case

where the bulk functional is of the hybrid type.[36] The error of

subtracting an exchange factor from an exchange plus correla-

tion (XC) potential is small, since the correlation contribution is

generally much smaller than exchange and furthermore falls

off rapidly in the (corrected) outer part of the potential.

Both schemes employ a zero-potential asymptote vxc(1)=0.

This corresponds to the electron-deficient limit of the exact

functional rather than the averaging potential discussed in Sec-

tion 1. For response, both approaches are completely equiva-

lent since only orbitals and orbital energy differences are used.

The choice of asymptote leads in the GRAC scheme to the in-

troduction of a downward shift, vshift= IP+eHOMO, of the bulk

potential, which corresponds roughly to half the derivative dis-

continuity. The IPs may either be obtained from experimental

data or additional quantum chemical calculations (e.g. DSCF).

No bulk shift is introduced in the SAOP scheme (vshift=0), since

the GLLB bulk potential[53] is deeper than conventional XC po-

tentials. This makes the SAOP approach more attractive, espe-

cially for molecular calculations, as it does not require the

input of the IP.

The GRAC interpolation factor fGRAC(r) is determined by the

dimensionless reduced density gradient x(r) and two suitably

chosen parameters a and b,[29] not to be confused with the pa-

rameters of the CAMB3LYP potential [Eq. (12)]:

f GRACðrÞ ¼
1

1 þ exp �a xðrÞ � bð Þ½ 

; xðrÞ ¼

r1ðrÞj j

14=3ðrÞ
ð12Þ
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The parameters a and b determine the slope and location of

the point of inflection of fGRAC(r), respectively, and have been

chosen from atomic calculations.[29] As in the original paper,[29]

we used the values a=0.5 and b=40 bearing in mind that

they have been fitted to light-atom data. In the course of the

reported work we found that the use of effective core poten-

tials (ECPs) combined with the GRAC interpolation is problem-

atic, because the outer potential may already be switched on

in the bulk region, as is discussed further later. This problem

does not arise in the all-electron calculations presented herein.

The SAOP interpolation factor [Eq. (13)]:

f SAOPðrÞ ¼
~1ðrÞ

1ðrÞ
ð13Þ

can be expressed in a compact way using the auxiliary density

[Eq. (14)]:

~1ðrÞ ¼
X

lk

~DAO
lkWlkðrÞ ¼

X

lk

X

pq

clp
~DMO

pq c*
kqWlkðrÞ ð14Þ

where Wlk(r) is the orbital overlap distribution �
y
l ðrÞ�k

ðrÞ and

where l,k and p,q are indices over atomic and molecular orbi-

tals (AO and MO), respectively. This requires the calculation

and storage of only one additional auxiliary density matrix. The

elements of the auxiliary density matrix in its MO representa-

tion are [Eq. (15)]:

~Dpq ¼ dpqnp exp �2 eHOMO � ep

� 
2
 �

ð15Þ

where np is the occupation number and ep the energy of orbi-

tal p. This ensures occupation np for the HOMO orbital (which

may be degenerate) and a switch function fSAOP(r) close to one

in the regions where the HOMO density is close to the total

density.
While the connection procedures GRAC and SAOP can, in

principle, be applied to the connection of any bulk potential

with any asymptotically correct outer potential, we chose the

combinations PBE0gracLB94 (PBE0[54] as bulk GRAC-connected

to LB94[18]) and GLLBsaopLBa as used in the original SAOP

publication.[28] The former functional, also known as PBE0AC,

was chosen because it has successfully been applied to the cal-

culation of intermolecular interaction energies[55] as well as

first- and second-order electric molecular properties of small

molecules.[56] In addition, we combined B3LYP[57, 58] with LB94

(B3LYPgracLB94).

For the calculation of the XC contribution to the energy gra-

dient using GGA functionals, the XC potential is not calculated

explicitly as this may require the calculation of the Laplacian or

the full Hessian of the density at each integration point

[Eq. (16)]:

Z

drvxcWpq ¼

Z

dr
@exc

@1
�r �

@exc

@ r1j j

� �

Wpq ð16Þ

where exc is the XC energy density. In practice the derivation is

rather moved to the basis functions using integration by parts

and giving [Eq. (17)]:

Z

dr
@exc

@1
�r �

@exc

@ r1j j

� �

Wpq ¼

Z

dr
@exc

@1
Wpq þ

@exc

@ r1j j
� rWpq

� �

ð17Þ

The computationally useful form is automatically obtained

with the second-quantization formalism used in refs. [50] , [59],

and [60].

The GRAC scheme employed in our work connects GGA

bulk potentials PBE0 and B3LYP to the LB94 functional. For

this we re-express the explicitly scaled GGA bulk functional

vbulk
xc as [Eq. (18)]:

Z

dr 1 � f GRACð Þvbulk
xc Wpq �

Z

dr 1 � f GRACð Þ
@ebulk

xc

@1
Wpq þ 1 � f GRACð Þ

@ebulk
xc

@ r1j j
� rWpq

� �
ð18Þ

This means that we neglect the additional integrand [Eq. (19)]:

Wpq

@ebulk
xc

@ r1j j
� r 1 � f GRACð Þ ð19Þ

because the term r 1 � f GRAC
� 


again requires the Laplacian of

the density. We tested this approximation for GRAC-corrected

BLYP by comparing to an explicitly scaled vbulk
xc and found no

significant difference.

4. Basis Sets

The systematic study of polarizabilities of all closed-shell atoms

up to Ra requires an appropriate choice of all-electron basis

sets with reasonable and comparable quality. For the property

under study, these basis sets have to exhibit enough flexibility,

in particular in the outer valence region. After extensive pre-

liminary studies we chose the triple-zeta basis sets d-aug-cc-

pVTZ[61, 62] (for He, Ne), aug-cc-pVTZ[63] (for Ar), aug-cc-pVTZ-

DK[64] (for Zn), Sadlej’s pVTZ[65] (for Be, Mg, Ca), and the relativ-

istic all-electron basis sets of Dyall[66] (for Sr, Ba, Rn, Pd, Cd, Hg,

Kr, Xe, Rn). All basis sets were used in the decontracted form,

except the Pd basis for the finite-field CCSD(T) calculations.

The basis sets for Be, Mg, and Ca were augmented by 1s1p1d

exponents (using the outermost quotient of each angular mo-

mentum). The basis sets for Zn and Ar were further augmented

by 1s1p1d1f, and basis sets for Sr, Ba, Ra, Pd, Cd, Hg, Kr, Xe,

and Rn by 2s2p2d2f exponents. This produces basis sets of

doubly augmented triple-zeta quality for all the studied atoms.

To obtain the reference static polarizability of Pd by finite-

field CCSD(T) calculations, we used the Stuttgart/Dresden ECP-

28-MWB[67] combined with Ahlrichs’ QZVPP valence set.[68] To

this set 2s2p2d2f3g even-tempered exponents (using the out-

ermost quotient of each angular momentum) were added as

well as two optimized h exponents (16.0 and 8.0). This gave a

final valence set of 11s10p9d6f5g2h (contracted to

9s7p6d6f5g2h).

448 www.chemphyschem.org ; 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem 2008, 9, 445 – 453

T. Saue et al.



5. Results and Discussion

All calculated static and frequency-dependent polarizabilities

are presented in Table 1 together with experimental or ab

initio reference values. We found it useful to present the re-

sults for different families of functionals and for different sets

of atoms separately by means of a statistical analysis (dis-

cussed later) to illustrate their performance on the studied

property.

5.1. Statistical Analysis

Following the practice in the systematic model investigations

of Helgaker et al. ,[79] we present our data by a statistical analy-

sis based on relative errors [Eq. (20)]:

D ¼
C � R

R
ð20Þ

where C and R are the calculated and reference values, respec-

tively, for a given combination of method and atom. From the

relative errors we calculated, for each method and for different

sets of atoms, the mean error D and the standard deviation

Dstd [Eq. (21)]:

D ¼
1
n

X

n

i¼1

Di , Dstd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n � 1

X

n

i¼1

Di � Dð Þ2

s

ð21Þ

For the visual presentation of the mean errors (indicating

the accuracy) and the standard deviations (indicating the preci-

sion) of a model, we approximate the calculated distributions

by normal distributions.

5.2. Accuracy and Precision of Reference Values

It is beyond the scope of this article to discuss experimental

techniques in detail or to review all computational efforts in

this field, and we refer to two very useful reviews[94, 95] and ref-

erences therein. The experimental reference values for He,[80]

Ne,[81] Ar,[82, 83] Kr,[82] Xe,[84] Zn,[91] Cd,[92] and Hg[93] have been de-

termined by measurements of the refractive index or the die-

lectric constant in the gas phase. Only frequency-dependent

polarizabilities are directly accessible by this technique. We

only use the frequency-dependent polarizabilities and not the

extrapolated static values, since errors may be introduced in

the Cauchy moment fitting procedure to obtain the latter

quantities.[50] For atoms, a precision of 0.05 % may be

reached.[94] The experimental polarizabilities for Ca,[88] Sr,[89] and

Ba[89] have been obtained by atomic-beam experiments which

have a considerably higher uncertainty (rarely smaller than

5 %)[94] and are static values. For Ca, Sr, and Ba these values

have an uncertainty of 8–10 %. Given these large experimental

uncertainties, we chose to rather compare our data for Ca, Sr,

and Ba to ab initio results.[90] The recommended static polariza-

bilities in Table XIII of ref. [90] are 157.9, 199.0, and 273.5 a.u.

for Ca, Sr, and Ba, respectively. The statistical analysis is thus

based on these calculated values. We found, however, that the

normal distributions obtained using calculated or experimental

values as reference are indistinguishable and therefore the

latter is not shown. As the papers reporting the implementa-

tion of the GRAC and SAOP potentials have focused on the

noble gases[29, 28] for the calibration of asymptotic corrections,

we single them out in the following discussion.

