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Chapter 1

Introduction

The scientific field of electronic structure theory concerns the motion of elec-
trons in the frame of nuclei. The equations that describe this motion result
from quantum mechanics. Unfortunately these equations are so complicated
that, except for the simplest systems, they cannot be solved exactly. Approx-
imations have to be made. This has resulted in a large arsenal of different
electronic structure methods, each with its own advantages and disadvan-
tages, and tailored to specific aims.

One is often not interested in the motion of the electrons themselves, but
in quantities (properties) that result from it. The aim of the work described
in this thesis is to calculate properties of small molecules as accurately as
possible. Most of these molecules contain one or more heavy elements. In
the vicinity of heavy nuclei, electrons might obtain such high velocities that
the theory of special relativity has to be included in the model used. Oth-
erwise, obtaining high accuracy is doomed to fail. An adequate description
of the effects of relativity must, however, take consideration of the two other
main ‘dimensions’ needed for an accurate theoretical description of molecular
properties: electron correlation and the basis set.

The molecular properties discussed in this thesis have either a comple-
mentary or a predictive value for experiments. In section 1.1 these properties
are introduced. In the following sections of this introductary chapter, the
three main factors involved in obtaining accurate theoretical values of these
molecular properties are described. In section 1.5 an overview of the other
chapters of this thesis is given.



2 Introduction

1.1 Molecular properties

A classification of quantities that allow a fruitful interplay between theory
and experiment has been made by Gauss[1]. For a molecule in a given elec-
tronic state, quantities of interest are:

1. Properties involving different points on the Born-Oppenheimer poten-
tial energy surface. Examples are reaction energies, dissociation ener-
gies, energy differences between different isomers, etc.

2. Properties that require information of one electronic state at a single
point on the potential energy surface. Examples of this kind of quan-
tities are the equilibrium structure, dipole moment, NMR parameters,
etc.

3. Properties that characterize transitions between different electronic
states. Examples of these are electronic excitation energies, radiative
life times, electron affinities, etc.

In this thesis we will focus on properties of the second kind, although we
sometimes also consider several points of the Born-Oppenheimer potential
energy surface. For calculations of properties of this kind, a distinction can be
made between frequency-independent and frequency-dependent properties.
In this thesis only frequency-independent properties will be considered.

Applying a set of frequency independent perturbations, with field streng-
ths λ, to a molecular electronic system, its energy can be written as

E (λ) = E(0) + λTE(1) +
1

2
λTE(2)λ + ... . (1.1)

The expansion coefficients E(n) are the molecular properties of interest
and describe the response of the molecular electronic system to the external
perturbations. E(0) corresponds to the unperturbed energy of the system,
E(1) corresponds to first-order properties and can be obtained by differenti-
ation of the energy at perturbation strength zero

E(1) =
dE

dλ

∣∣∣∣
λ=0

. (1.2)

Differentiation of the energy to second order gives us second-order properties

E(2) =
d2E

dλ2

∣∣∣∣
λ=0

, (1.3)

etc.
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Examples of first-order properties are the molecular gradient, electric field
gradient, multipole moments, i.e. the dipole moment, quadrupole moment,
octupole moment, etc. Examples of second-order properties are the nuclear
magnetic shielding, indirect spin-spin coupling constant, dipole-polarizability,
etc.

In this thesis the calculation of first-order molecular properties is dis-
cussed. Two properties for which calculations have been performed have
already been mentioned in the previous paragraph: the electric field gra-
dient, and the dipole moment. Another property that has been tackled is
parity-violation energy. These properties will be described in some detail in
the following subsections. In each case the basis functions do not depend on
the perturbation that is applied, in contrast to, for example, the molecular
gradient. However, before introducing these properties we will briefly say
something about the way static molecular properties are calculated.

There are two approaches to the calculation of static molecular proper-
ties: numerical and analytical1. Both methods are used in the applications
described in this thesis. Advantages and disadvantages of each approach can
be found in reference [1] and [2]. In the numerical method the derivatives are
calculated via finite-differentiation techniques, e.g. in the case of a first-order
property:

dE

dλ

∣∣∣∣
λ=0

=
E(+∆λ)− E(−∆λ)

2∆λ
, (1.4)

where ∆λ is an appropriately chosen field strength2.
In the analytical method, an analytical expression for the corresponding

derivative is derived and subsequently implemented within a computer code.
An abundance of information on this topic can be found in the literature (see,
for example, [1], [2] and [3]) and in chapter 2 of this thesis. In the analytical
method, a distinction has to be made between so called variational and non-
variational methods. For variational methods, like Hartree-Fock, density
functional theory and the multi-configuration self consistent field method,
the electronic energy is fully optimized with respect to the electronic pa-
rameters that describe the wavefunction. First-order molecular properties
are very simple to calculate with variational methods since no evaluation
of the response of the wavefunction is needed. First-order properties can
simply be calculated as expectation values. In the case of a non-variational
method, like Møller-Plesset second-order perturbation theory and coupled-
cluster theory, the electronic energy is not variational with respect to the

1A combination of these methods is also possible.
2Note that in equation (1.4), for sake of convenience, λ is a scalar. We apply only one

perturbation. In equation (1.2) it is a vector.
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electronic parameters that describe the wavefunction. Within these meth-
ods the calculation of first-order molecular properties requires extra work.
An extra perturbation-independent equation has to be solved to include the
response of the wavefunction to the applied perturbation.

1.1.1 Electric field gradients

A nucleus with a spin quantum number greater than 1
2

possesses an electric
quadrupole moment. One can think of this in terms of an ellipsoidal charge
distribution of the nucleus. Electric quadrupoles do not interact with spa-
tially uniform electric fields, but with the gradient of an electric field[4]. The
electric field gradient at a nucleus is a measure of a non-spherically symmetric
distribution of local electronic charge.

The nuclear quadrupole coupling energy, in atomic units, due to the
quadrupole moment of nucleus X is given by the relationship

E (X) =
1

2
Tr (q (X )Q (X )) , (1.5)

where q (X) is the electric field gradient tensor at nucleus X and Q (X) the
nuclear quadrupole moment tensor of this nucleus.

The operator for the electric field gradient (EFG) at nucleus X is given
by

q̂αβ (X) =
∑
Y 6=X

ZY
3RXY αRXY β − δαβR

2
XY

R5
XY

−
∑

i

3riXαriXβ − δαβr
2
iX

r5
iX

, (1.6)

where ZY is the charge of the neighbouring atom Y , RXY is the position
vector of nucleus X relative to Y and riX the position vector of electron i
relative to X. Greek letter subscripts represent Cartesian directions.

For diatomic molecules the energy expression, equation (1.5), reduces to

E (X) =
1

4
qzz (X)Q (X) , (1.7)

with the z-axis chosen along the molecular bond. It is customary to call the
quantity Q = 2Qzz − Qxx − Qyy simply the ‘nuclear quadrupole moment’
(NQM)[4].

Quadrupolar nuclei are relatively unpopular in nuclear magnetic reso-
nance (NMR) studies since the coupling of the quadrupole moment with the
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EFG causes efficient spin relaxation, which results in linebroadening. An-
other major consequence of quadrupolar relaxation is the loss of multiplet
structure for spins that are scalar-coupled to quadrupolar nuclei[5].

The most common experimental techniques where the coupling of the
quadrupolar nuclei with the EFG is used are nuclear quadrupole resonance
(NQR) (solids, oriented molecules in liquid crystals), Mössbauer spectroscopy
(solids) and microwave spectroscopy (gas phase molecules). The advantage
of the EFG is that it is very sensitive to changes of the electron distribu-
tion. A spectacular example of this was recently shown by Evans et al.[6]
in microwave spectra of AuCl, Ar-AuCl and Kr-AuCl. While the nuclear
quadrupole couplings constant (NQCC) of Au has the value +9.6 MHz in
AuCl it changes sign in the noble gas-AuCl complexes, being -259.8 MHz
and -349.9 MHz for Ar-AuCl and Kr-AuCl respectively.

The availability of accurate nuclear quadrupole moments is important for
several reasons: to test nuclear models for stable isotopes in nuclear physics,
in studies of molecular dynamics in systems where nuclear quadrupole effects
determine the spin-lattice relaxation time, and simply since it allows an accu-
rate experimental determination of the EFG. Reference values of NQMs have
been tabulated by Pyykkö in 2001[7]. A method that has become popular
for the accurate determination of NQMs in recent years is the combination of
NQCCs from high-resolution spectroscopy with accurate EFGs from quan-
tum chemical calculations on diatomic molecules, an example of this can be
found in references [8] and [9] and in chapters 3 and 4 of this thesis.

1.1.2 Dipole moments

When a uniform electric field, F, is present the energy of a molecular system
can be written as

E (F) = E(0) − FT µ− 1

2
FT αF + ... , (1.8)

where µ is the permanent dipole moment at zero field:

µ = − dE

dF

∣∣∣∣
F=0

(1.9)

and α is the dipole-polarizability.
The operator we need to calculate the dipole moment in direction α is

the dipolar operator

µ̂α =
∑
K

ZKRKα −
∑

i

riα, (1.10)
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where the first summation is over the nuclei with charges ZK and position
vectors RK , and the second summation is over the electrons with position
vectors ri.

Calculating the dipole moment for a whole range of internal coordinates
makes it possible to construct a dipole moment surface, µ (R). Obtaining
wavefunctions for the nuclear motion on the Born-Oppenheimer surface, to-
gether with the dipole moment surface, allows for subsequent calculation
of rotation-vibration transition intensities[10, 11], and hence the rotation-
vibration spectrum can be simulated. Calculation of a whole dipole moment
surface and the solution of the quantum mechanical nuclear motion prob-
lem is however restricted to few atom systems. An example of this is the
water molecule, see references [12] and [13] and chapter 6. However, to
simulate the intensities of the vibrational spectrum it is often sufficient to
calculate the first derivative of the dipole moment with respect to the modes
of interest[14, 15].

1.1.3 Parity-violation energies

A molecule is said to be chiral if it is not superposable with its mirror image.
Chirality is one of the most important phenomena in molecular sciences.
It was not without reason that in 2001, exactly 100 years after the first
Noble prize in chemistry was given to the Dutchman J. A. van ’t Hoff3, a
shared Noble prize was given to W. S. Sharpless and R. Noyori for their
work on chirally catalyzed hydrogenation reactions, and to K. B. Sharpless
for his work on chirally catalyzed oxidation reactions. The main reason why
chirality is so important in chemistry is the different biological activities
of mirror image compounds, a fascinating example of which is the taste of
carvone: while the D-form has a caraway taste, the L-form tastes minty.

A chiral molecule can be converted into its mirror image by a space inver-
sion followed by a rotation through an angle π. The operator that performs
a space inversion, thereby reflecting the spatial coordinates of every particle
at the origin, (r → −r), is called the parity operator, P . If P commutes
with the Hamiltonian of the system, Ĥ, then the physics is the same regard-
less of whether it is described in a left- or right-handed coordinate system.
This kind of symmetry is called parity. If, say, we have two chiral states,
|L〉 and |R〉, and the Hamiltonian commutes with P , then |L〉 and |R〉 are
obviously not eigenstates of the Hamiltonian. The eigenstates are plus- and

3van ’t Hoff proposed that carbon was tetraedrically surrounded. This concept ex-
plained the experiments on optical activity of Louis Pasteur. However, van ’t Hoff received
the Noble prize for another subject: the laws of chemical dynamics and osmotic pressure
in solution.
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minus-combinations of these handed states. Hund[16] attributed the presence
of chiral molecules to the very long time required for an initially prepared
handed state to change to the state of opposite handedness. This, however,
does not explain why one can bottle the left- and right-handed forms of a
chiral compound but not their coherent superposition[17]. An answer to this
question might be the presence of parity-violating interactions[18].