Table 1. Calculated static and frequency-dependent polarizabilities for HF and various density functionals (all values are in a.u.). B3LYPgrac is B3LYPgracLB94, PBE0grac
is PBE0gracLB94, and SAOP is GLLBsaopLBa. The reference values are experimental data. For atoms without an experimental polarizability the most accurate calculated
value is given together with the method. The frequency w=0.072 a.u. corresponds to the He–Ne laser line.

w HF LDA BLYP B3LYP B3LYPgrac LB94 CAMB3LYP mCAMB3LYP PBE PBE0 PBE0grac SAOP LBa Ref. value Ref.

He 0.072 1.33 1.67 1.58 1.51 1.41 1.40 1.53 1.53 1.59 1.50 1.42 1.44 1.44 1.380(2) [80]
Ne 0.072 2.39 3.07 3.13 2.90 2.73 2.62 2.89 2.83 3.09 2.83 2.70 2.61 2.62 2.670(3) [81]
Ar 0.072 10.85 12.16 12.29 11.79 11.38 11.56 11.63 11.33 12.07 11.51 11.28 11.72 11.32 11.070(7) [82] , [83]
Kr 0.072 16.75 18.49 18.88 18.09 17.44 17.27 17.73 17.17 18.55 17.67 17.30 17.77 17.21 17.075(13) [82]
Xe 0.072 27.63 29.82 30.60 29.37 28.39 27.90 28.60 27.59 30.06 28.70 28.22 29.38 27.98 27.808(17) [84]
Rn 0.000 34.99 37.79 38.90 37.43 36.18 34.23 36.51 35.16 38.30 36.63 35.97 36.79 34.77 33.180 [85][a]

Be 0.070 52.99 50.61 50.31 47.99 44.87 49.54 45.86 44.89 49.54 47.15 45.40 53.37 49.46 43.261 [86][b]

Mg 0.000 81.22 70.89 71.35 71.97 68.57 60.32 71.46 71.55 73.92 74.99 73.33 78.00 63.21 71.800 [87][c]

Ca 0.000 182.45 145.91 148.56 151.61 144.70 121.34 152.97 156.79 157.76 162.72 160.14 165.64 128.93 168.7 ACHTUNGTRENNUNG(169) [88]
Sr 0.000 232.54 178.40 182.99 187.55 179.69 142.39 189.92 195.65 195.63 202.71 199.90 197.00 153.84 186.3 ACHTUNGTRENNUNG(148) [89]
Ba 0.000 323.80 238.92 246.34 253.71 243.60 189.34 259.50 270.42 265.68 277.41 274.25 258.69 205.28 267.9 ACHTUNGTRENNUNG(216) [89]
Ra 0.000 296.77 220.42 227.89 233.56 224.14 171.89 235.71 242.65 244.81 255.02 252.23 226.21 186.80 246.200 [90][d]

Pd 0.000 21.15 30.15 31.61 28.07 26.11 20.94 26.60 24.48 31.15 27.02 25.71 22.03 21.57 26.612 This work[e]

Zn 0.072 59.15 39.88 40.96 42.16 39.96 30.35 41.50 41.99 42.49 44.42 42.84 33.80 33.10 43.03(32) [91]
Cd 0.072 75.29 50.10 52.09 53.20 50.36 37.05 52.78 54.02 53.93 55.93 53.82 42.51 40.46 54.20(95) [92]
Hg 0.072 50.06 36.06 37.36 38.03 36.42 29.22 38.33 39.27 37.66 38.77 37.63 31.75 30.92 35.746 ACHTUNGTRENNUNG(310) [93]

[a] R, DK3, CCSD(T). [b] NR, r12. [c] NR, MBPT4. [d] R, DK+SO, CCSD(T). [e] NR, ECP, CCSD(T).
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5.3. Conventional Functionals

Normal distributions for the conventional, that is, noninterpo-

lating, density functionals and HF indicating the accuracy for

the calculation of frequency-dependent polarizabilities of the

Group 18 atoms (He–Rn) are plotted in Figure 1. The normal

distributions for pure functionals are plotted above the abscis-

sa. The precisions of HF and the functionals LDA, BLYP, PBE,

B3LYP, and PBE0 are quite comparable in contrast to their ac-

curacy. The calculated polarizabilities are slightly underestimat-

ed by HF (D=�0.02, Dstd =0.05) and overestimated by LDA

(D=+0.13, Dstd =0.05). The gradient correction of BLYP and

PBE does not improve the accuracy at all. This finding can be

rationalized in part by the general observation that the effect

of gradient corrections is smaller on potentials than on ener-

gies,[18] and more specifically that such corrections are small in

the outer valence region.[96]

The admixture of exact exchange moves the accuracy of

hybrid functionals, plotted below the abscissa in Figure 1, to-

wards the mean error of HF, close to the line indicating the

ideal accuracy. Both PBE0 and CAMB3LYP with 25 and 65 %

(long-range) HF exchange, respectively, perform slightly better

than B3LYP with 20 % HF exchange. The mCAMB3LYP function-

al, with correct asymptotic as a result of a+b=1, is slightly

more precise but less accurate than CAMB3LYP. Altogether we

can state that for conventional (noninterpolating) functionals,

the performance for the Group 18 atoms (He–Rn) is independ-

ent of a gradient correction and dictated by the amount of

exact exchange admixture.

This picture changes somewhat when the results for all stud-

ied atoms are included (see Figure 2). HF globally overestimates

polarizabilities (D=+0.12) but shows a very broad distribution

(Dstd =0.18). The pure functionals LDA, BLYP, and PBE perform

significantly better, especially the PBE functional. In contrast to

the rare gases, the LDA functional tends to underestimate po-

larizabilities for the Group 2 and Group 12 atoms. In passing

we note that uncoupled LDA calculations, that is, replacing the

fully interacting response with the response of the noninteract-

ing Kohn–Sham system, leads to a systematic and severe over-

estimation of polarizabilities (D=+0.67, Dstd =0.20). The effect

of exact exchange admixture can be studied by comparing the

plots below the abscissa in Figure 2: HF exchange does not

alter the accuracy but improves their precision, in contrast to

what is observed for the Group 18 atoms alone. PBE0 stands

out as the most precise functional, but misses the mark slightly

as a result of some apparent systematic error.

5.4. Interpolating Functionals

Normal distributions indicating the accuracy and precision of

the asymptotically corrected functionals SAOP (GLLBsaopLBa),

PBE0gracLB94, and B3LYPgracLB94 for the calculation of fre-

quency-dependent polarizabilities of the Group 18 atoms (He–

Rn) are plotted in Figure 3. Here, the very good performance

of the LB94 and LBa functionals is also shown for the rare-gas

atoms, in line with previous results.[21]

The distributions further indicate that the GRAC correction

does indeed further improve the already good performance of

the hybrid functionals PBE0 and B3LYP. Both PBE0gracLB94

and B3LYPgracLB94 yield values that accurately reproduce the

reference polarizabilities. For the GRAC scheme, both the

asymptotic correction and the bulk shift vshift [see Equation (11)]

are crucial for improving performance. If the bulk potential is

Figure 1. Group 18 atoms (He–Rn): Normal distributions indicating the accu-
racy and precision of HF and different functionals for the calculation of
static and frequency-dependent polarizabilities. Relative error (in %) along
abscissa. The normal distributions for pure functionals are plotted above,
and for hybrid functionals below the abscissa.

Figure 2. All studied atoms: Normal distributions indicating the accuracy
and precision of HF and different functionals for the calculation of static and
frequency-dependent polarizabilities. Relative error (in %) along abscissa.
The normal distributions for pure functionals are plotted above, and for
hybrid functionals below the abscissa.
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not shifted, as shown in Figure 3 (“no bulk shift”), it is too shal-

low relative to the chosen zero asymptote and the polarizabili-

ties are overestimated. In contrast, the SAOP potential, which

does not shift the bulk potential and therefore is used without

the input of IP, performs very well. In fact SAOP yields the best

performance among pure functionals for Group 18 atoms.

On analyzing the results for all studied atoms (see Figure 4),

a similar picture can be observed. The positions of the distribu-

tions (accuracies) have the same ordering as for the Group 18

atoms. In this case, however, the distributions are generally

broader, and we note in particular that the performance of the

pure LB94 and LBa functionals is not very satisfying. In addi-

tion, the precision of PBE0 is significantly better than that of

B3LYP. This also holds for the shape-corrected (GRAC) forms.

The precision of SAOP degrades when taking the complete set

of atoms into account. Again, GRAC and the shift of the bulk

potential go in opposite directions.

To demonstrate the different approaches for the interpola-

tion, we plotted the GRAC and SAOP switching functions f

[Eq. (11)] for Ne and Rn in Figure 5 and 6. They are plotted to-

gether with the normalized radial HOMO probability function.

By construction SAOP activates the outer potential in regions

where the total density is dominated by the HOMO density—

this can be nicely seen for both examples. GRAC, on the other

hand, activates the outer potential at much larger radii : 3 a.u.

compared to about 0.5 a.u. for Ne and 6 a.u. compared to

about 2 a.u. for Rn. This means that while the connection pro-

cedures GRAC and SAOP can in principle be applied to the

connection of any bulk potential with any asymptotically cor-

rect outer potential, they have different physical motivations

Figure 3. Group 18 atoms (He–Rn): Normal distributions indicating the accu-
racy and precision of different asymptotically corrected functionals for the
calculation of static and frequency-dependent polarizabilities. Relative error
(in %) along abscissa. Normal distributions of B3LYP and PBE0 are added for
comparison with their corrected versions.

Figure 4. All studied atoms: Normal distributions indicating the accuracy
and precision of different asymptotically corrected functionals for the calcula-
tion of static and frequency-dependent polarizabilities. Relative error (in %)
along abscissa. Normal distributions of B3LYP and PBE0 are added for com-
parison with their corrected versions.

Figure 5. Normalized radial probability function and the GRAC and SAOP
switching functions f [Eq. (11)] for the Ne atom.

Figure 6. Normalized radial probability function and the GRAC and SAOP
switching functions f [Eq. (11)] for the Rn atom.
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and one should not expect the same results from the two con-

nection procedures.

5.5. GRAC and Effective Core Potentials

The asymptotic correction of the GRAC form should not be

used in combination with ECPs. To make this point clear we

plotted the GRAC switching function fGRAC(r) [Eq. (11)] for the

(NR) BLYP density using the Stuttgart/Dresden RLC ECP[97, 98] in

Figure 7.

The GRAC switching functions were plotted for only two ele-

ments, Mg and Rn, but the observation holds for all ECPs. One

can see that fGRAC(r) is already close to 1 in the bulk region,

then falls off at around 1 a.u. and increases again in the outer

region, as expected and desired. This behavior simply occurs

because the valence density (and therewith also the dimen-

sionless gradient x(r)) vanishes also for r!0 [see Eq. (12)] . One

remedy for the failure of GRAC in the ECP case would be to

use the Handy–Tozer variant for the asymptotic correction,[24]

since it uses scaled Bragg radii to detect the bulk and the

asymptotic regions.

6. Conclusions

We have presented four-component relativistic HF and DFT cal-

culations of static and frequency-dependent electric dipole–

dipole polarizabilities of all (ground-state) closed-shell atoms

up to Ra. For this study 12 NR functionals, including three

asymptotically shape-corrected functionals, were considered.

The best overall performance was obtained by using hybrid

functionals and their GRAC shape-corrected versions. The per-

formance of SAOP was found to be among the best for nonhy-

brid functionals for Group 18 atoms, but its precision degrades

when considering the full set of atoms. For these systems

CAMB3LYP represents only a slight improvement compared to

B3LYP. We expect CAMB3LYP to distinguish itself more favora-

bly in extended systems where long-range exchange becomes

important. Furthermore, it was demonstrated that ECPs should

not be used in combination with the GRAC interpolation

owing to the vanishing valence density in the core region.

Generally, we find that the rare gases are not a fully represen-

tative testing ground for the calibration of new functionals for

the calculation of polarizabilities.

Computational Details

The static and frequency-dependent polarizabilities were calculated
within a linear-response approach at the HF and DFT level using
the functionals LDA (SVWN5),[69, 70] BLYP,[71, 72] B3LYP,[57,58] CAM-
B3LYP,[45] PBE,[73] PBE0,[54] PBE0gracLB94, and GLLBsaopLBa
(SAOP),[28] as well as B3LYPgracLB94. For PBE0gracLB94, the GRAC
parameters a=0.5 and b=40 were used as in ref. [29]. For LBa
the parameters of ref. [28] were chosen. In addition to CAMB3LYP,
we also investigated a modified CAMB3LYP functional, herein de-
noted mCAMB3LYP, with parameters a=0.2, b=0.8, and m=0.4,
chosen such that a+b=1 and correct asymptotics are obtained.
The necessary IPs were taken from ref. [74]. All HF and DFT calcula-
tions were carried out using a development version of the DIRAC
code.[75]

The two-electron Coulomb integrals (SS jSS), which involve only
the small components, were eliminated in both the SCF and the
linear response parts. Rotations between positive and negative
energy solutions were suppressed within the linear response
module. The small-component basis set for the four-component
relativistic HF and DFT calculations was generated using unrestrict-
ed kinetic balance, with restricted kinetic balance imposed in the
canonical orthonormalization step.[76] A Gaussian charge distribu-
tion was chosen as the nuclear model using the recommended
values of ref. [77], except for the NR CCSD(T) calculations on Pd.
The finite-field CCSD(T) calculations for Pd were performed using
the MOLPRO code.[78] All explicitly occupied orbitals (3p, 4s, 4p)
were correlated in the CCSD(T) calculations. The CCSD(T) polariza-
bilities were obtained with the symmetric five-point formula, by
employing a step value of 0.001 a.u. for the perturbing dipole
fields.
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AppendixA

Parity-violating electronic neutral weak Hamiltonian

�ere is no question that there is an unseen world. �e problem is,

how far is it from midtown and how late is it open?

Woody Allen, Examining Psychic Phenomena inWithout Feathers

�e route to the e�ective 4-component relativistic parity-violating (PV) electronic neutral

weak Hamiltonian for molecular calculations is a long journey “through the beautiful forest of

particle physics, gauge theories, and quantum �eld theory”256 which is far beyond the scope of

this short note. A very useful guide fur such an expedition can be found in Ref. 256 together

with the bibliography for more detailed excursions. Also Ref. 52 has been used for this note.

Almost the home strait of Ref. 256 is the starting point of this note: the Lagrangian den-

sity of the neutral weak electron-nucleon (e-nuc) contact interaction in the low-energy (zero

momentum transfer) limit,

Le-nucint =
GF√
2
jeµ jµ,nuc , (A.1)

with the Fermi coupling constantGF = 2.22254⋅10−14 Eha
3
0 and an implicit sum over all nucleons

(nuc), that is, all protons (p) and neutrons (n). Being a contact interaction, attention can be

restricted to one atomic center, say nucleus K, with ZK protons and NK neutrons. At this stage,

the generalized 4-currents jµ can be regarded as linear combinations of the generalized densities

ψ†Mψ with M denoting the Dirac matrices (see Tabs. 1.2 and 1.3). �e Dirac matrices and the

associated currents can be classi�ed according to the transformation under parity reversal as

polar vectors (V) and pseudoscalars (P) which change sign, and as axial vectors (A) and scalars

(S) which do not.

It can be shown52 that only V–A (polar vector minus axial vector) Fermi coupling is of

relevance and the corresponding electron and nucleon 4-currents that appear in Eq. A.1 are

179
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given by

jeµ = jeµ,V − jeµ,A (A.2)

= Ce
Vψ

†
e(α, 14×4)ψe − Ce

Aψ
†
e(Σ, γ5)ψe

jnucµ = jnucµ,V − jnucµ,A (A.3)

= Cnuc
V ψ†

nuc(0, 12×2)ψnuc − Cnuc
A ψ†

nuc(σ , 0)ψnuc.

In Eq. A.3 the so-called “nonrelativistic approximation”52 has been invoked which means to

neglect of the nucleon small component bispinors. For the Dirac matrices α, Σ, and γ5, see

Section 1.2, p. 31, for their explicit form.

Before giving the explicit coupling coe�cients C of Eqs. A.2 and A.3 and actually coupling

the electron and nucleon 4-currents, it is worthwhile to pause for a moment and study the

transformation under the parity operation of the space-like components (α, Σ, σ) and time-

like components (14×4, γ5, 12×2) and their combinations: α transforms as the coordinates which

change sign (V), matrices Σ and σ transform as rotations (A), 14×4 and 12×2 as S, and �nally γ5

is the pseudoscalar chirality matrix (P). �e four possible electron-nucleon combinations are

jeµ,V j
µ,nuc
V which transforms as S

− jeµ,V jµ,nucA V

− jeµ,A jµ,nucV P

jeµ,A j
µ,nuc
A A

�e parity-even S and A combinations can be dropped being practically unobservable due to

the minute size of the Fermi coupling constant GF in Eq. A.1. Only the parity-odd V and P

combinations shall be considered in the following. �ey are tiny, too. However, they distinguish

themselves from all other fundamental interactions which makes them observable in a suitable

experiment.
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Returning to Eqs. A.2 and A.3, the electron (e), up quark (u), and down quark (d) coupling

coe�cients52, 256 read as

Ce
V = 1 − 4 sin2 θW (A.4)

Cu
V = 1 − 8

3
sin2 θW (A.5)

Cd
V = 1 − 4

3
sin2 θW (A.6)

Ce
A = − 12 (A.7)

Cu
A =

1
2

(A.8)

Cd
A = − 12 , (A.9)

with the Weinberg parameter sin2 θW = 0.2397(13).242 �e p and n coupling coe�cients are

approximately52 given by∗

Cp
V = 2C

u
V + Cd

V (A.10)

Cn
V = 2C

d
V + Cu

V, (A.11)

with corresponding relations for Cp
A and Cp

A since protons consist of two u and one d and neu-

trons of two d and one u.

�e nucleon V-currents can be combined (added up) to the weak charge QK
w which allows

us to express the V current for nucleus K by

jKµ,V = (0,QK
w ρK), (A.12)

where ρK is the nuclear charge distribution (typically modeled by a Gaussian distribution), and

the weak charge QK
w is given by

QK
w = (2ZK + NK)Cu

V − (2NK + ZK)Cd
V (A.13)

= ZK(1 − 4 sin2 θW) − NK .

In contrast to jKµ,V, the combination of nucleon A-currents to form jKµ,A is less evident.256 Typi-

cally, jKµ,A is approximately given by

jKµ,A = (λKIKρK , 0) = (λKγK MKρK , 0), (A.14)

with the nucleus-dependent form factor λK on the order of unity256 and chosen as λK ≡ 1 in ac-

tual calculations. �e nuclear spin distribution is approximated by the nuclear Gaussian charge

∗ Quark currents are replaced by nucleon currents, weighted by the number of valence quarks present.52
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distribution scaled with the nuclear spin IK , or equivalently, scaled with the nuclear magnetic

momentMK and divided by the magnetogyric ratio γK .