In the 1950s it was discovered that parity is violated in nuclear physical
processes that are governed by the weak interaction[19, 20]. In molecules,
however, by far the the most important force is the electromagnetic force,
and at first sight it is not clear how the parity violating weak force might
affect molecular systems. A connection between these two forces was given
in the 1960s by Glashow, Weinberg and Salam[21–23], with the unification
of the weak and electromagnetic interaction within the electroweak model.
The effects of the parity-violating weak interaction are, however, so small
that up to now experimentalists have not been able to detect the effect in
molecular systems. Recent calculations of parity-violation effects for the C-
F stretching mode of chiral methyl fluorides indicate that the resolution of
current precision optical spectroscopy has to be improved by about two or
three orders of magnitude if the effect is to be detected[24]. This makes
the search for the breakdown of mirror image symmetry one of the most
challenging tasks for molecular spectroscopists.

Since the effect of the parity-violating weak interaction on molecules is
so small, the use of perturbation theory seems to be the natural choice for
calculating it. The question is then: what is the (effective) perturbation
Hamiltonian needed? To answer this, one has to start from the standard
model of physics. A detailed route from the current standard model of physics
to the Hamiltonians used in parity-violation calculations can be found in a
nice overview by Berger[25]. Here we will not go into detail, just give the
operator. Within the four-component Dirac-Coulomb method4, the operator
commonly used for the calculation of parity-violation energies, EPV, is the
nuclear spin-independent P-odd operator[26],

Ĥp =
GF

2
√

2

∑
i,n

QW,nγ
5
i %n (ri) , (1.11)

where the summations run over the electrons i and the nuclei n. GF =
1.166 37 × 10−11 MeV−2 = 2.222 55−14 a.u. is the Fermi coupling constant,
the pseudo-scalar γ5 chirality operator is given by

γ5 =

(
0 I
I 0

)
, (1.12)

4See section 1.2 for more information about four-component methods.
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where I and 0 are the 2×2 unit and zero matrix, respectively. The normalized
nucleon density5 is %n andQW,n = −Nn+Zn

(
1− 4sin2θW

)
is the weak charge

of nucleus n with Nn neutrons and Zn protons. For the terms depending on
the Weinberg mixing angle θW , we used the value sin2θW = 0.2319. Note
that Ĥp in this case is represented by a 4× 4 matrix.

Using the Dirac-Coulomb formalism, where spin-orbit coupling is included
in a variational manner, EPV can simply be calculated as a first-order prop-
erty. In a non-relativistic or scalar-relativistic framework, the equivalent of
equation 1.11 is approximately given by[27]:

Ĥnr
p ≈

GF

4
√

2

∑
i,n

QW,n [σi · pi, %n (ri)]+ , (1.13)

where [a, b]+ is the anticommutator of a and b, σi are the Pauli spin matrices
(see section 1.2) and pi is the electron momentum operator. Since this opera-
tor is purely imaginary, the expectation value for a non- or scalar-relativistic
wavefunction is zero. This problem can be circumvented by using response
theory, with the spin-orbit operator as the perturbation that mixes imaginary
character into the wavefunction. The disadvantage of such an approach is
clearly that EPV has to be calculated as a second-order property, whereas in
the Dirac-Coulomb formalism it can be calculated as a first-order property.

Within the Dirac-Coulomb formalism, this implies that EPV can be cal-
culated simply by taking the expectation value of Ĥp, if we have an exact
wavefunction or a wavefunction obtained using a variational method. If we
have two molecular states, |Ψ〉 and P|Ψ〉, related by parity inversion (i.e.
they are each others mirror image), then,

EPV = 〈Ψ|Ĥp|Ψ〉 = −〈PΨ|Ĥp|PΨ〉. (1.14)

The parity-violating operator lifts the energy of one enantiomer by EPV,
and lowers the energy of its mirror image by the same amount. The parity-
violation energy difference between the two mirror images is thus

∆EPV = 2|EPV|. (1.15)

Recently, calculations have been performed with the goal to find suitable
candidates to measure the effect of parity-violation in experiment [24, 28–
30]. In a later stage, theory will also be needed to analyze and interpret the
results of such experiments.

5In the limiting case of a point nuclear charge this is a three-dimensional Dirac delta
function.
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1.2 Relativistic electronic structure theory

The special theory of relativity is based on two postulates:

1. The laws of physics are the same in all inertial frames.

2. The velocity of light in the vacuum c is a fundamental constant and
thus the same in all intertial frames.

Incorporating the consequences of these postulates in the theory of quantum
mechanics results in relativistic quantum mechanics. The difference between
results obtained using a relativistic model and a non-relativistic model are
called ‘relativistic effects’. These effects are not real physical effects, but
result from the use of different models in describing physical phenomena.

By now it is well established that we need to use a relativistic model
in the quantitative description of the electronic structure of molecules con-
taining heavy elements. If extremely high accuracy is demanded, relativistic
effects might even play a role for molecules that contain only light elements.
A distinction can be made between scalar relativistic effects and spin-orbit
coupling (SOC) effects. Scalar relativistic effects arise because in the vicinity
of the (heavy) nucleus electrons acquire high velocities, a substantial fraction
of the velocity of light. SOC effects result from the coupling of spin degrees
of freedom with orbital motion. SOC phenomena are of symmetry breaking
nature.

In the next subsections some aspects of relativistic electronic structure
theory are discussed. A more comprehensive overview of this topic can be
found in the two books edited by Schwerdtfeger[31, 32].

1.2.1 The Dirac equation

The equation for a single particle (an electron in our case) in an external
potential, −φ(r), that moves in accordance with quantum mechanics and
special relativity is the Dirac equation[33]:

ĥDψ = i
∂ψ

∂t
. (1.16)

with6

ĥD = βc2 + cα · p− φ (r) (1.17)

6The vector potential, A, has been left out, because it is not relevant for the following.
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Where p is the momentum operator. In the standard representation, α is
given by

αi =

(
0 σi

σi 0

)
, (1.18)

with 0 a 2× 2 zero matrix and σi, i = x, y, z, are the Pauli spin matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.19)

β is given by

β =

(
I 0
0 −I

)
. (1.20)

In the work described in this thesis we restrict ourselves to potentials that
are time-independent. This means that we can use the time-independent
Dirac equation7

ĥDψ = Eψ. (1.21)

Since the α and β matrices are 4×4 matrices, the solutions of this eigenvalue
equation are four-component wavefunctions,

ψ =


ψLα

ψLβ

ψSα

ψSβ

 . (1.22)

The components with a superscript L correspond to the ‘Large’ component,
the ones with superscript S correspond to the ‘Small’ component.

In non-relativistic quantum chemistry, it is common to talk about ‘or-
bitals’, 1-component 1-electron wavefunctions. The solution of the Dirac
equation is a four-component vector, it is common to use in this case the
term ‘spinor’ instead of orbital.

If the Dirac equation is solved for a free particle, i.e. φ(r) = 0 for all
r, we get two kinds of solutions: solutions with eigenvalues less than −mc2
and solutions with eigenvalues greater than +mc2. Our main interest is in
the positive energy solutions. For the positive energy solutions, the upper
components (ψL) have a large amplitude and the lower components (ψS) have
a small amplitude.

7From this point we will simply refer to this equation as ‘the Dirac equation’.
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In non-relativistic quantum mechanics, the variation principle is a very
useful concept. In the Dirac theory the formulation of such a variational
formalism is problematic because if the negative energy continuum is empty
electrons will fall into it under emission of photons. Dirac resolved this
dilemma in 1929 by postulating that the negative energy states are com-
pletely filled[34]. If an electron is excited from the negative energy contin-
uum a ‘hole’ is left behind. The hole behaves as a particle with the same
mass as an electron but with opposite charge. The negative energy states
are therefore connected with positrons. The filling of the negative energy
continuum implies that the ‘vacuum’ is infinitely charged and has an infinite
energy. This awkward property can be solved by going one step further and
using normal ordered operators, which means that the vacuum expectation
value of the corresponding operator is subtracted from the operator. The
effect is that, although filled, the charge and energy of the vacuum are zero.

In programs that employ the Dirac Hamiltonian one uses the empty Dirac
approach, i.e. the negative continuum is not filled. In a four-component
Hartree-Fock calculation, for example, the desired electronic state is an ex-
cited state to which one converges by using vector selection by implicitly
projecting out negative energy states[35]. This is equivalent to employing a
mini-max principle[36] where the energy is minimized with respect to positive
energy parameters and maximized with respect to negative energy parame-
ters.

1.2.2 Many-electron relativistic theory

In this thesis only calculations on systems containing more than one electron
are considered. This means that the interaction between electrons has to be
taken into account. The Hamiltonian for the complete electron-electron inter-
action can be obtained from quantum electrodynamics (QED)[37]. However,
this interaction can not be written in closed form, and can only be obtained
from time-dependent perturbation theory. For practical purposes approxima-
tions to the electron-electron interaction have to be made. Here we restrict
ourselves to interactions in the lowest order. The interaction of one electron
with another via the exchange of a photon with frequency ωαγ is[38]

v̂ij,αγ =

1

rij

−
(

αi ·αj

rij

exp(iωαγrij) + (αi · ∇i)(αj · ∇j)
exp(iωαγrij)− 1

ω2
αγrij

)
,

(1.23)

in case the Coulomb gauge is used (∇ ·A = 0). It is a good approximation
to let ω → 0, in which case the electron-electron interaction reduces to the
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Coulomb-Breit interaction[39]

ĝCoulomb−Breit(i, j) =
1

rij

−
(

αi ·αj

rij

+
1

2
(αi · ∇i)(αj · ∇j)rij

)
. (1.24)

The first term is the well known Coulomb interaction, which also appears in
non-relativistic calculations. The term between brackets is the Breit interac-
tion. The first term of the Breit interaction is called the Gaunt interaction
since it was also derived by Gaunt in 1929[40]. The Gaunt interaction is
a current-current interaction and contains spin-spin, orbit-orbit and spin-
other-orbit contributions. The second term of the Breit interaction is called
the gauge term and arises from the retardation of the interaction due to the
finite speed of light. This term doesn’t appear when one uses the Feynman
gauge.

The Coulomb interaction is the lowest order interaction in perturba-
tion theory. The Breit interaction comes in order c−2 in the perturba-
tion expansion and is neglected in many four-component calculations8. All
four-component results reported in the following have been performed us-
ing dirac[41]. In this program, only the non-relativistic Coulomb electron-
electron interaction is implemented.

The final Hamiltonian that we will use for our relativistic calculations on
molecules in the Born-Oppenheimer reference frame is the following

ĤDC =
∑

i

ĥD (i) +
1

2

∑
i6=j

ĝCoulomb (i, j) + V̂NN , (1.25)

where we have a summation over one-electron Dirac Hamiltonians, the Cou-
lomb electron-electron interaction, and the classical repulsion of nuclei, V̂NN .
This Hamiltonian is called the Dirac-Coulomb Hamiltonian.

The bottleneck in quantum-chemical calculations is the calculation of the
electron-electron interaction. It is common practice to expand molecular
orbitals (MO) (or molecular spinors (MS)), ψI , as a linear combination of a
set of trial functions, a basis set {χµ},

ψI =
∑

µ

CµIχµ (1.26)

where {CµI} is a set of expansion coefficients that need to be determined.
Due to this strategy one encounters the so called two-electron integrals

(µν|κρ) =

∫ ∫
χµ(r1)χν (r1)

1

r12

χκ(r2)χρ (r2) dr1dr2. (1.27)

8In most four-component programs it’s also not implemented.
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In a four-component calculation the basis set used for the evaluation of the
small component is different from the basis set for the large component (see
section 1.4). The basis set for the large component is similar in size to that for
a non-relativistic calculation. However, the basis set for the small component
is about 2 to 3 times larger than the large component basis. In calculations
where the Dirac-Coulomb Hamiltonian is employed, three different classes
of two electron integrals appear: integrals over only the large component,
(LL|LL); integrals where the basis set of one electron are of L type and the
basis set for the other electron are of S type, (LL|SS) and (SS|LL); and a
class of the integrals of (SS|SS) type. It is evident that the presence of such
extra integrals over the small component makes four-component calculations
much more expensive than non-relativistic calculations.

The situation for the four-component methodology gets even worse if we
realize that, unless magnetic interactions are present, in non-relativistic cal-
culations we only have to deal with real numbers, while in four-component
calculations it can happen that we have to work with complex numbers,
depending on the symmetry of the system under consideration. Another
difference is that the non-relativistic Hamiltonian doesn’t have an explicit
dependence on spin, which means that orbitals can be split in a product of
a spatial part and a spin part. As a consequence, the spin part can be inte-
grated analytically, and the sixteen two-electron integrals can be reduced to
one. In the Dirac-Coulomb Hamiltonian, spin and spatial degrees of freedom
are coupled, the so called spin-orbit coupling (SOC), and we can not factorize
the spin degrees of freedom out. Fortunately, some reduction in computa-
tional work can be gained by exploiting time-reversal symmetry, from which
it can be shown that certain kinds of two-electron integrals are related. See
reference [42] and [43] for more details.

The use of point group symmetry can reduce the computational costs of
electronic structure calculations significantly. In non-relativistic theory we
only have to consider the point group symmetry operations that work on the
spatial coordinates of the molecule. The Schrödinger Hamiltonian is invariant
under these operations. However, the Dirac-Coulomb Hamiltonian is not.
Since the spin and spatial degrees are coupled, the symmetry operations
that leave the Dirac-Coulomb Hamiltonian invariant are a product of spatial
and spin operations. As a result the number of symmetry operations is
doubled, and the groups are called double groups. Besides the irreducible
representations (irreps) that are used in non-relativistic theory − the boson
irreps − we also have irreps that describe the one-electron functions of the
Dirac-Coulomb Hamiltonian: the fermion irreps. Unfortunately the number
of fermion irreps is not the same as the number of boson irreps. An example
is the symmetry group of water: C2v. While C2v has four different boson
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irreps, it only has one fermion irrep. This means that fewer two-electron
integrals are zero on symmetry grounds. More about double groups can be
found in the literature, in [44], [45] and [46], for example.

Since there is quite a difference in the costs of a full Dirac-Coulomb
calculation and a non-relativistic calculation, it is interesting to look for
methods that take relativistic effects into account in an approximate but
more efficient way than the full Dirac-Coulomb method. Approximations to
Dirac-Coulomb calculations are discussed in the next section.

1.2.3 Approximate methods

One way to reduce the computational effort is to make approximations within
the four-component framework. This has the advantage that the accuracy of
approximations can easily be tested, and results can be kept close to those
of the full four-component calculations. Following this route most compu-
tational time can be saved by approximating two-electron integrals over the
small component. In most of the applications described in this thesis, we
simply neglected the (SS|SS) integrals, since their contribution is often neg-
ligible. The effect of (SS|SS) integrals on the energy can approximately be
accounted for using a simple Coulombic correction[47]. Due to the locality of
the small component wavefunction around the nuclei it is physically well jus-
tified to make even more severe approximations, and neglect all two-electron
integrals that have small component basis functions centered on different nu-
clei, the so called one-center approximation[48, 49]. More development in
this direction might be expected in the near future, thereby extending the
applicable range of four-component algorithms[50].

As mentioned above the coupling between spatial and spin degrees of free-
dom (SOC) is another factor making DC calculations way more expensive
than non-relativistic calculations. However, spin-free relativistic effects, also
called scalar-relativistic effects dominate the relativistic corrections to elec-
tronic structure in most closed shell systems. A reasonable approximation
would seem to be to neglect the spin-dependent parts of the Hamiltonian.
To this end the spin-dependent and spin-independent part of the Dirac equa-
tion have to be separated. Within a four-component framework, Dyall[51]
achieved this using the so called modified Dirac operator, which was first
introduced by Kutzelnigg[52]. At this point it is also worthwhile mention-
ing that SOC operators cannot be defined unambiguously, but depend on
the method of separation of spin-free and spin-dependent terms, as has been
demonstrated nicely by Visscher and van Lenthe[53].

Another strategy is to treat relativistic effects in a perturbative manner.
One perturbative approach is the Direct Perturbation Theory (DPT) method
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developed by Kutzelnigg[54, 55]. In this method the metric is changed, after
which the resulting equation is expanded in c−2.

An old, but often used perturbation method, is based on the elimination
of the small component followed by expansion of the results in (E− V̂ )/mc2.
To first order, this gives the so-called Breit-Pauli operator[56]. However, this
operator contains singular terms restricting its use to first-order perturbation
theory. Applications following this route show that it gives sufficiently accu-
rate results for the first and second transition-metal row, but for the third
row a treatment of relativistic effects to higher order is needed[57].

A method that can be used in variational calculations is the Douglas-
Kroll-Hess (DKH) method[58–61]. In this method the Large and Small com-
ponent are approximately decoupled by a sequence of unitary transforma-
tions. The unitary transformations contain external potential terms. The
resulting operators are products of a square root expression of p2, and the
resolution of identity technique is used to evaluate them.

Another method that can be used in variational calculations is the zero or-
der regular approximation (ZORA) method. Based on initial work of Chang,
Pélissier, and Durand (CPD)[62] it has been developed further by van Lenthe
et al. [63–66]. In the ZORA method, the Large and Small components are
decoupled using a Foldy-Wouthuysen transformation[67]; the resulting equa-
tion is subsequently expanded in E/(2mc2 − V̂ ). The equation to zeroth
order is the ZORA equation. In effect, the ZORA equation is a Schrödinger
equation with a modified kinetic energy operator. Because of the appear-
ance of the potential, V̂ , in the denominator, it is mainly used in density
functional theory because local potentials are used there. Due to the use
of the non-local exchange potential in ab initio methods, one has to make
use of the resolution of identity to be able to use ZORA[68]. The relation
between the Dirac equation, the non-relativistic Lévy-Leblond equation[69],
Dyall’s spin-free relativistic equation and the ZORA and scalar-relativistic
ZORA equation has been elegantly demonstrated by Visscher and Saue[70]
using the quaternion modified Dirac equation.

Both DKH and ZORA are two-component methods if SOC is included.
If only scalar-relativistic effects are taken into account, DKH and ZORA
are both one-component methods, and both Hamiltonians are essentially as
expensive to use as than their non-relativistic counterpart. It is surprising
that, although both DKH and ZORA have been in use for more than ten
years, nobody has ever made a systematic comparison of the performance of
DKH and ZORA with DC as a reference. A comparison on the same footing
between ZORA and DKH, but not DC, for spectroscopic properties of some
diatomic molecules has been made by Hong et al. [71]. The conclusion was
that the methods give almost the same results. In general it can be said
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that both DKH and ZORA are methods that reproduce most of the relati-
vistic effect, also if heavy elements are present, and are very cost effective
alternatives to the DC Hamiltonian.

For most chemical properties only the valence electrons are of importance,
and the electron density near the nucleus doesn’t change much on molecule
formation. This insight is used in the treatment of relativistic effects using
the so called effective core potential (ECP) method[72]. In the ECP method
the core electrons are not taken into account explicitly in the Hamiltonian,
but their effect is modeled by a set of parameters whose values are based on
relativistic atomic reference calculations. This method is the most econom-
ical way to treat relativistic effects since the number of electrons (of heavy
elements) is drastically reduced and besides the extra parameters, which only
affect the one-electron part of the Hamiltonian, the non-relativistic Hamil-
tonian can be used. The ECP method is a very useful method in geometry
optimizations, the calculation of electric properties like dipole moments, po-
larizabilities, etc. However, for properties that are heavily determined by the
shape of the wavefunction in the vicinity of the nucleus, like EFGs and NMR
parameters, the use of ECPs is less suited.

Almost all results presented in this thesis are based on the DC Hamilto-
nian. One might wonder why one of the good, computationally more efficient,
alternatives mentioned above is not used to take relativistic effects into ac-
count? If one of these more economical methods were used, a larger basis
set could be adopted so that in the end the quality of calculations might be
even higher at the same cost. For most applications presented in this work it
can be said that we are seeking the highest quality of calculations possible.
Approximations made in the relativistic description might be critical for the
quality of the results. For example, for a core-valence property like the EFG,
a high level description of relativistic effects is very important in obtaining
accurate results. The basis sets we use are of high enough quality because
the molecules studied are very small, with only a few atoms.

Another advantage of using the DC formalism, compared to approximate
methods, is that the property operators stay simple. In the ZORA and
DKH method, besides the transformation of the Hamiltonian, the property
operator should also be transformed, resulting in complicated expressions
for the property operators. Neglecting the transformation of the property
operators results in the so called picture change effect [73]. This effect might
be negligible for valence properties, like the dipole moment, but it can not
be neglected for a property like the EFG[74].

As already mentioned in subsection 1.1.3, for the calculation of parity-
violation in molecules, the DC formalism is very advantageous because SOC
is included in a variational manner. For this property, it might be expected
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that a high-level relativistic formalism is important anyway. For an overview
of properties for which it is advantageous to work within the DC formalism,
see the thesis of Jørn Thyssen[43].

A practical reason for why most calculations have been performed using
the DC formalism is that almost all have been performed using the dirac
program[41]. dirac is a molecular four-component program which, in ad-
dition to DC calculations, can also perform spin-free calculations. ZORA is
implemented, but not as efficiently as it could be. Other relativistic methods
are not implemented in dirac. Besides dirac, there are several other pro-
grams with which molecular four-component calculations can be performed
(see references [75–80]).