We have gathered all ingredients to form the parity-odd combinations of electron and nu-

cleon 4-currents (Eqs. A.2 and A.3) and obtain the e�ective one-electron Hamiltonians

ĥi ,A = −GFC
e
A√
2

γ5∑
K

QK
w ρK(ri) (A.15)

and

ĥi ,V = −GFC
e
V√
2

α ⋅ ∑
K

λK
γK

MKρK(ri), (A.16)

respectively, withCe
A andC

e
V given in Eqs. A.7 andA.4. �e �rst Hamiltonian (ĥi ,A) is employed

in calculations of PV energy di�erences between enantiomers. �e second Hamiltonian (ĥi ,A)

is employed in calculations of PV e�ects on nuclear magnetic resonance parameters.

�e remaining part of this note will consider the NR limit of ĥi ,A and ĥi ,A for reference. For

this we employ the NR limit of the small component bispinor (see for instance Ref. 64),

lim
c→∞

2mc ∣ψS⟩ = (σ ⋅ p)∣ψL⟩, (A.17)

and evaluate expectation values of ĥi ,A and ĥi ,A (Eqs. A.15 and A.16). To avoid a overloaded

notation the expectation values are written using one-electron spinors ∣ψi⟩, however without
loss of generality.

For the expectation value of ĥi ,A we focus on the expectation value of γ5ρK(ri) given by

⟨ψi ∣γ5ρK(ri)∣ψi⟩ = ⟨ψL
i ∣12×2ρK(ri)∣ψS

i ⟩ + ⟨ψS
i ∣12×2ρK(ri)∣ψL

i ⟩ (A.18)

= ⟨ψL
i ∣[12×2ρK(ri), (σ ⋅ p)]+∣ψL

i ⟩
and the NR limit of cĥi ,A can be identi�ed as

lim
c→∞

cĥi ,A = − 1
2m

GFC
e
A√
2
∑
K

QK
w [12×2ρK(ri), (σ ⋅ p)]+. (A.19)

Here [⋯]+ denotes the anticommutator.

For the expectation value of ĥi ,V we focus on the expectation value of (α ⋅MKρK(ri)) given
by

⟨ψi ∣α ⋅MKρK(ri)∣ψi⟩ = ⟨ψL
i ∣[(σ ⋅MKρK(ri)), (σ ⋅ p)]+∣ψL

i ⟩. (A.20)

�e two scalar products that constitute the anticommutator in Eq. A.20 read as

(σ ⋅MKρK(ri))(σ ⋅ p) =MKρK(ri) ⋅ p + iσ ⋅ (MKρK(ri) × p) (A.21)

(σ ⋅ p)(σ ⋅MKρK(ri)) = p ⋅MKρK(ri) + iσ ⋅ (p ×MKρK(ri)), (A.22)



183

where the Dirac identity (Eq. 0.2) has been used. �e sum of the �rst right-hand side terms in

Eqs. A.21 and A.22 can be written as

MKρK(ri) ⋅ p + p ⋅MKρK(ri) =MK ⋅ [p, ρK(ri)]+. (A.23)

�e sum of the remaining right-hand side terms in Eqs. A.21 and A.22 can be simpli�ed using

the Levi-Civita antisymmetric permutation symbol єrst :∗

iσ ⋅ (MKρK(ri) × p) (A.24)

+iσ ⋅ (p ×MKρK(ri)) = iєlmnσlMK ,mρK(ri)pn + iєlnmσl pnρK(ri)MK ,m

= iєnlmσlMK ,mρK(ri)pn − iєnlmσl pnρK(ri)MK ,m

= −i(σ ×MK) ⋅ [p, ρK(ri)].
Consequently, the NR limit of cĥi ,V can be identi�ed as

lim
c→∞

cĥi ,V = − 1
2m

GFC
e
V√
2
∑
K

λK
γK
{MK ⋅ [p, ρK(ri)]+ − i(σ ×MK) ⋅ [p, ρK(ri)]}. (A.25)

∗ єrst = 1 (= 0) if rst is an even (odd) permutation of lmn, є = 0 if any index is repeated.
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AppendixB

Calculation of various densities in the Kramers restricted basis

I am greatly relieved that the universe is �nally explainable. I was

beginning to think it was me.

Woody Allen, Strung Out inMere Anarchy

�is note describes the calculation of various densities in the Kramers restricted basis. �is

will be done for the operator M which shall represent one of the 16 Dirac matrices (see Sec-

tion 1.3, p. 30). All other densities can then be constructed by linear combination of the appro-

priate densities ψ†Mψ. �ematrixM consists of two 2 × 2 blocks and therefore ψ†Mψ contains

the two contributions

ψ†Mψ = f ψL†MLXψX + gψS†MSYψY, (B.1)

where L represents the large and S the small component. �e pair (X, Y) is then either (L, S) or

(S, L), and f and g are scalar factors (which can be complex). �e explicit reference to a point

in space is omitted for notational ease.

It will be su�cient to discuss only the �rst right-hand side term in Eq. B.1

f ψL†MLXψX = f [ψLα⋆ ψLβ⋆]
⎡⎢⎢⎢⎢⎣
MLX

αα MLX
αβ

MLX
βα MLX

ββ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ψXα

ψXβ

⎤⎥⎥⎥⎥⎦
, (B.2)

which in the basis of Kramers paired fermion basis functions (AO basis) reads

f ψL†MLXψX = fΩLX
κλ[MLX

ααD
XL
λκ +MLX

αβD
XL
λκ̄ (B.3)

+MLX
βαD

XL
λ̄κ
+MLX

ββD
XL
λ̄κ̄
].
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Here ΩMN
κλ is the orbital overlap distribution ϕ†M

κ ϕN
λ and DNM

λκ the corresponding AO density

matrix (see Section 1.3, p. 32, for the de�nition of a Kramers paired basis). From now on a time

reversal symmetric density matrix is assumed:

D =

⎡⎢⎢⎢⎢⎣
Dλκ Dλκ̄−D⋆λκ̄ D⋆λκ

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

A B

−B⋆ A⋆

⎤⎥⎥⎥⎥⎦ . (B.4)

�is is not a restriction in practice since general matrices can be separated into time rever-

sal symmetric and antisymmetric parts and an antisymmetric matrix can be converted into a

symmetric one by extracting the imaginary phase (see Section 2.5, p. 57, for more details). For

this, densities corresponding to time reversal antisymmetric Dirac matrices (Tab. 1.2) will be

multiplied by the imaginary i. Eq. B.3 becomes then

f ψL†MLXψX = fΩLX
κλ[MLX

ααA
XL +MLX

αβB
XL (B.5)

−MLX
βαB

XL⋆ +MLX
ββA

XL⋆].
�e complex terms can be expressed using real and purely imaginary matrices. Tab. B.1 lists

the necessary density matrix blocks and factors for the evaluation of densities corresponding

to eight Dirac matrices. A multiplication with the β matrix can be achieved by switching the

sign of factor g. It is now clear that all densities can be (and are) evaluated using one single

routine which samples the appropriate density matrix blocks with the appropriate prefactors.

For instance to obtain the components of the current density times the imaginary ifrom the

velocity densities ψ†iαψ, f and g have to be multiplied with −ec. �e imaginary phase is intro-

duced because the matrices αx , αy, and αz are time reversal antisymmetric (see Tab. 1.4). Same

is done for the matrices Σx , Σy, and Σz (Tab. B.1). For the evaluation of corresponding density

gradients only ΩMN
κλ has to be adapted.



187

M D-block f g X Y

14×4 Re(A) 1 1 L S

iΣx Im(B) i i L S

iΣy Re(B) –1 –1 L S

iΣz Im(A) i i L S

γ5 Re(A) 1 1 S L

iαx Im(B) i i S L

iαy Re(B) –1 –1 S L

iαz Im(A) i i S L

Table B.1: Factors ( f , g), bispinor

blocks (X, Y), and density matrix

blocks de�ned in this note for the eval-

uation of various densities ψ†Mψ.
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AppendixC

Visualization of linear and nonlinear response by �nite

perturbation

Guy comes into a doctor’s o�ce.

He says, ’Doc, it hurts when I do this.’

�e doctor says, ’Don’t do it.’

�ink about that.

Woody Allen in Anything Else (2003)

�is note gives some ideas for the visualization of linear and nonlinear response to static

perturbations using the �nite perturbationmethod. �ese perturbations can be combined with

analytically induced frequency-dependent densities which are accessible within linear response

(Section 5.1).

All properties that can be calculated using the �nite perturbationmethod, and which imply

that certain densities change, can also be visualized in terms of density derivatives. Typically,

very simple relationships exist between such density derivatives and energy derivatives. To

see the connection consider as a simple example the (electron) charge density of Ne. In the

presence of an external electric �eld the charge density is modi�ed to speci�c values of the

perturbation amplitudes (= �eld strengths), and can be monitored. �is is done in Fig. C.1 for

several �eld strengths F of a weak electric �eld, with both positive and negative values. In the

limit ∣F ∣→ 0 these plots will approach the analytical density derivative (scaled by F). From the

induced �rst-order charge density ρ( j) with respect to the �eld amplitude F j at zero �eld, the

components αi j of the static electric dipole polarizability can be obtained by integration, scaled

with the appropriate component of the position (see Section 5.2), e.g.

αi j = ∫ dr riρ( j) = ∫ dr r jρ(i). (C.1)
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190 Visualization of linear and nonlinear response by �nite perturbation

In general, the perturbation should be chosen as large as necessary for numerical precision

and as small as possible for the perturbation theory to hold. More perturbations can be added

and each perturbation will increase the dimensionality of the problem by one. One way to re-

duce the dimensionality back to a distribution that can be visualized, is to express the variation

along one or several perturbations in terms of the Taylor expansion coe�cients, similarly to

static molecular properties that are expressed by Taylor expansions coe�cients of the energy.