1.3 Electron correlation

If more than two particles interact with each other, the equations that de-
scribe the behavior of these particles can not be solved exactly. Approxima-
tions are needed. In electronic structure theory, one of these methods is the
Hartree-Fock (HF) method; this method is described in numerous textbooks
(see, for example, references [81, 82]). In the HF method the wave-function
is represented by a single Slater determinant. The HF method is variational
with respect to the parameters that describe the wavefunction, the spinor
coefficients. The spinors that describe the HF wavefunction are solutions of
one electron equations in the average field of the other electrons. However, in
reality electrons do not move in an average field, but their movement depends
on the instantaneous position of the other electrons − their motion is corre-
lated. Some methods that try to include the effects of electron correlation
are described in the following subsections.

Even though HF neglects electron correlation, it works reasonably well for
describing closed-shell ground-state wave functions at the molecular equilib-
rium geometry. Since HF is a relatively cheap method it is still quite popular.

There are many methods that account for electron correlation. For a
good overview of the most important methods see references [82–84]. The
difference between the exact solution of the Schrödinger equation and the
Hartree-Fock equation is the correlation energy. One can also make a dis-
tinction between static and dynamical correlation, although this division is
somewhat loosely defined. Static correlation is also known as near-degeneracy
or nondynamical correlation and arises from the near-degeneracy of electronic
configurations; it may be described by a few determinants. Dynamical corre-
lation is associated with the instantaneous correlation between the electrons,
arising from their mutual repulsion, and requires a large number of determi-
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nants. Most of the results described in this thesis correspond to molecules
that are in a state where static correlation is not important. This means
that Hartree-Fock already provides a qualitatively correct description of the
wavefunction. The methods we use to take correlation effects into account
are especially well suited to representing dynamical correlation.

1.3.1 Møller-Plesset perturbation theory

Conceptually, one of the simplest methods to take electron correlation into
account is many-body perturbation theory (MBPT) with the Møller-Plesset
perturbation operator. In the theoretical chemistry community, these meth-
ods are denoted as MPn (with n the order of perturbation theory used). In
the physics community they are often denoted as MBPT(n).

Møller and Plesset were the first to develop a perturbation theory in which
the HF wavefunction is taken as zeroth-order solution to the exact wavefunc-
tion. The difference between the exact Hamiltonian and the HF Hamiltonian
is considered as a small perturbation, which corrects the average-field approx-
imation of HF such that the correlated movement of the electrons is explicitly
included. In this thesis, only perturbation theory up to second-order, MP2,
is used.

The MP2 correlation energy is given by

Ecorr
MP2 =

1

4

∑
IJAB

τAB
IJ 〈AB||IJ〉, (1.28)

where 〈AB||IJ〉 is an anti-symmetrized two-electron integral,

〈AB||IJ〉 =∫ ∫
ψ†

A (r1)ψ
†
B (r2)

1

r12
[ψI (r1)ψJ (r2)− ψJ (r1)ψI (r2)] dr1dr2,

(1.29)

and the MP2 excitation amplitudes, τ , are given by

τAB
IJ =

〈IJ ||AB〉
(εI + εJ − εA − εB)

, (1.30)

where spinor eigenvalues are indicated by the Greek letter ε. I and J denote
occupied spinors and A and B denote virtual spinors.

For closed shell molecules MP2 takes most effects of electron correlation
into account and therefore works quite well. It is a relatively economical
method for taking electron correlation effects into account, scaling as N5,
where N is a measure of the system size. Interesting developments to reduce
the scaling, and thereby increasing the applicability of MP2, are the use of
density fitting[85], local MP2[86, 87], or a combination of both techniques[88].
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1.3.2 Coupled-cluster theory

If highly accurate calculations on closed-shell molecules have to be performed,
the coupled-cluster method is often the best choice. The computational costs
scale, however, steeply with system size, restricting the method to small to
medium sized molecules. New developments using localized orbitals and den-
sity fitting will hopefully result in interesting applications on larger molecules
in the near future[89, 90].

In coupled-cluster theory the wavefunction is written in the following
exponential form

|CC〉 = exp(T̂ )|HF〉, (1.31)

with T̂ the cluster operator

T̂ = T̂1 + T̂2 + ... (1.32)

where T̂1 produces single excitations, T̂2 double excitations, etc. For closed-
shell systems the excitation operators may be written in the form

T̂1 =
∑
IA

tAI ÊAI , (1.33)

T̂2 =
∑

IJAB

tAB
IJ ÊAIÊBJ , (1.34)

...

where ÊAI is an excitation operator, exciting an electron from the occupied
spinor I to the unoccupied spinor A. The amplitudes, tAI , tAB

IJ , ... are the
variables that have to be determined.

Rewriting the Schrödinger (or Dirac) equation in the form

exp(−T̂ )Ĥexp(T̂ )|HF〉 = ECC|HF〉, (1.35)

the coupled-cluster energy can be obtained by projection from the left by
the HF reference state

ECC = 〈HF|exp(−T̂ )Ĥexp(T̂ )|HF〉. (1.36)

Projection from the left by the manifold of excited determinants, |Φ〉, gives
the non-linear coupled-cluster equations,

〈Φ|exp(−T̂ )Ĥexp(T̂ )|HF〉 = 0, (1.37)

that needs to be solved to obtain the amplitudes. In practice the non-linear
coupled-cluster equations are solved in an iterative manner.
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If we truncate the expansion of the cluster operator after the double exci-
tations we denote the coupled-cluster model by CCSD; if we truncate after the
triple excitations, CCSDT, etc. Since CCSDT scales as N8 it is restricted to
very small molecules, and finds application mainly in benchmarking of other
methods[91]. A method that takes the effect of triple excitations into account
in an approximate, but excellent, way is the CCSD(T) method[92]. In the
CCSD(T) method, the CCSD equations, which scale as N6, are first solved.
Next the perturbative (T) term is calculated using the single and double
amplitudes. Although it scales as N7, it doesn’t have to be calculated iter-
atively, giving it a small prefactor. For small to medium sized closed-shell
molecules that are dominated by the HF configuration, CCSD(T) is often
the best choice for obtaining high quality results.

1.3.3 Density functional theory

The methods described in the previous sections are called ab initio methods,
since the models don’t require empirical parameters from the outset. These
methods are wavefunction based; the wavefunction, Ψ, is the central quantity.
Another approach is density functional theory (DFT). In this approach the
electron density, ρ is the central quantity. Since DFT has hardly been used
in the research of this thesis, DFT will be discussed only briefly here.

In some chapters results of DFT are used for comparison. In chapter
8 a comparison between Hartree-Fock, MP2 and DFT is given for parity-
violation calculations on CHFClBr. For good reviews of DFT see reference
[84] and [93].

The ground state energy of a system can be found by solving the Kohn-
Sham (KS) equations. These equations have a similar form to the HF equa-
tions, so a lot of techniques used in Hartree-Fock theory can be used in DFT
and vice versa. In contrast to HF, with DFT, it is in principle possible to cal-
culate exact energies. However, in the KS equations the so called exchange
correlation energy functional EXC[ρ] appears. EXC[ρ] is not known, which
means that approximate functionals have to be used. There are many flavors
of approximations to EXC[ρ] in use today. We will not mention all of them
here, but refer instead to reference [84]. Worthy of mention are the so called
local density approximation (LDA)[94] and generalized gradient approxima-
tions (GGA): BLYP[95, 96], PW86[97]. Another functional that is used in
chapter 8 is a hybrid functional: B3LYP[98].

DFT offers many advantages. It is currently the most popular electronic
structure method. Because it scales similarly to HF, it is much more econom-
ical than correlated ab initio methods. It is, however, generally, much more
reliable than HF. Its favorable scaling with system size, and performance
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that is good enough for most purposes, makes it the most suited method
to research of real chemical problems. Another very import advantage of
DFT (that it shares with HF) are the solutions of the KS equations them-
selves. The solutions are singly or doubly occupied orbitals (or spinors),
which allow for easier interpretation of results than the correlated ab initio
methods. The reason why, however, the main results in this thesis are based
on coupled-cluster methods is that, even though DFT is able to give reliable
results, it can not compete with the accuracy of coupled-cluster for the small
closed shell molecules treated in this thesis. Achieving as high an accuracy
as possible is one of the main goals of the research presented here.

1.4 Basis sets

As already mentioned in section 1.2.2, it is common in quantum chemistry
to expand the unknown wavefunctions in a set of known functions: a basis
set. This has the advantage that the equations that have to be solved are
transformed to matrix equations, which, by using appropriate methods from
linear algebra, can be solved efficiently by a computer.

To keep the computation time as short as possible we like to have sets that
are small, i.e. a short expansion, and/or have forms that are computationally
easy to handle. On the other hand the basis sets should be able to represent
the true wavefunction as accurately as possible. The most widely used type of
basis functions are the so called Gaussian type orbitals (GTO). In Cartesian
form a GTO is given by

χµ = Nµx
nxynyznze−αµr2

(1.38)

where nx +ny +nz = l, with l the angular momentum label, Nµ is a normal-
ization factor, and αµ an exponential factor.

There are two different approaches to expanding a four-component spinor.
In one approach the large and small component of a four-component spinor
are expanded in a basis of two-component spinors. In another the scalar
components of the 4-spinor are expanded in a scalar basis. The second ap-
proach allows for the use of the same integral evaluation implementation as
used in a non-relativistic methodology. In the following we restrict ourselves
to the second approach, more details of the first can be found in references
[77, 99].

The basis sets used for the small component are not the same as those
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for the large component, because they differ in parity. We can write

ψI =


ψLα

I

ψLβ
I

ψSα
I

ψSβ
I

 =



∑
µ

CLα
µI χ

L
µ∑

µ

CLβ
µI χ

L
µ∑

ν

CSα
νI χ

S
ν∑

ν

CSβ
νI χ

S
ν


(1.39)

with {χL
µ} and {χS

ν} the basis sets for the large and small component, re-
spectively. However, in order to obtain the right non-relativistic limit, the
small component basis has to be related to the large component basis: they
are balanced. This requirement is called kinetic balance, and we must have

{χS
µ} ⊇ {(σ · p)χL

µ}. (1.40)

Due to the σ · p operator, the small component set is larger than the large
component set. For example, small component p-functions are generated
from large component s-functions and large component d-functions. In the
case of ns large component s-functions and nd large components d-functions
in ns+nd small component p-functions would result. However, the size of the
small component basis set can be reduced by ensuring that the large com-
ponent s-functions and d-functions have common exponents in the regions
where they coincide. In practice this would usually mean that the exponents
for the d-functions are a subset of the exponents of the s-functions, and we
end up with ns different small component p functions. If we use this method-
ology to reduce the size of the small component basis set, we are led to two
sets of exponents: one describing the family of s, d, g, etc. symmetries, and
one for p, f, h, etc. symmetries. This type of basis set is called a dual family
basis[100].

It is evident that it matters what values for the exponents we chose in our
GTO set, since we want to describe the wavefunction as accurately as possible
with as few basis functions as possible. For non-relativistic electronic struc-
ture calculations a lot of different basis sets are available, especially for the
first two rows of the periodic table. Most basis sets are generated by optimiz-
ing the exponents of the GTOs with respect to the energy, yielding energy
optimized basis sets. Particularly worthy of mention are the correlation-
consistent basis sets developed by Dunning and coworkers [101, 102], which
allow for a systematic recovery of the correlation energy and with which ex-
trapolation to the basis set limit might be employed if a hierarchy of these
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sets is used [103–106]. The correlation-consistent basis sets have recently
been extended by Peterson et al.[107] for the use in ECP calculations of
heavier elements, namely the post-d group 16-18 elements. This means that
in relativistic ECP calculations, systematic extrapolation to the basis set
limit starts to be possible as well.