However, in contrast to the energy derivatives, these expansion coe�cient plots are not just

numbers but actually functions of Taylor expansion coe�cients in space. For visualization of

such derivatives in practice one needs to perform polynomial �ts for typically half a million

series of points instead of for just one series of energies. �e advantage of real-space plots is the

possibility to visualize e.g. geometric derivatives of various densities and property densities (see

Section 5.6) without worries about orthonormality terms that would be needed in an analytical

approach.

�e possibilities and limitations have to be the same as in conventional �nite perturbation

approaches. We have tested the limitation imposed by the numerical precision and were able to

obtain densities representing up to sixth-order variations. �ese operations can be performed

independently of a speci�c quantum chemistry code as long as the density distribution is repre-

sented in some convenient format. Initially we have obtained these derivatives from a collection

of �les in GAUSSIAN191 cube �le format. For derivatives corresponding to di�use properties

this format is however not ideal because the precision of seven �oating point digits in each point

is not enough for a �nite perturbation approach. We could visually see the onset of numerical

noise. �is can be pointed out as an advantage over the pure energy derivative approach where

it is more di�cult to see a possible problem from one single number.
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Figure C.1: Change in the charge density of Ne in the presence of a weak external electric �eld (LDA,

uncontracted t-aug-cc-pVTZ). Solid (dotted) contour lines are plotted in the range from +0.0001 to
+0.001 (−0.0001 to −0.001) e/a30 in intervals of 0.0001 e/a30. �e dash-dotted contour line rep-

resents 0 e/a30. �e dimensions of the plots are 4 × 4 a0. �e electric �eld vector is oriented

along the ordinates of individual plots. From bottom to top the �eld strength is following the series

−0.003,−0.002,−0.001,+0.001,+0.002,+0.003 Eh/ea0.
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AppendixD

SDFT response: transformation between variable sets

Benny: Where you gonna get four fourths and a third?

Can’t you add?

Denny: I don’t do fractions. Alright?

Woody Allen’s Small Time Crooks (2000)

�e XC energy of a GGA-type functional can be de�ned in terms of the XC energy density

F according to

EGGA
XC = ∫ dr F(n↑, n↓, ∣∇n↑∣, (∇n↑ ⋅ ∇n↓), ∣∇n↓∣). (D.1)

�is variables set {n↑, n↓, ∣∇n↑∣, (∇n↑ ⋅ ∇n↓), ∣∇n↓∣)} is advantageous for the computational

evaluation of derivatives of F. Another, but equivalent set of scalar variables {n, s, Z ,Y , X},
with the de�nitions

n = n↑ + n↓ (D.2)

s = n↑ − n↓ (D.3)

Z = ∇n ⋅ ∇n (D.4)

Y = ∇n ⋅ ∇s (D.5)

X = ∇s ⋅ ∇s (D.6)

facilitates the derivation and an e�cient implementation of the closed-shell SDFT response

as discussed in Section 3.2, p. 66. �is note describes how the necessary expressions can be

transformed between these two sets and contains further below all necessary nonzero closed-

shell derivatives of F with respect to the variable set {n, s, Z ,Y , X} expressed in terms of the

derivatives with respect to {n↑, n↓, ∣∇n↑∣, (∇n↑ ⋅ ∇n↓), ∣∇n↓∣)}.
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Using the de�nitions in Eqs. D.2 and D.3, it is understood that n and s are complementary

variables to n↑ and n↓. �eir gradients are connected in a straightforward analogy according to

∇n = ∇n↑ +∇n↓ (D.7)

∇s = ∇n↑ −∇n↓. (D.8)

�ese expressions may be inverted,

n↑ =
1
2
(n + s) (D.9)

n↓ =
1
2
(n − s) (D.10)

∇n↑ = 1
2
(∇n +∇s) (D.11)

∇n↓ = 1
2
(∇n −∇s). (D.12)

Also the interconversion between {(∇n↑ ⋅∇n↑), (∇n↑ ⋅∇n↓), (∇n↓ ⋅∇n↓)} and {(∇n ⋅∇n), (∇n ⋅∇s), (∇s ⋅ ∇s)} is rather straightforward,
Z = (∇n ⋅ ∇n) = (∇n↑ ⋅ ∇n↑) + 2(∇n↑ ⋅ ∇n↓) + (∇n↓ ⋅ ∇n↓) (D.13)

Y = (∇n ⋅ ∇s) = (∇n↑ ⋅ ∇n↑) − (∇n↓ ⋅ ∇n↓) (D.14)

X = (∇s ⋅ ∇s) = (∇n↑ ⋅ ∇n↑) − 2(∇n↑ ⋅ ∇n↓) + (∇n↓ ⋅ ∇n↓), (D.15)

and accordingly

(∇n↑ ⋅ ∇n↑) = 1
4
(Z + 2Y + X) (D.16)

(∇n↑ ⋅ ∇n↓) = 1
4
(Z − X) (D.17)

(∇n↓ ⋅ ∇n↓) = 1
4
(Z − 2Y + X). (D.18)

In order to apply the chain rule and transform derivatives of F with respect to {n↑, n↓, ∣∇n↑∣,(∇n↑⋅∇n↓), ∣∇n↓∣)}, which are delivered by theDFT evaluatormodules of theDIRAC code,16, 113

to derivatives of F with respect to {n, s, Z ,Y , X}, which are required for the response module,

partial derivatives between these setswill be needed. �e�rst-order derivatives are summarized

in Tab. D.1. Using Tab. D.1, for instance ∂F
∂n is given by

∂F

∂n
=

∂F

∂n↑

∂n↑
∂n
+ ∂F

∂n↓

∂n↓
∂n

(D.19)

=
1
2
∂F

∂n↑
+ 1
2
∂F

∂n↓
,
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Table D.1: Partial derivatives between the variable sets {n↑, n↓, ∣∇n↑∣, (∇n↑ ⋅ ∇n↓), ∣∇n↓∣} and

{n, s, Z ,Y , X}.

n↑ n↓ ∣∇n↑∣ (∇n↑ ⋅ ∇n↓) ∣∇n↓∣ n↑ n↓ ∣∇n↑∣ (∇n↑ ⋅ ∇n↓) ∣∇n↓∣
n

∂n↑
∂n

∂n↓
∂n n 1

2
1
2

s
∂n↑
∂s

∂n↓
∂s s 1

2 − 1
2

Z
∂∣∇n↑∣
∂Z

∂(∇n↑⋅∇n↓)
∂Z

∂∣∇n↓∣
∂Z Z 1

4
1

2∣∇n↑∣
1
4

1
4

1
2∣∇n↓∣

Y
∂∣∇n↑∣
∂Y

∂(∇n↑⋅∇n↓)
∂Y

∂∣∇n↓∣
∂Y Y 1

2
1

2∣∇n↑∣ 0 − 1
2

1
2∣∇n↓∣

X
∂∣∇n↑∣
∂X

∂(∇n↑⋅∇n↓)
∂X

∂∣∇n↓∣
∂X X 1

4
1

2∣∇n↑∣ − 1
4

1
4

1
2∣∇n↓∣

which for a closed-shell reference simpli�es to

∂F

∂n
=

∂F

∂n↑
. (D.20)

As a second example, the derivative of F with respect to X, given by

∂F

∂X
=

∂F

∂∣∇n↑∣
∂∣∇n↑∣
∂X

+ ∂F

∂(∇n↑ ⋅ ∇n↓)
∂(∇n↑ ⋅ ∇n↓)

∂X
+ ∂F

∂∣∇n↓∣
∂∣∇n↓∣
∂X

(D.21)

=
1
4

1
2∣∇n↑∣

∂F

∂∣∇n↑∣ −
1
4

∂F

∂(∇n↑ ⋅ ∇n↓) +
1
4

1
2∣∇n↓∣

∂F

∂∣∇n↓∣ ,
simpli�es to

∂F

∂X
=
1
4

1∣∇n↑∣
∂F

∂∣∇n↑∣ −
1
4

∂F

∂(∇n↑ ⋅ ∇n↓) (D.22)

for a closed-shell reference.

�is exercise is trivial for the �rst-order partial derivatives. For higher order derivatives

this can rapidly become cumbersome since the restriction to closed-shell may only be imposed

at the end. �erefore, all other partial derivatives have been derived automatically. As a result

of this derivation, all 69 nonzero closed-shell derivatives of F with respect to the variable set

{n, s, Z ,Y , X} up to fourth-order (up to cubic response), expressed in terms of the derivatives

with respect to {n↑, n↓, ∣∇n↑∣, (∇n↑ ⋅ ∇n↓), ∣∇n↓∣)} are listed below. Remember however, that
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only derivatives up to second (third) order are needed for linear (quadratic) response. For

notational ease derivatives with respect to {n↑, n↓, ∣∇n↑∣, (∇n↑ ⋅ ∇n↓), ∣∇n↓∣)} are abbreviated
by FPQRST , which is de�ned as

FPQRST = [ ∂

∂n↑
]
P

[ ∂

∂n↓
]
Q

[ ∂

∂∣∇n↑∣]
R

[ ∂

∂∣∇n↓∣]
S

[ ∂

∂(∇n↑ ⋅ ∇n↓)]
T

F .