Unfortunately, for four-component calculations not so many basis sets
are available. A lot of work in this field has still to be done. For light ele-
ments it is common to simply use non-relativistic basis sets, sometimes with
adjusted contraction coefficients or leaving the basis set uncontracted. For
the heavier elements the non-relativistic basis sets are not well suited, espe-
cially in describing the core region where the four-component wavefunction
is much more compact than the non-relativistic wavefunction, which means
that GTOs with higher exponents are needed.

In the research presented in this work our, goal was not to extend the
correlation-consistent basis set for the use in four-component calculations,
although this seems to be absolutely necessary in order to make the use of
the DC Hamiltonian in quantum chemistry more widespread. We used a
pragmatic approach to obtain basis sets of sufficient quality for calculation
of the molecular properties we are interested in: we extended an initially
energy optimized basis with extra functions, depending on the contribution
made by the functions to the property of interest. Since we can not apply
the variational principle to obtain suitable values for the exponents in this
approach, we used a simple strategy to obtain them, we used so called even-
tempered basis sets[108]. For even-tempered basis sets the ratio between
subsequent exponents, i and i− 1, is constant for a particular l

αi = αβi−1. (1.41)

This means that for each l we only need to determine two parameters, an
α and a number that determines the ratio between exponents, β. Since
we make use of dual family sets, we only need to optimize two different
βs. Although, in terms of the number of GTOs needed for a given accuracy,
even-tempered sets are less economical than unconstrained basis sets, the size
does not differ much. This relies on the empirical observation that the ratio
between exponents of fully unconstrained, optimized basis sets is actually
approximately constant. Another, qualitative, justification of the use of even-
tempered basis sets is the fact that the overlap between two subsequent even-
tempered GTOs is constant and determined only by the parameter β[82],
giving rise to a well spread distribution of Gaussians. The disadvantage of
having more basis functions is − in our view − however counterbalanced
by the systematic and straightforward extension of an even-tempered basis
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set. Examples of even-tempered basis sets that are suitable for accurate
calculations on a particular property can be found in chapters 3, 4 and 5.

1.5 This thesis

This thesis is about the accurate calculation of first-order molecular proper-
ties, an important aspect of which is the incorporation of special relativity.

In chapter 2 some method development is presented. Formulas for the cal-
culation of analytical first-order molecular properties at the Dirac-Coulomb
MP2 level are described. To reduce computational costs, the formalism al-
lows the use of inactive spinors. The implementation of this formalism in the
dirac program is discussed.

The calculation of electric field gradients (EFG) is described in chapter
3 and 4. Calculating the EFG on a particular nucleus, combined with the
experimental nuclear quadrupole coupling constant, allows for the determina-
tion of the nuclear quadrupole moment (NQM). So, by combining theoretical
and experimental molecular data one can determine a property of the nu-
cleus: its quadrupole moment. In chapter 3 this has been applied to obtain
the NQM of 115In using four diatomic molecules. In chapter 4 we apply the
same strategy, using nine different diatomic molecules, to obtain the NQM
of 127I.

Chapter 5 and 6 treat the calculation of dipole moments. The dipole
moment function of hydrogen iodide is tackled in chapter 5. Previous doubts
about the quality of experimental numbers appear to be not well founded,
and the gap between theory and experiment is closed. The importance of
basis sets and the variational inclusion of spin-orbit coupling is stressed in
this chapter. In the next chapter, one of the most well known molecules is
treated: water. A gas phase water molecule still presents many challenges
to theoreticians. Theoretical calculations can only be of significant comple-
mentary value to the analysis of the rotation-vibration spectrum of water if
the quality of the calculations is of an extraordinarily high quality. Even for
water, this requires the treatment of relativity. In this chapter the relativistic
correction to the dipole moment surface of water is described. This will be
used in the future to analyze high temperature spectra of water, which have
several important applications.

In chapter 7 and 8 results of applications with the implementation de-
scribed in chapter 2 will be shown. The method is applied to the calculation
of parity-violation effects in chiral molecules. Since this effect is so small,
experimentalist have not yet been able to detect it. The results presented
in these chapters therefore have a predictive character. In chapter 7 parity-
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violation energies of hydrogen peroxyde analogs are presented. Chapter 8
discusses the effect of parity-violation on the C-F stretching mode of CHF-
ClBr.
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Chapter 2

Analytical first-order molecular
properties at the
Dirac-Coulomb MP2 level:
theory and implementation

The first implementation of analytical first-order one-electron molecular prop-
erties at the Dirac-Coulomb MP2 level of theory is described. The formalism
presented allows the use of inactive spinors.

2.1 Introduction

In a non-relativistic framework, analytical expressions for gradients in second-
order Møller-Plesset perturbation theory (MP2) have been known for over
twenty years[109]. Since the mid-eighties several advances have been made
for a more efficient calculation of MP2 gradients. Using the Z-vector method
of Handy and Schaefer[110] only a single coupled perturbed Hartree-Fock
(CPHF) equation has to be solved, instead of one for each perturbation.
Another advance was the extension of the MP2 gradient formalism to al-
low for inactive occupied and virtual orbitals [111, 112]. This is especially
important for molecules containing heavy elements that have many core elec-
trons that are not very important for most molecular properties. Neglect of
core correlation allows then for significant savings in computertime while
hardly affecting the accuracy of the calculation. A very detailed derivation
of the non-relativistic MP2 analytical gradient in the spin-orbital basis has
recently been given by Aikens et al.[113]. To reduce disk storage require-
ments, direct and semi-direct algorithms emerged in the beginning of the
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nineties[114–116]. A subsequent development of parallel algorithms in the
mid-nineties[117, 118] made it possible to further reduce the computational
time. Nevertheless, the N5 scaling of the MP2 energy and gradient calcula-
tions, where N is the number of electrons correlated, limits also the parallel
algorithms to relatively small systems. Calculations on large molecules are
only possible if this computational scaling is reduced, e.g. by means of the
approximations made in the resolution of identity MP2 (RI-MP2)[119] and
local MP2 (LMP2)[120] methods.

Molecular properties can be significantly affected by relativity if the mo-
lecule contains one or more heavy elements. If one is interested in valence
properties it is often possible to introduce a relativistic effective core poten-
tial (RECP) on the heavy elements to model the most important relativistic
effects. For molecular geometries[121] and electric response properties[122]
RECPs have shown to perform rather well. A limitation of the RECP method
is, however, the use of the pseudo-orbitals that differ substantially from the
true valence orbitals in the core region. This makes the method less suited for
properties like NMR shieldings and nuclear quadrupole coupling constants
(NQCCs), where the computed value is to a large extent determined by the
shape of the wavefunction in the vicinity of the nucleus. RECPs can in gen-
eral not be used for calculation of such properties on heavy centers, although
they are still useful in the calculation of NMR shieldings for the light elements
in systems containing heavy elements[123, 124]. In all-electron calculations
one may include relativity by means of perturbation theory[125]. Calculating
the relativistic effect on a specific property in this manner requires, however,
the calculation of linear response functions that are one order higher than
required by the property that one is interested in. More efficient algorithms
may be formulated if relativity is included from the outset, e.g. by employing
a variationally stable approximate relativistic Hamiltonian like the Douglas-
Kroll-Hess (DKH)[60] Hamiltonian or the zeroth-order regular approxima-
tion (ZORA)[63]. Both of these methods require that the transformation,
which transforms the original Dirac Hamiltonian to the approximate form,
should also be applied to the operators that describe the molecular prop-
erty of interest. Neglecting this transformation results in so-called picture
change effects[73], which are usually small for valence properties, but are not
negligible for core properties[74].

The most straightforward approach to take relativity into account is to
start directly from the untransformed 4-component Dirac-Coulomb (DC)
Hamiltonian. This is the route that we will follow in this research paper. We
restrict the current discussion to first-order molecular properties for which
the basis functions do not depend on the perturbation that is applied. Molec-
ular properties where the basis functions are perturbation dependent, like the
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molecular gradient used in structure optimizations, require additional terms
and are left for future work. The 4-component approach based on the DC
Hamiltonian requires use of complex 4-component molecular spinors (MS),
instead of the real 1-component molecular orbitals (MO) found in ordinary
electronic structure theory. The approach has the advantage that the oper-
ators remain relatively simple since picture change transformations are not
necessary. Since our main focus will be on properties of systems with heavy
elements, which have many electrons, we will allow for use of inactive spinors
to increase the computational efficiency.

In previous applications we used the finite-field or finite-perturbation
method to calculate first-order molecular properties, see for example ref-
erences [126] and [127]. Although the calculation of first (and higher-)order
properties using the finite-field method requires practically no extra program-
ming, it has several disadvantages[2]. First of all the finite-field method is
less efficient than analytical methods, because for each property of interest
additional finite-field calculations have to be performed. For most first-order
properties it is easy to find field strengths which, after numerical differenti-
ation, give results that are numerically stable and give practically the same
results as corresponding analytical values. There are, however, first-order
properties for which it is very hard or even impossible to obtain a numerically
stable result in the finite-field approach. An example of numerical instabil-
ity by finite-field calculations was encountered by Thyssen et al.[128] who
studied the parity-violating electroweak interaction in H2O2 and H2S2. Use
of high exponent s and p functions to achieve basis set convergence turned
out to be impossible since this lead to a too wide range of values of matrix
elements over the perturbing operator. The resulting numerical noise made
accurate parity-violation calculations by means of the finite-field method on
the heavier element series H2Se2, H2Te2, and H2Po2 impossible. Relativis-
tic correlated calculations of electroweak interactions have therefore so far
been limited to H2O2 and H2S2 for which the problems were still manage-
able. With our analytical implementation of DC-MP2 first order molecular
properties we can now extend such relativistic correlated calculations to the
heavier analogs of this series, H2Se2 and H2Te2. We describe results of these
calculations in chapter 7, but first we describe the theory and implementa-
tion to allow for such analytical property calculations in section 2.2 and 2.3,
respectively.
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2.2 Theory

The Dirac-Coulomb electronic Hamiltonian has the same generic form as the
non-relativistic Hamiltonian

Ĥ0 =
∑

i

ĥ (i) +
1

2

∑
i6=j

ĝ (i, j) + V̂NN , (2.1)

so that many non-relativistic electronic structure methods can be general-
ized to the relativistic domain. The main difference lies in the fact that the
molecular Dirac equation has two kind of solutions: positive energy solu-
tions, that describe bound state solutions for the electrons in the molecule,
and negative energy solutions, from which electrons may be excited to form
electron-positron pairs. In the no-pair approximation the latter type of exci-
tation is neglected so that the negative energy states can be discarded after
the Hartree-Fock (HF) Self Consistent Field procedure is completed. Molecu-
lar properties can also in the relativistic case be defined as energy derivatives
of a complete Hamiltonian that depends on an external perturbation,

Ĥ = Ĥ0 + λP̂ . (2.2)

If all wave function parameters were fully optimized one may employ the
Hellmann-Feynman theorem and evaluate first-order properties as an expec-
tation value. This is not the case for the MP2 approach so that we need to
consider the so-called response contribution to the second order one-electron
density matrix as well. Since we have practically the same overall structure
as in non-relativistic theory we can make use of the extensive literature on
MP2 gradient calculations. A new aspect is the dependence of the relaxation
contribution to the density matrix on the negative energy solutions. That
such a contribution should be accounted for can be easily understood by per-
forming the following gedanken-experiment. Find the self-consistent solutions
for a system in the absence of external fields and divide them into positive
and negative energy solutions. Then switch on a constant external field, find
again the solutions, and divide them in positive and negative solutions. In
both cases well-defined sets of negative and positive solutions are found that
can be expressed in terms of each other. The positive energy solutions in the
perturbed case contain contributions from both the positive and the nega-
tive energy sets for the unperturbed solutions. Mimicking the addition of an
external field, as is done in the series expansion around zero field strength in
the analytical procedure, requires therefore mixing of the positive and neg-
ative energy solution blocks. We will see that the formulas that take this
mixing into account are closely related to those used to describe the effects
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of inactive spinors that play no role in the correlation calculation but are
relaxed under the influence of the perturbation in the Hartree-Fock step.

For an extensive derivation of the non-relativistic analytical gradient
for MP2 we refer to (e.g.) papers by Head-Gordon[129] and Gauss and
Cremer[130]. What we will discuss in detail are the modifications necessary
to take care of the negative energy spinors and the complex algebra resulting
from the use of a complex Hamiltonian and spinors. In the present derivation
and implementation equations were simplified using the fact that the basis
functions are assumed not to depend on the perturbation that is applied. The
Z-vector technique of Handy and Schaefer[110] is used, in the derivation, to
avoid the calculation of a set of coupled-perturbed Hartree-Fock equations
for each perturbation. The same final results can also be obtained by using
the Lagrange multiplier technique of Helgaker and Jørgensen[131, 132] that
considers the derivative of a variational energy functional. The simplifica-
tions that are explicitly invoked using the Handy-Schaefer technique appear
then automatically.

In the implementation section we will include time-reversal symmetry in
the theory and introduce Kramers pairs. The initial equations are, however,
best discussed in a spinor basis, the relativistic equivalent of the spin-orbital
formulation in nonrelativistic theory. We use the convention that spinors are
indicated by uppercase letters. We will use I, J, K to denote active occupied
canonical spinors, A, B, C for active virtual canonical spinors, X, Y for
negative energy canonical spinors, P, Q, R, S refer to general spinors, while
V, W denote any virtual or negative energy spinor. To make a distinction
between inactive and active spinors we use the notation of Head-Gordon[129]:
single primes denote inactive spinors (e.g., J’ is an inactive occupied spinor),
double primes indicate the union of inactive and active spinors (e.g., A” is
any virtual spinor).

Greek indices, µ, ν, κ, λ are used for basis functions or atomic orbitals
(AO). In an implementation it is convenient to choose real basis functions
that describe either the large, L, or the small, S, components of the wave
function, but this distinction is not relevant for most of the formulas pre-
sented in this paper. We therefore omit the additional component label to
keep the notation simple.

The equations for an analytical first-order derivative of the MP2 correla-
tion energy will be derived for the MP2 correlation energy within the no-pair
approximation that is given by[133]:

E(2) =
1

4

∑
IJAB

τAB
IJ 〈AB||IJ〉, (2.3)
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where 〈AB||IJ〉 is an anti-symmetrized two-electron integral,

〈AB||IJ〉 =∫ ∫
ψ†

A (r1)ψ
†
B (r2)

1

r12

[ψI (r1)ψJ (r2)− ψJ (r1)ψI (r2)] dr1dr2

(2.4)

and the MP2 excitation amplitudes, τ , are given by

τAB
IJ =

〈IJ ||AB〉
(εI + εJ − εA − εB)

, (2.5)

where spinor eigenvalues are indicated by the Greek letter ε. Since the en-
ergy is not variationally determined it is not possible to formulate first or-
der properties directly in terms of an expectation value of the wave func-
tion. It is, however, possible to define an effective relaxed density matrix
D

(2)
PQ that describes the first order response of the system to an arbitrary

perturbation[134]. Taking the first order derivative of the correlation energy
of the Hamiltonian defined in equation (2.2) gives an expression in terms of
the effective density matrix and property matrix

dE(2)

dλ
=
∑
PQ

D
(2)
PQPQP . (2.6)

In MS basis the relaxed density matrix can be divided into a number
of blocks due to the partioning of both the occupied and virtual electronic
spinors into an inactive and an active part that defines four separate sub-
spaces, while the class of negative energy states adds a fifth subspace that
does not appear in nonrelativistic theory. The hermiticity of the matrix re-
duces the number of 25 possible combinations to 15 unique combinations,
five more than in nonrelativistic theory. Fortunately some of the additional
blocks turn out to be zero while others can be shown to be identical in struc-
ture to an existing block.

We start by considering the diagonal blocks of the second-order density
matrix, D(2), that describes the change of the density relative to the Hartree-
Fock reference density. The elements in the negative energy, inactive occu-
pied and inactive virtual diagonal blocks are all zero since the occupation of
these spinors is not changed in the MP2 wave function. The non-zero blocks
are the active occupied and active virtual blocks for which the expression in
terms of wave function amplitudes reads:

D
(2)
IJ = −1

2

∑
KAB

(
τAB
IK

)∗
τAB
JK , (2.7)
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D
(2)
AB =

1

2

∑
IJC

(
τAC
IJ

)∗
τBC
IJ . (2.8)

For the off-diagonal elements that describe the first order response of the
wave function to a perturbation, it is convenient to expand the coefficients
of the perturbed spinors Cλ

µP in terms of the coefficients of the unperturbed
spinors CµQ[135]:

Cλ
µP =

∑
Q

CµQU
λ
QP . (2.9)

We stress that index Q in equation (2.9) should run over all types of
spinors, inactive occupied (OI), active occupied (OA), active virtuals (VA),
inactive virtuals (VI) and negative energy (NE) spinors, since mixing be-
tween all these subspaces will occur when the perturbation is switched on.
The mixing between positive and negative energy spinors serves to obtain full
Hartree-Fock relaxation of the electronic spinors to the effect of the applied
perturbation. Such effects may be of importance, in particular for derivatives
of magnetic fields, and other operators that introduce a relatively strong cou-
pling between the positive and negative energy spinors[136]. Such relaxation
effects should not be confused with the contributions that arise when lifting
the no-pair restriction as is done in atomic QED calculations[137, 138].

Using the spinor response matrix Uλ the first-order derivative of the no-
pair MP2 correlation energy with respect to λ can be cast in the following
form:

dE(2)

dλ
=

∑
I”J”

D
(2)
I”J”PJ”I” +

∑
A”B”

D
(2)
B”A”PA”B”

+
1

2

∑
V I”

(
L∗

V I”U
λ
V I” + LV I”U

λ∗
V I”

)
+

1

2

∑
AX

(
L∗

AXU
λ
AX + LAXU

λ∗
AX

)
. (2.10)

Just as in non-relativistic theory the spinor response elements Uλ
IJ and

Uλ
AB are zero when the basis set is not perturbation dependent. This elim-

inates all terms concerning the derivative of the AO-overlap matrix that
should otherwise be taken into account as well. The active-active diagonal
blocks of the second order density matrices D

(2)
I”J” and D

(2)
A”B” were defined

above. The two active-inactive off-diagonal blocks are
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D
(2)
I′J = D

(2)∗
JI′ =

1

2

LI′J

(εJ − ε′I)
=

1

2

(L1)I′J

(εJ − ε′I)
(2.11)

and

D
(2)
BA′ = D

(2)∗
A′B =

1

2

LBA′

(ε′A − εB)
=

1

2

(L2)BA′

(ε′A − εB)
(2.12)

with the L1 and L2 matrices defined in equations (2.14) and (2.15) below.
The last two summations of (2.10), containing Uλ matrix terms, describe

the relaxation of the Hartree-Fock spinors to the applied perturbation. L in
equation (2.10) is the MP2 Lagrangian:

LPQ = (L1)PQ + (L2)PQ + (L3)PQ , (2.13)

where the individual terms are given by

(L1)PI =
∑
JBC

〈PJ ||BC〉τBC∗
IJ for P /∈ OA (2.14)

(L2)AQ = −
∑
JKB

〈JK||QB〉τAB∗
JK for Q /∈ VA (2.15)

and

(L3)V I” = 2
∑
J”K”

〈J”V ||K”I”〉D(2)
K”J” + 2

∑
B”C”

〈C”V ||B”I”〉D(2)
B”C” (2.16)

Matrix elements that are not listed, e.g. (L2)A′I , are zero. The elements
of the Lagrangian can be computed in an one step procedure if transformed
two-electron integrals are available. With the Lagrangian available one may
then subsequently solve the Coupled-Perturbed Hartree-Fock (CPHF) equa-
tions for the response matrix, Uλ, and compute the energy derivative via
equation (2.10).

In deriving the CPHF equations one should take into account that both
the wave function and Hamiltonian are complex and that the DC-HF proce-
dure should be regarded as a minmax procedure that minimizes the energy
with respect to rotations amongst positive energy spinors while maximiz-
ing the energy with respect to positive-negative energy rotations[139]. The
CPHF equations for the DC Hamiltonian are given by Saue and Jensen[140]:(

A B
B∗ A∗

)(
Uλ

Uλ∗

)
=

(
P
P∗

)
, (2.17)
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where the precise form of A and B blocks of the Hessian is given below.
The structure of this equation depends on the symmetry of the perturbation
operator. We are interested in first order properties that are described by
hermitian property operators. For these properties it is possible to rewrite
the equation in terms of Uλ only, i.e. to eliminate the lower part. This is
discussed in detail by Saue and Jensen[140] who also consider the case of a
general time-dependent perturbation of frequency ω.

In equation (2.10) only the response matrices Uλ
V I” and Uλ

AX occur ex-
plicitly. Response matrices that concern rotations within the same class of
spinors can be chosen zero since such rotations do not affect the MP2 energy.
Likewise we may ignore rotations between negative energy and inactive vir-
tual spinors and put Uλ

A′X to zero. The different rotations are coupled via the
APQ,RS and BPQ,RS elements in the Hessian. There are three special cases
for A and B depending on the type of spinors that the indices P, Q, R and
S refer to. We list them below.

Case 1 : P and R correspond to virtual or NE spinors, V and W respec-
tively, and Q and S correspond to the occupied spinors, I” and J” respec-
tively. The elements of A and B are

AV I”,WJ” = (εV − εI”) δV W δI”J” + 〈V J”||I”W 〉 (2.18)

and

BV I”,WJ” = 〈VW ||I”J”〉. (2.19)

These blocks of the Hessian are also found in a non-relativistic derivation
where V and W do only run over the virtual spinors. The other two blocks
are needed to determine the rotations between the negative energy spinors
and the active virtual spinors. This is only important in correlated calcu-
lations where such rotations affect the perturbed correlation energy, these
rotation matrices need not be determined in uncorrelated relativistic CPHF
calculations.