∂4F

∂n4
=
F40000

8
+
F31000
2
+
3 F22000

8
(D.23)

∂4F

∂s4
=
F40000

8
−
F31000
2
+
3 F22000

8
(D.24)

∂4F

∂Z4
=

F00103
64 ∣∇n↑∣

+
3 F00202

256 ∣∇n↑∣2
+

3 F00112
256 ∣∇n↑∣2

+
F00301

256 ∣∇n↑∣3
(D.25)

+
3 F00211

256 ∣∇n↑∣3
−

3 F00102
256 ∣∇n↑∣3

+
F00400

2048 ∣∇n↑∣4
+

F00310
512 ∣∇n↑∣4

+
3 F00220

2048 ∣∇n↑∣4
−

3 F00201
256 ∣∇n↑∣4

−
3 F00111

256 ∣∇n↑∣4
−

3 F00300
1024 ∣∇n↑∣5

−
9 F00210

1024 ∣∇n↑∣5
+

3 F00101
256 ∣∇n↑∣5

+
15 F00200

2048 ∣∇n↑∣6
+

15 F00110
2048 ∣∇n↑∣6

−
15 F00100

2048 ∣∇n↑∣7
+
F00004
256

∂4F

∂Y 4
=

F00400
128 ∣∇n↑∣4

−
F00310

32 ∣∇n↑∣4
+

3 F00220
128 ∣∇n↑∣4

−
3 F00300
64 ∣∇n↑∣5

(D.26)

+
3 F00210
64 ∣∇n↑∣5

+
15 F00200
128 ∣∇n↑∣6

−
9 F00110

128 ∣∇n↑∣6
−

15 F00100
128 ∣∇n↑∣7

∂4F

∂X4
= −

F00103
64 ∣∇n↑∣

+
3 F00202

256 ∣∇n↑∣2
+

3 F00112
256 ∣∇n↑∣2

(D.27)

−
F00301

256 ∣∇n↑∣3
−

3 F00211
256 ∣∇n↑∣3

−
3 F00102

256 ∣∇n↑∣3
+

F00400
2048 ∣∇n↑∣4

+
F00310

512 ∣∇n↑∣4
+

3 F00220
2048 ∣∇n↑∣4

+
3 F00201

256 ∣∇n↑∣4
+

3 F00111
256 ∣∇n↑∣4

−
3 F00300

1024 ∣∇n↑∣5
−

9 F00210
1024 ∣∇n↑∣5

−
3 F00101

256 ∣∇n↑∣5
+

15 F00200
2048 ∣∇n↑∣6

+
15 F00110

2048 ∣∇n↑∣6
−

15 F00100
2048 ∣∇n↑∣7

+
F00004
256
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∂4F

∂n3∂Z
=

F30100
32 ∣∇n↑∣

+
F30010
32 ∣∇n↑∣

+
3 F21100
32 ∣∇n↑∣

+
3 F21010
32 ∣∇n↑∣

(D.28)

+
F30001
16
+
3 F21001
16

∂4F

∂n3∂X
=

F30100
32 ∣∇n↑∣

+
F30010
32 ∣∇n↑∣

+
3 F21100
32 ∣∇n↑∣

+
3 F21010
32 ∣∇n↑∣

(D.29)

−
F30001
16
−
3 F21001
16

∂4F

∂n∂Z3
=

3 F10102
128 ∣∇n↑∣

+
3 F10012
128 ∣∇n↑∣

+
3 F10201

256 ∣∇n↑∣2
+

3 F10111
128 ∣∇n↑∣2

(D.30)

+
3 F10021

256 ∣∇n↑∣2
+

F10300
512 ∣∇n↑∣3

+
3 F10210

512 ∣∇n↑∣3
+

3 F10120
512 ∣∇n↑∣3

−
3 F10101

256 ∣∇n↑∣3
+

F10030
512 ∣∇n↑∣3

−
3 F10011

256 ∣∇n↑∣3
−

3 F10200
512 ∣∇n↑∣4

−
3 F10110

256 ∣∇n↑∣4
−

3 F10020
512 ∣∇n↑∣4

+
3 F10100
512 ∣∇n↑∣5

+
3 F10010
512 ∣∇n↑∣5

+
F10003
64

∂4F

∂n∂X3
=

3 F10102
128 ∣∇n↑∣

+
3 F10012
128 ∣∇n↑∣

−
3 F10201

256 ∣∇n↑∣2
−

3 F10111
128 ∣∇n↑∣2

(D.31)

−
3 F10021

256 ∣∇n↑∣2
+

F10300
512 ∣∇n↑∣3

+
3 F10210

512 ∣∇n↑∣3
+

3 F10120
512 ∣∇n↑∣3

+
3 F10101

256 ∣∇n↑∣3
+

F10030
512 ∣∇n↑∣3

+
3 F10011

256 ∣∇n↑∣3
−

3 F10200
512 ∣∇n↑∣4

−
3 F10110

256 ∣∇n↑∣4
−

3 F10020
512 ∣∇n↑∣4

+
3 F10100
512 ∣∇n↑∣5

+
3 F10010
512 ∣∇n↑∣5

−
F10003
64

∂4F

∂s3∂Y
=

F30100
16 ∣∇n↑∣

−
F30010
16 ∣∇n↑∣

−
3 F21100
16 ∣∇n↑∣

+
3 F21010
16 ∣∇n↑∣

(D.32)

∂4F

∂s∂Y 3
=

F10300
64 ∣∇n↑∣3

−
3 F10210
64 ∣∇n↑∣3

+
3 F10120
64 ∣∇n↑∣3

−
F10030

64 ∣∇n↑∣3
(D.33)

−
3 F10200
64 ∣∇n↑∣4

+
3 F10020
64 ∣∇n↑∣4

+
3 F10100
64 ∣∇n↑∣5

−
3 F10010
64 ∣∇n↑∣5

∂4F

∂Z3∂X
= −

F00103
128 ∣∇n↑∣

+
F00301

512 ∣∇n↑∣3
+

3 F00211
512 ∣∇n↑∣3

(D.34)

+
F00400

2048 ∣∇n↑∣4
+

F00310
512 ∣∇n↑∣4

+
3 F00220

2048 ∣∇n↑∣4
−

3 F00201
512 ∣∇n↑∣4

−
3 F00111

512 ∣∇n↑∣4
−

3 F00300
1024 ∣∇n↑∣5

−
9 F00210

1024 ∣∇n↑∣5
+

3 F00101
512 ∣∇n↑∣5
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+
15 F00200

2048 ∣∇n↑∣6
+

15 F00110
2048 ∣∇n↑∣6

−
15 F00100

2048 ∣∇n↑∣7
−
F00004
256

∂4F

∂Z∂X3
=

F00103
128 ∣∇n↑∣

−
F00301

512 ∣∇n↑∣3
−

3 F00211
512 ∣∇n↑∣3

+
F00400

2048 ∣∇n↑∣4
(D.35)

+
F00310

512 ∣∇n↑∣4
+

3 F00220
2048 ∣∇n↑∣4

+
3 F00201
512 ∣∇n↑∣4

+
3 F00111

512 ∣∇n↑∣4

−
3 F00300

1024 ∣∇n↑∣5
−

9 F00210
1024 ∣∇n↑∣5

−
3 F00101
512 ∣∇n↑∣5

+
15 F00200

2048 ∣∇n↑∣6

+
15 F00110

2048 ∣∇n↑∣6
−

15 F00100
2048 ∣∇n↑∣7

−
F00004
256

∂3F

∂n3
=
F30000
4
+
3 F21000

4
(D.36)

∂3F

∂Z3
=

3 F00102
64 ∣∇n↑∣

+
3 F00201

128 ∣∇n↑∣2
+

3 F00111
128 ∣∇n↑∣2

+
F00300

256 ∣∇n↑∣3
(D.37)

+
3 F00210

256 ∣∇n↑∣3
−

3 F00101
128 ∣∇n↑∣3

−
3 F00200
256 ∣∇n↑∣4

−
3 F00110

256 ∣∇n↑∣4

+
3 F00100
256 ∣∇n↑∣5

+
F00003
64

∂3F

∂X3
=

3 F00102
64 ∣∇n↑∣

−
3 F00201

128 ∣∇n↑∣2
−

3 F00111
128 ∣∇n↑∣2

+
F00300

256 ∣∇n↑∣3
(D.38)

+
3 F00210

256 ∣∇n↑∣3
+

3 F00101
128 ∣∇n↑∣3

−
3 F00200
256 ∣∇n↑∣4

−
3 F00110

256 ∣∇n↑∣4

+
3 F00100
256 ∣∇n↑∣5

−
F00003
64

∂4F

∂n2∂s2
=
F40000

8
−
F22000
8

(D.39)

∂4F

∂n2∂Z2
=

F20101
32 ∣∇n↑∣

+
F20011
32 ∣∇n↑∣

+
F11101

16 ∣∇n↑∣
+

F20200
128 ∣∇n↑∣2

(D.40)

+
F20110

64 ∣∇n↑∣2
+

F20020
128 ∣∇n↑∣2

+
F11200

64 ∣∇n↑∣2
+

F11110
64 ∣∇n↑∣2

−
F20100

128 ∣∇n↑∣3
−

F20010
128 ∣∇n↑∣3

−
F11100

64 ∣∇n↑∣3
+
F20002
32

+
F11002
32

∂4F

∂n2∂Y 2
=

F20200
32 ∣∇n↑∣2

−
F20110

16 ∣∇n↑∣2
+

F20020
32 ∣∇n↑∣2

+
F11200

16 ∣∇n↑∣2
(D.41)

−
F11110

16 ∣∇n↑∣2
−

F20100
32 ∣∇n↑∣3

−
F20010

32 ∣∇n↑∣3
−

F11100
16 ∣∇n↑∣3
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∂4F

∂n2∂X2
= −

F20101
32 ∣∇n↑∣

−
F20011
32 ∣∇n↑∣

−
F11101

16 ∣∇n↑∣
(D.42)

+
F20200

128 ∣∇n↑∣2
+

F20110
64 ∣∇n↑∣2

+
F20020

128 ∣∇n↑∣2
+

F11200
64 ∣∇n↑∣2

+
F11110

64 ∣∇n↑∣2
−

F20100
128 ∣∇n↑∣3

−
F20010

128 ∣∇n↑∣3
−

F11100
64 ∣∇n↑∣3

+
F20002
32
+
F11002
32

∂4F

∂s2∂Z2
=

F20101
32 ∣∇n↑∣

+
F20011
32 ∣∇n↑∣

−
F11101

16 ∣∇n↑∣
+

F20200
128 ∣∇n↑∣2

(D.43)