Case 2 : P corresponds to a VA spinor, A, and index Q to a NE spinor,
X, R and S are the same as in Case 1. The matrix elements of the Hessian
are

AAX,WJ” = 〈AJ”||XW 〉 (2.20)

and

BAX,WJ” = 〈AW ||XJ”〉 (2.21)

Case 3: The diagonal elements of the Hessian for the NE-VA rotations,

AAX,BY = (εA − εX) δABδXY (2.22)
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and

BAX,BY = 0 . (2.23)

All other possible combinations of P, Q, R and S elements of A and B
are zero or irrelevant.

This formulation is not yet in the desired effective density matrix form.
Moreover, we see that the matrix Uλ depends on the specific perturbation
that is to be applied. To avoid this dependence and shift the dependence on
the perturbation to the property matrix we need to introduce the Z-vector
method developed by Handy and Schaefer[110]. This Z-vector, Z, is defined
by (

A B
B∗ A∗

)(
Z
Z∗

)
=

(
L
L∗

)
. (2.24)

This equation has the same structure as the original CPHF equation, but
since the Lagrangian L , equation (2.13), does not depend on the perturbation
it needs to be solved only once. The desired energy derivative with respect
to a specific property operator is then determined via(

L
L∗

)†(
Uλ

Uλ∗

)
=

(
Z
Z∗

)†(
A B
B∗ A∗

)(
Uλ

Uλ∗

)
=

(
Z
Z∗

)†(
P
P∗

)
,

(2.25)

that is obtained by using equations (2.24) and (2.17). Comparing equa-
tion (2.25) with equations (2.6) and (2.10) shows that the off-diagonal blocks

of the effective density matrix are given by Z-vectors elements: D
(2)
V I” = 1

2
Z∗

V I”

and D
(2)
AX = 1

2
Z∗

AX .
Because the upper and lower part of equation (2.24) are each others com-

plex conjugate, we only need to solve the upper part of the Z-vector equations.
The block structure of the A and B matrices may be used to further reduce
the work. We take the upper part of equation (2.24), and use the definitions
for A and B, the V - O and NE - O blocks of Z to obtain

(εV − εI”)ZV I”

+
∑
WJ”

(〈V J”||I”W 〉ZWJ” + 〈VW ||I”J”〉Z∗
WJ”) = LV I”.

(2.26)

This coupled set of equations are 4-component CPHF equations with a mod-
ified right hand side and it can thus be solved in an iterative manner using
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effective Fock matrices constructed in AO basis with the linear response al-
gorithm described by Saue and Jensen[140].

For the VA - NE block, we need to solve

(εA − εX)ZAX

+
∑
V J”

(〈AJ”||XV 〉ZV J” + 〈AV ||XJ”〉Z∗
V J”) = LAX ,

(2.27)

and we see, after rewriting this equation into

ZAX =

1

(εA − εX)

(
LAX −

∑
V J”

(〈AJ”||XV 〉ZV J” + 〈AV ||XJ”〉Z∗
V J”)

)
,

(2.28)

that we can obtain the VA - NE elements in an one step procedure after the
virtual - OA and NE - OA elements of Z are determined.

2.3 Implementation and computational con-

siderations

All non-zero elements of the effective density matrices were given in the
preceding section. The diagonal blocks that depend only on the amplitudes
can be computed in molecular spinor basis at a similar cost to an MP2 energy
evaluation. The off-diagonal blocks require formation of the Lagrangian and
solution of the CPHF equations. This is best done in a mixed AO-MO
representation to avoid the formation of integrals that have one or more labels
that belong to the large inactive or NE blocks of spinors. Switching to AO
representation means that we need to consider in more detail the AO basis
and structure of the MO–coefficients. We employ the dirac program[41]
that utilizes quaternion algebra[46] in combination with real basis functions
over either the large or the small component of the wave function.

2.3.1 Time reversal symmetry

In the absence of magnetic fields, the states of a single fermion are doubly
degenerate[141]. Pairs of states with the same energy are related by time-
reversal and will give the same spatial density upon integration over the spin
degrees of freedom. These so-called Kramers pairs can be used as a relativistic
equivalent of spatial orbitals. In analogy to the reformulation of spinorbital
formulations to orbital formulations we may also write all formulas in terms
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of Kramers pairs instead of in terms of individual spinors. This reduces the
dimension of the function space by a factor of two in cases where we may
sum over the partners. In that case it will suffice to use a lowercase label that
runs over all Kramers pairs. Spinors will also be indexed by lowercase indices
that run over the Kramers pairs and a bar is used to distinguish between the
two paired spinors that share the same index, e.g. spinor q has a Kramers
partner q̄.

A hermitian and time-symmetric matrix constructed over Kramers pairs
can be simplified by use of the quaternion unitary transformation matrix:

U =
1√
2

(
I ̌I
̌I I

)
, (2.29)

where I is a 2×2 unit matrix. The transformation with U will blockdiagonal-
ize the closed shell or restricted open shell HF equations and can also be used
for the Lagrangian and effective density matrix. Below we will first discuss
the density matrix dependent part of the Lagrangian, L3, equation (2.16),
followed by the amplitude dependent parts L1 and L2, equations (2.14)
and (2.15) respectively. Applying the quaternion unitary transformation to
the Lagrangian results in:

QLpq = Lpq +Lpq̄ ̌ = Re(Lpq) + Im(Lpq )̌ı+Re(Lpq̄)̌+ Im(Lpq̄)ǩ. (2.30)

We evaluate L3 in AO basis, similar to the algorithm of Frisch et al.[114]
for the non-relativistic case, to avoid the formation of two electron integrals
with inactive spinors (OI, VI and NE spinors). In AO-basis this part of the
Lagrangian can be formed at the same cost as a Fock matrix via

Q (L3)µν = 2
∑
κρ

[(µν|κρ)− (µρ|κν)] QD(2)
ρκ , (2.31)

with QD
(2)
ρκ the second-order density matrix transformed to AO basis,

QD(2)
ρκ =

∑
rs

QCρr
QD(2)

rs
QC∗

κs, (2.32)

where rs corresponds to all occupied-occupied and virtual-virtual pairs.
The formation of L1 and L2 is time consuming since the index p in the

anti-symmetrized two electron integrals of L1 can be an OI, any virtual or a
NE spinor, and the index q appearing in the anti-symmetrized two electron
integrals of L2 runs over any occupied, VI and NE spinors. We first apply a
three-quarter transformation of the two-electron integrals and contract these
transformed integrals on the fly with the MP2 amplitudes. The resulting
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Lagrangian is then in mixed AO-MS basis and may be transformed via a
relatively cheap two-index transformation to either AO or MO basis. A
similar strategy has been applied by Head-Gordon for L2 in his semi-direct
non-relativistic algorithm[129].

A complication is that the transformed two electron integrals from the
index transforming part of dirac are transformed to the compact double
quaternion format defined in reference [50] that defines all integrals with
Kramers pair labels. Amplitudes are, however, more easily defined in terms
of complex integrals over spinors[142]. We therefore decided to rewrite the
amplitudes in a double quaternion format so that an efficient contraction
with the three quarter transformed two electron integrals is possible.

The definition of the amplitudes in double quaternion format is not triv-
ial due to the anti-symmetry relations that the amplitudes fulfill. For two-
electron integrals we have a clear distinction between the quaternion labels
that belong to the first and second electron and this may be utilized to
define relations to the complex spinor notation form. For amplitudes and
anti-symmetrized quantities in general, labels cannot be unambiguously as-
signed to an electron. In order to resolve this problem we start from the
formulas written in spinor form and insert the appropriate definitions for the
integrals wherever possible. Starting point is the equation for L1 as given in
equation (2.14):

(L1)PI =
∑
JBC

〈PJ ||BC〉τBC∗
IJ = 2

∑
JBC

(PB|JC) τBCIJ , (2.33)

that is rewritten in terms of non-antisymmetrized two electron integrals. For
ease of notation in the following we write τBC∗

IJ from now on as τBCIJ . After
the introduction of quaternion notation this equation may in the end be
written in a more compact form in terms of three quarter transformed two
electron integrals QG. To this end we first start from equation (2.33), write
the fully transformed integrals in terms of half-transformed integrals and
switch to Kramers pair notation for the indices J and C

(L1)PI = 2
∑
B

∑
µν

α,β∑
σ

∑
jc

Cσ∗
µPC

σ
νB

·
[
(µν|jc) τBcIj + (µν|j̄c̄) τBc̄Ij̄ + (µν|jc̄) τBc̄Ij + (µν|j̄c) τBcIj̄

]
,

(2.34)

where α and β indicate the two components of the large and small compo-
nent bispinors. Quaternion notation can be introduced in equation (2.34) by
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converting the half-transformed integrals to quaternion notation, using,

(µν|jc) = (µν|jc)0 + (µν|jc)1 i

(µν|jc̄) = (µν|jc̄)2 + (µν|jc̄)3 i

(µν|j̄c̄) = (µν|jc)∗

(µν|j̄c) = − (µν|jc̄)∗ .

(2.35)

and gives

(L1)PI =2
∑
B

∑
µν

α,β∑
σ

∑
jc

Cσ∗
µPC

σ
νB

·
{

(µν|jc)0 [τBcIj + τBc̄Ij̄

]
+ (µν|jc)1 [τBcIj − τBc̄Ij̄

]
+ (µν|jc)2 [τBc̄Ij − τBcIj̄

]
+ (µν|jc)3 [τBc̄Ij + τBcIj̄

]}
,

(2.36)

where superscript 0 corresponds to the real quaternion unit and the super-
script 1, 2 and 3 to the imaginary quaternion units ı̌, ̌ and ǩ respectively.

In the next step we also write the summation over B as two sums over the
Kramers partners b and b̄, write out the summation over α and β, and convert
the coefficient matrix of the spinor with label b to quaternion format[143]

(L1)PI =

2
∑

b

∑
µν

∑
jc

{
Cα∗

µP

(
C0

νb + iC1
νb

)
+ Cβ∗

µP

(
−C2

νb + iC3
νb

)}
·
{

(µν|jc)0 [τbcIj + τbc̄Ij̄

]
+ (µν|jc)1 [τbcIj − τbc̄Ij̄

]
+ (µν|jc)2 [τbc̄Ij − τbcIj̄

]
+ (µν|jc)3 [τbc̄Ij + τbcIj̄

]}
+

2
∑

b

∑
µν

∑
jc

{
Cα∗

µP

(
C2

νb + iC3
νb

)
+ Cβ∗

µP

(
C0

νb − iC1
νb

)}
·
{

(µν|jc)0 [τb̄cIj + τb̄c̄Ij̄

]
+ (µν|jc)1 [τb̄cIj − τb̄c̄Ij̄

]
+ (µν|jc)2 [τb̄c̄Ij − τb̄cIj̄

]
+ (µν|jc)3 [τb̄c̄Ij + τb̄cIj̄

]}
.