+
F20110

64 ∣∇n↑∣2
+

F20020
128 ∣∇n↑∣2

−
F11200

64 ∣∇n↑∣2
−

F11110
64 ∣∇n↑∣2

−
F20100

128 ∣∇n↑∣3
−

F20010
128 ∣∇n↑∣3

+
F11100

64 ∣∇n↑∣3
+
F20002
32

−
F11002
32

∂4F

∂s2∂Y 2
=

F20200
32 ∣∇n↑∣2

−
F20110

16 ∣∇n↑∣2
+

F20020
32 ∣∇n↑∣2

−
F11200

16 ∣∇n↑∣2
(D.44)

+
F11110

16 ∣∇n↑∣2
−

F20100
32 ∣∇n↑∣3

−
F20010

32 ∣∇n↑∣3
+

F11100
16 ∣∇n↑∣3

∂4F

∂s2∂X2
= −

F20101
32 ∣∇n↑∣

−
F20011
32 ∣∇n↑∣

+
F11101

16 ∣∇n↑∣
(D.45)

+
F20200

128 ∣∇n↑∣2
+

F20110
64 ∣∇n↑∣2

+
F20020

128 ∣∇n↑∣2
−

F11200
64 ∣∇n↑∣2

−
F11110

64 ∣∇n↑∣2
−

F20100
128 ∣∇n↑∣3

−
F20010

128 ∣∇n↑∣3
+

F11100
64 ∣∇n↑∣3

+
F20002
32
−
F11002
32

∂4F

∂Z2∂Y 2
=

F00202
128 ∣∇n↑∣2

−
F00112

128 ∣∇n↑∣2
+

F00301
128 ∣∇n↑∣3

−
F00211

128 ∣∇n↑∣3
(D.46)

−
F00102

128 ∣∇n↑∣3
+

F00400
512 ∣∇n↑∣4

−
F00220

512 ∣∇n↑∣4
−

3 F00201
128 ∣∇n↑∣4

+
F00111

128 ∣∇n↑∣4
−

3 F00300
256 ∣∇n↑∣5

+
F00210

256 ∣∇n↑∣5
+

3 F00101
128 ∣∇n↑∣5

+
15 F00200
512 ∣∇n↑∣6

−
F00110

512 ∣∇n↑∣6
−

15 F00100
512 ∣∇n↑∣7

∂4F

∂Z2∂X2
= −

F00202
256 ∣∇n↑∣2

−
F00112

256 ∣∇n↑∣2
+

F00102
256 ∣∇n↑∣3

(D.47)
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+
F00400

2048 ∣∇n↑∣4
+

F00310
512 ∣∇n↑∣4

+
3 F00220

2048 ∣∇n↑∣4
−

3 F00300
1024 ∣∇n↑∣5

−
9 F00210

1024 ∣∇n↑∣5
+

15 F00200
2048 ∣∇n↑∣6

+
15 F00110

2048 ∣∇n↑∣6
−

15 F00100
2048 ∣∇n↑∣7

+
F00004
256

∂4F

∂Y 2∂X2
=

F00202
128 ∣∇n↑∣2

−
F00112

128 ∣∇n↑∣2
−

F00301
128 ∣∇n↑∣3

+
F00211

128 ∣∇n↑∣3
(D.48)

−
F00102

128 ∣∇n↑∣3
+

F00400
512 ∣∇n↑∣4

−
F00220

512 ∣∇n↑∣4
+

3 F00201
128 ∣∇n↑∣4

−
F00111

128 ∣∇n↑∣4
−

3 F00300
256 ∣∇n↑∣5

+
F00210

256 ∣∇n↑∣5
−

3 F00101
128 ∣∇n↑∣5

+
15 F00200
512 ∣∇n↑∣6

−
F00110

512 ∣∇n↑∣6
−

15 F00100
512 ∣∇n↑∣7

∂4F

∂n2∂s∂Y
=

F30100
16 ∣∇n↑∣

−
F30010
16 ∣∇n↑∣

+
F21100
16 ∣∇n↑∣

−
F21010
16 ∣∇n↑∣

(D.49)

∂4F

∂n2∂Z∂X
=

F20200
128 ∣∇n↑∣2

+
F20110

64 ∣∇n↑∣2
+

F20020
128 ∣∇n↑∣2

+
F11200

64 ∣∇n↑∣2
(D.50)

+
F11110

64 ∣∇n↑∣2
−

F20100
128 ∣∇n↑∣3

−
F20010

128 ∣∇n↑∣3
−

F11100
64 ∣∇n↑∣3

−
F20002
32
−
F11002
32

∂4F

∂n∂s2∂Z
=

F30100
32 ∣∇n↑∣

+
F30010
32 ∣∇n↑∣

−
F21100
32 ∣∇n↑∣

−
F21010
32 ∣∇n↑∣

(D.51)

+
F30001
16
−
F21001
16

∂4F

∂n∂s2∂X
=

F30100
32 ∣∇n↑∣

+
F30010
32 ∣∇n↑∣

−
F21100
32 ∣∇n↑∣

−
F21010
32 ∣∇n↑∣

(D.52)

−
F30001
16
+
F21001
16

∂4F

∂n∂Z2∂X
= −

F10102
128 ∣∇n↑∣

−
F10012

128 ∣∇n↑∣
+

F10201
256 ∣∇n↑∣2

(D.53)

+
F10111

128 ∣∇n↑∣2
+

F10021
256 ∣∇n↑∣2

+
F10300

512 ∣∇n↑∣3
+

3 F10210
512 ∣∇n↑∣3

+
3 F10120

512 ∣∇n↑∣3
−

F10101
256 ∣∇n↑∣3

+
F10030

512 ∣∇n↑∣3
−

F10011
256 ∣∇n↑∣3

−
3 F10200
512 ∣∇n↑∣4

−
3 F10110

256 ∣∇n↑∣4
−

3 F10020
512 ∣∇n↑∣4

+
3 F10100
512 ∣∇n↑∣5

+
3 F10010
512 ∣∇n↑∣5

−
F10003
64
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∂4F

∂n∂Z∂Y 2
=

F10201
64 ∣∇n↑∣2

−
F10111

32 ∣∇n↑∣2
+

F10021
64 ∣∇n↑∣2

+
F10300

128 ∣∇n↑∣3
(D.54)

−
F10210

128 ∣∇n↑∣3
−

F10120
128 ∣∇n↑∣3

−
F10101

64 ∣∇n↑∣3
+

F10030
128 ∣∇n↑∣3

−
F10011

64 ∣∇n↑∣3
−

3 F10200
128 ∣∇n↑∣4

+
F10110

64 ∣∇n↑∣4
−

3 F10020
128 ∣∇n↑∣4

+
3 F10100

128 ∣∇n↑∣5
+

3 F10010
128 ∣∇n↑∣5

∂4F

∂n∂Z∂X2
= −

F10102
128 ∣∇n↑∣

−
F10012

128 ∣∇n↑∣
−

F10201
256 ∣∇n↑∣2

(D.55)

−
F10111

128 ∣∇n↑∣2
−

F10021
256 ∣∇n↑∣2

+
F10300

512 ∣∇n↑∣3
+

3 F10210
512 ∣∇n↑∣3

+
3 F10120

512 ∣∇n↑∣3
+

F10101
256 ∣∇n↑∣3

+
F10030

512 ∣∇n↑∣3
+

F10011
256 ∣∇n↑∣3

−
3 F10200
512 ∣∇n↑∣4

−
3 F10110

256 ∣∇n↑∣4
−

3 F10020
512 ∣∇n↑∣4

+
3 F10100
512 ∣∇n↑∣5

+
3 F10010
512 ∣∇n↑∣5

+
F10003
64

∂4F

∂n∂Y 2∂X
= −

F10201
64 ∣∇n↑∣2

+
F10111

32 ∣∇n↑∣2
−

F10021
64 ∣∇n↑∣2

(D.56)

+
F10300

128 ∣∇n↑∣3
−

F10210
128 ∣∇n↑∣3

−
F10120

128 ∣∇n↑∣3
+

F10101
64 ∣∇n↑∣3

+
F10030

128 ∣∇n↑∣3
+

F10011
64 ∣∇n↑∣3

−
3 F10200

128 ∣∇n↑∣4
+

F10110
64 ∣∇n↑∣4

−
3 F10020

128 ∣∇n↑∣4
+

3 F10100
128 ∣∇n↑∣5

+
3 F10010

128 ∣∇n↑∣5

∂4F

∂s2∂Z∂X
=

F20200
128 ∣∇n↑∣2

+
F20110

64 ∣∇n↑∣2
+

F20020
128 ∣∇n↑∣2

−
F11200

64 ∣∇n↑∣2
(D.57)

−
F11110

64 ∣∇n↑∣2
−

F20100
128 ∣∇n↑∣3

−
F20010

128 ∣∇n↑∣3
+

F11100
64 ∣∇n↑∣3

−
F20002
32
+
F11002
32

∂4F

∂s∂Z2∂Y
=

F10102
64 ∣∇n↑∣

−
F10012

64 ∣∇n↑∣
+

F10201
64 ∣∇n↑∣2

−
F10021

64 ∣∇n↑∣2
(D.58)

+
F10300

256 ∣∇n↑∣3
+

F10210
256 ∣∇n↑∣3

−
F10120

256 ∣∇n↑∣3
−

F10101
64 ∣∇n↑∣3

−
F10030

256 ∣∇n↑∣3
+

F10011
64 ∣∇n↑∣3

−
3 F10200

256 ∣∇n↑∣4
+

3 F10020
256 ∣∇n↑∣4

+
3 F10100

256 ∣∇n↑∣5
−

3 F10010
256 ∣∇n↑∣5
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∂4F

∂s∂Y∂X2
=

F10102
64 ∣∇n↑∣

−
F10012

64 ∣∇n↑∣
−

F10201
64 ∣∇n↑∣2

+
F10021

64 ∣∇n↑∣2
(D.59)

+
F10300

256 ∣∇n↑∣3
+

F10210
256 ∣∇n↑∣3

−
F10120

256 ∣∇n↑∣3
+

F10101
64 ∣∇n↑∣3

−
F10030

256 ∣∇n↑∣3
−

F10011
64 ∣∇n↑∣3

−
3 F10200

256 ∣∇n↑∣4
+

3 F10020
256 ∣∇n↑∣4

+
3 F10100

256 ∣∇n↑∣5
−

3 F10010
256 ∣∇n↑∣5

∂4F

∂Z∂Y 2∂X
= −

F00202
128 ∣∇n↑∣2

+
F00112

128 ∣∇n↑∣2
+

F00102
128 ∣∇n↑∣3

(D.60)

+
F00400

512 ∣∇n↑∣4
−

F00220
512 ∣∇n↑∣4

−
3 F00300
256 ∣∇n↑∣5

+
F00210

256 ∣∇n↑∣5

+
15 F00200
512 ∣∇n↑∣6

−
F00110

512 ∣∇n↑∣6
−

15 F00100
512 ∣∇n↑∣7

∂3F

∂n2∂Z
=

F20100
16 ∣∇n↑∣

+
F20010
16 ∣∇n↑∣

+
F11100
8 ∣∇n↑∣

+
F20001
8

(D.61)

+
F11001
8

∂3F

∂n2∂X
=

F20100
16 ∣∇n↑∣

+
F20010
16 ∣∇n↑∣

+
F11100
8 ∣∇n↑∣

−
F20001
8

(D.62)

−
F11001
8

∂3F

∂n∂s2
=
F30000
4
−
F21000
4

(D.63)

∂3F

∂n∂Z2
=

F10101
16 ∣∇n↑∣

+
F10011
16 ∣∇n↑∣

+
F10200

64 ∣∇n↑∣2
+

F10110
32 ∣∇n↑∣2

(D.64)

+
F10020

64 ∣∇n↑∣2
−

F10100
64 ∣∇n↑∣3

−
F10010

64 ∣∇n↑∣3
+
F10002
16

∂3F

∂n∂Y 2
=

F10200
16 ∣∇n↑∣2

−
F10110

8 ∣∇n↑∣2
+

F10020
16 ∣∇n↑∣2

−
F10100

16 ∣∇n↑∣3
(D.65)

−
F10010

16 ∣∇n↑∣3

∂3F

∂n∂X2
= −

F10101
16 ∣∇n↑∣

−
F10011
16 ∣∇n↑∣

+
F10200

64 ∣∇n↑∣2
(D.66)

+
F10110

32 ∣∇n↑∣2
+

F10020
64 ∣∇n↑∣2

−
F10100

64 ∣∇n↑∣3
−

F10010
64 ∣∇n↑∣3
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+
F10002
16

∂3F

∂s2∂Z
=

F20100
16 ∣∇n↑∣

+
F20010
16 ∣∇n↑∣

−
F11100
8 ∣∇n↑∣

+
F20001
8

(D.67)

−
F11001
8

∂3F

∂s2∂X
=

F20100
16 ∣∇n↑∣

+
F20010
16 ∣∇n↑∣

−
F11100
8 ∣∇n↑∣

−
F20001
8

(D.68)

+
F11001
8

∂3F

∂Z2∂X
= −

F00102
64 ∣∇n↑∣

+
F00201

128 ∣∇n↑∣2
+

F00111
128 ∣∇n↑∣2

(D.69)

+
F00300

256 ∣∇n↑∣3
+

3 F00210
256 ∣∇n↑∣3

−
F00101

128 ∣∇n↑∣3
−

3 F00200
256 ∣∇n↑∣4

−
3 F00110

256 ∣∇n↑∣4
+

3 F00100
256 ∣∇n↑∣5

−
F00003
64

∂3F

∂Z∂Y 2
=

F00201
32 ∣∇n↑∣2

−
F00111

32 ∣∇n↑∣2
+

F00300
64 ∣∇n↑∣3

−
F00210

64 ∣∇n↑∣3
(D.70)

−
F00101

32 ∣∇n↑∣3
−

3 F00200
64 ∣∇n↑∣4

+
F00110

64 ∣∇n↑∣4
+

3 F00100
64 ∣∇n↑∣5

∂3F

∂Z∂X2
= −

F00102
64 ∣∇n↑∣

−
F00201

128 ∣∇n↑∣2
−

F00111
128 ∣∇n↑∣2

(D.71)

+
F00300

256 ∣∇n↑∣3
+

3 F00210
256 ∣∇n↑∣3

+
F00101

128 ∣∇n↑∣3
−

3 F00200
256 ∣∇n↑∣4

−
3 F00110

256 ∣∇n↑∣4
+

3 F00100
256 ∣∇n↑∣5

+
F00003
64

∂3F

∂Y 2∂X
= −

F00201
32 ∣∇n↑∣2

+
F00111

32 ∣∇n↑∣2
+

F00300
64 ∣∇n↑∣3

(D.72)

−
F00210

64 ∣∇n↑∣3
+

F00101
32 ∣∇n↑∣3

−
3 F00200
64 ∣∇n↑∣4

+
F00110

64 ∣∇n↑∣4

+
3 F00100
64 ∣∇n↑∣5

∂2F

∂n2
=
F20000

2
+
F11000
2

(D.73)

∂2F

∂s2
=
F20000

2
−
F11000
2

(D.74)
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∂2F

∂Z2
=

F00101
8 ∣∇n↑∣

+
F00200

32 ∣∇n↑∣2
+

F00110
32 ∣∇n↑∣2

−
F00100

32 ∣∇n↑∣3
(D.75)

+
F00002
16

∂2F

∂Y 2
=

F00200
8 ∣∇n↑∣2

−
F00110
8 ∣∇n↑∣2

−
F00100
8 ∣∇n↑∣3

(D.76)

∂2F

∂X2
= −

F00101
8 ∣∇n↑∣

+
F00200

32 ∣∇n↑∣2
+

F00110
32 ∣∇n↑∣2

(D.77)

−
F00100

32 ∣∇n↑∣3
+
F00002
16

∂4F

∂n∂s∂Z∂Y
=

F20101
32 ∣∇n↑∣

−
F20011
32 ∣∇n↑∣

+
F20200

64 ∣∇n↑∣2
−

F20020
64 ∣∇n↑∣2

(D.78)

−
F20100

64 ∣∇n↑∣3
+

F20010
64 ∣∇n↑∣3

∂4F

∂n∂s∂Y∂X
= −

F20101
32 ∣∇n↑∣

+
F20011
32 ∣∇n↑∣

+
F20200

64 ∣∇n↑∣2
(D.79)

−
F20020

64 ∣∇n↑∣2
−

F20100
64 ∣∇n↑∣3

+
F20010

64 ∣∇n↑∣3

∂4F

∂s∂Z∂Y∂X
= −

F10102
64 ∣∇n↑∣

+
F10012

64 ∣∇n↑∣
+

F10300
256 ∣∇n↑∣3

(D.80)

+
F10210

256 ∣∇n↑∣3
−

F10120
256 ∣∇n↑∣3

−
F10030

256 ∣∇n↑∣3
−

3 F10200
256 ∣∇n↑∣4

+
3 F10020

256 ∣∇n↑∣4
+

3 F10100
256 ∣∇n↑∣5

−
3 F10010

256 ∣∇n↑∣5

∂3F

∂n∂s∂Y
=

F20100
8 ∣∇n↑∣

−
F20010
8 ∣∇n↑∣

(D.81)

∂3F

∂n∂Z∂X
=

F10200
64 ∣∇n↑∣2

+
F10110

32 ∣∇n↑∣2
+

F10020
64 ∣∇n↑∣2

−
F10100

64 ∣∇n↑∣3
(D.82)

−
F10010

64 ∣∇n↑∣3
−
F10002
16

∂3F

∂s∂Z∂Y
=

F10101
16 ∣∇n↑∣

−
F10011
16 ∣∇n↑∣

+
F10200

32 ∣∇n↑∣2
−

F10020
32 ∣∇n↑∣2

(D.83)

−
F10100

32 ∣∇n↑∣3
+

F10010
32 ∣∇n↑∣3
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∂3F

∂s∂Y∂X
= −

F10101
16 ∣∇n↑∣

+
F10011
16 ∣∇n↑∣

+
F10200

32 ∣∇n↑∣2
(D.84)

−
F10020

32 ∣∇n↑∣2
−

F10100
32 ∣∇n↑∣3

+
F10010

32 ∣∇n↑∣3

∂2F

∂n∂Z
=

F10100
8 ∣∇n↑∣

+
F10010
8 ∣∇n↑∣

+
F10001
4

(D.85)

∂2F

∂n∂X
=

F10100
8 ∣∇n↑∣

+
F10010
8 ∣∇n↑∣

−
F10001
4

(D.86)

∂2F

∂s∂Y
=

F10100
4 ∣∇n↑∣

−
F10010
4 ∣∇n↑∣

(D.87)

∂2F

∂Z∂X
=

F00200
32 ∣∇n↑∣2

+
F00110

32 ∣∇n↑∣2
−

F00100
32 ∣∇n↑∣3

−
F00002
16

(D.88)

∂F

∂n
= F10000 (D.89)

∂F

∂Z
=

F00100
4 ∣∇n↑∣

+
F00001
4

(D.90)

∂F

∂X
=

F00100
4 ∣∇n↑∣

−
F00001
4

(D.91)
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