(2.37)

We now have all summations in terms of Kramers’ pairs or AO functions
but still have one complex matrix (the leftmost coefficient matrix) and have
indices P and I refering to spinors and not Kramers’ pairs. Since we do not
sum over P and I we take a special case in order to list the expression in
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terms of Kramers’ pair indices. We take (L1)pi:

(L1)pi =

2
∑

b

∑
µν

∑
jc

{(
C0

µp − iC1
µp

) (
C0

νb + iC1
νb

)
+
(
−C2

µp − iC3
µp

) (
−C2

νb + iC3
νb

)}
·
{

(µν|jc)0 [τbcij + τbc̄ij̄
]
+ (µν|jc)1 [τbcij − τbc̄ij̄]

+ (µν|jc)2 [τbc̄ij − τbcij̄]+ (µν|jc)3 [τbc̄ij + τbcij̄
]}

+

2
∑

b

∑
µν

∑
jc

{(
C0

µp − iC1
µp

) (
C2

νb + iC3
νb

)
+
(
−C2

µp − iC3
µp

) (
C0

νb − iC1
νb

)}
·
{

(µν|jc)0 [τb̄cij + τb̄c̄ij̄
]
+ (µν|jc)1 [τb̄cij − τb̄c̄ij̄]

+ (µν|jc)2 [τb̄c̄ij − τb̄cij̄]+ (µν|jc)3 [τb̄c̄ij + τb̄cij̄
]}
.

(2.38)

From which follows the definition of the three quarter transformed two
electron integrals QG

GΛ34,Λ2

jcµb =
∑

ν

CΛ2
νb (µν|jc)Λ34 ; (Λ2,Λ34 = 0, 1, 2, 3) . (2.39)

Writing the Lagrangian now in mixed AO−MS basis

QL1(AO−MS) =
(

QG
)T (QT

)
. (2.40)

Requiring this form uniquely defines the amplitudes in double quaternion
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format, QT:

T 00
jcbi = 1

2
Re
(
τbcij + τbc̄ij̄

)
T 01

jcbi =
1

2
Im
(
τbcij + τbc̄ij̄

)
T 10

jcbi = −1
2
Im
(
τbcij − τbc̄ij̄

)
T 11

jcbi =
1

2
Re
(
τbcij − τbc̄ij̄

)
T 20

jcbi = 1
2
Re
(
τbc̄ij − τbcij̄

)
T 21

jcbi =
1

2
Im
(
τbc̄ij − τbcij̄

)
T 30

jcbi = −1
2
Im
(
τbc̄ij + τbcij̄

)
T 31

jcbi =
1

2
Re
(
τbc̄ij + τbcij̄

)
(2.41)

T 02
jcbi = −1

2
Re
(
τb̄cij + τb̄c̄ij̄

)
T 03

jcbi =
1

2
Im
(
τb̄cij + τb̄c̄ij̄

)
T 12

jcbi = 1
2
Im
(
τb̄cij − τb̄c̄ij̄

)
T 13

jcbi =
1

2
Re
(
τb̄cij − τb̄c̄ij̄

)
T 22

jcbi = −1
2
Re
(
τb̄c̄ij − τb̄cij̄

)
T 23

jcbi =
1

2
Im
(
τb̄c̄ij − τb̄cij̄

)
T 32

jcbi = 1
2
Im
(
τb̄c̄ij + τb̄cij̄

)
T 33

jcbi =
1

2
Re
(
τb̄c̄ij + τb̄cij̄

)
.

The individual components of the quaternion (L1)µi are obtained from

(omitting the summations over bjc and explicit subscripts on GΛ34,Λ2

jcµb and

TΛ34,ΛT

jcbi )
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(L1)0
µi = +G00T 00 +G10T 10 +G20T 20 +G30T 30 −G01T 01

−G11T 11 −G21T 21 −G31T 31 −G02T 02 −G12T 12

−G22T 22 −G32T 32 −G03T 03 −G13T 13 −G23T 23

−G33T 33

(L1)1
µi = +G01T 00 +G11T 10 +G21T 20 +G31T 30 +G00T 01

+G10T 11 +G20T 21 +G30T 31 −G03T 02 −G13T 12

−G23T 22 −G33T 32 −G02T 03 −G12T 13 −G22T 23

−G32T 33 (2.42)

(L1)2
µi = +G02T 00 +G12T 10 +G22T 20 +G32T 30 +Gi03T 01

+G13T 11 +G23T 21 +G33T 31 −G00T 02 −G10T 12

−G20T 22 −G30T 32 −G01T 03 −G11T 13 −G21T 23

−G31T 33

(L1)3
µi = +G03T 00 +G13T 10 +G23T 20 +G33T 30 −G02T 01

−G12T 11 −G22T 21 −G32T 31 −G01T 02 −G11T 12

−G21T 22 −G31T 32 −G00T 03 −G10T 13 −G20T 23

−G30T 33,

where the signs appearing in equation (2.43) follow the quaternion mul-
tiplication rules for the second quaternion units of QG and QT. From this
AO-MS Lagrangian one may also obtain the MS-MS Lagrangian for which
we write explicitly the real part.

(L1)0
pi = 4

∑
µ

(
C0

µp (L1)0
µi + C1

µp (L1)1
µi + C2

µp (L1)2
µi + C3

µp (L1)3
µi

)
.

(2.43)

The full Lagrangian can be written in a compact manner as

QL1 = 4
(

QC
)† (QL1(AO−MS)

)
. (2.44)

In the multiplication with the spinor coefficient matrix, QC, we need to sum
over the active virtual and the inactive spinors. This last step is fast since it
scales as N3, while the transformation itself scales as N5.

The evaluation of the L2 can be written in a similar fashion as L1

QL2(AO−MS) =
(

QG
)T (QT

)∗
, (2.45)
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and the last transformation step becomes:

QL2 = −4
(

QL2(AO−MS)
)† (QC

)
. (2.46)

The advantage of the quaternion formulation is that the extensive library
of quaternion linear algebra routines that is available in dirac can be uti-
lized.

2.3.2 Point group symmetry

In the previous section the inclusion of time reversal symmetry in the theory
has been discussed. In this section we combine time reversal symmetry with
spatial symmetry to employ the full symmetry of the molecular system.We
write the 4-component complex wave function in terms of the individual
components ψT =

(
ψLα, ψLβ, ψSα, ψSβ

)
. These functions are expanded in

real scalar basis functions (AO-basis) that are adapted to boson irreducible
representations (irreps) of the molecular point group. This procedure puts
all the phase information on the MO-coefficients and makes it possible to
use a non-relativistic integrals evaluation implementation to compute the
primitive integrals. It can be shown [46] that the symmetry content of the
wave function is given by

ΓL =

[
(Γφ,Γφ ⊗ ΓRz)(

Γφ ⊗ ΓRy ,Γφ ⊗ ΓRx

) ] ,
(2.47)

ΓS =

[
(Γφ ⊗ Γxyz,Γφ ⊗ Γz)
(Γφ ⊗ Γy,Γφ ⊗ Γx)

]
= ΓL ⊗ Γxyz.

For example: if the real part of ψLα transforms as the totally symmetric
irrep Γ0, the imaginary part of ψLα transforms as the rotation ΓRz and so
on. Reformulation of the Dirac equation in terms of quaternion algebra gives
two-component quaternion spinors

QψT =
(
ψLα − ψLβ∗̌, ψSα − ψSβ∗̌

)
, (2.48)

Comparing equations (2.47) and (2.48) we see that each boson irrep can
be associated with a quaternion unit. It is convenient to classify a certain
point group as real, complex , or quaternion. Without symmetry or with only
inversion symmetry, pointgroups C1 and Ci, large component basis functions
may contribute to all four positions (real Lα, imaginary Lα, real Lβ and
imaginary Lβ) in Qψ which means that the corresponding spinor coefficients
are quaternion. However, basis functions that transform according to the
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irreps of the complex groups Cs, C2 and C2h can contribute only to two
positions so that the spinor coefficients are complex. In the real groups D2,
C2v and D2h only one specific position in the quaternion spinor remains
so that these expansion coefficents are real. It is thus possible to combine
time reversal and spatial symmetry by multiplying each symmetry adapted
scalar basis function with the appropriate quaternion phase factor. This is
done automatically by the quaternion multiplication routines of dirac so
that quaternion matrices are made real or complex for point groups where
this is possible. What it in effect means is that consideration of spatial
symmetry leads in some cases to reduction of the algebra, i.e. a reduction
from quaternion to complex or real algebra, thus reducing the computational
effort. The current implementation of this scheme, as described in reference
[46], is limited to D2h since the integral generation module does not permit
use of higher point group symmetry.

The reduction of algebra in case of the construction of the amplitude
dependent part of the Lagrangian will be shown by a specific example, namely
the case of C2v symmetry. The point group C2v has four boson irreps, A1,
A2, B1 and B2. A1 is associated with the real quaternion unit, A2 with ı̌, B1

with ̌ and B2 with ǩ. The phase shift that makes the MS coefficients real is
applied so that equation (2.43) becomes

(L1)pi = 4
∑

µ

(
C

ΓA1
µp (L1)

ΓA1
µi + C

ΓA2
µp (L1)

ΓA2
µi +

C
ΓB1
µp (L1)

ΓB1
µi + C

ΓB2
µp (L1)

ΓB2
µi

)
,

(2.49)

where we omitted the subscript 0 for (L1)pi because it is now redundant with
all imaginary coeffients being zero. The superscript on the MS coefficients
and the AO-MS Lagrangian now indicates the boson irrep and we see that
the identification with irrep labels replaces the identification with quaternion
units.

We now consider the expression that defines the Lagrangian in the mixed
AO-MS basis. Since only the real parts of amplitudes with an even number
of barred indices have value non-zero in case of real groups, we see from
the definition, equation (2.42), that only T 00, T 11, T 22 and T 33 remain. In
terms of boson irreps we can indicate these T ’s by T ΓA1 , T ΓA2 , T ΓB1 and T ΓB2

respectively. The contraction to form the Lagrangian in mixed AO-MS basis
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is then written as

(L1)
ΓA1
µi = +G(ΓA1

,ΓA1)T ΓA1 −G(ΓA2
,ΓA2)T ΓA2

−G(ΓB1
,ΓB1)T ΓB1 −G(ΓB2

,ΓB2)T ΓB2

(L1)
ΓA2
µi = +G(ΓA1

,ΓA2)T ΓA1 +G(ΓA2
,ΓA1)T ΓA2

−G(ΓB1
,ΓB2)T ΓB1 −G(ΓB2

,ΓB1)T ΓB2

(L1)
ΓB1
µi = +G(ΓA1

,ΓB1)T ΓA1 +G(ΓA2
,ΓB2)T ΓA2

−G(ΓB1
,ΓA1)T ΓB1 −G(ΓB2

,ΓA2)T ΓB2

(L1)
ΓB2
µi = +G(ΓA1

,ΓB2)T ΓA1 −G(ΓA2
,ΓB1)T ΓA2

−G(ΓB1
,ΓA2)T ΓB1 −G(ΓB2

,ΓA1)T ΓB2 , (2.50)

where the first symmetry label of G corresponds to the first quaternion unit
and the second label to the second quaternion unit of the G defined in equa-
tion (2.39). The three-quarter transformed two-electron integrals, G, are
automatically real since they are defined in terms of real primitive and real
MS coefficients. We see that due to the quaternion phase shifts we need
no quaternion algebra at all in the case of real groups and have reduced
the complexity of the algorithm to real algebra and the computational work
associated with the matrix multiplications by a factor of sixteen.

So far, we have largely neglected the division of the AO-basis into large,
L, and small, S, component basis functions in the formulas. In the Dirac-
Coulomb (DC) formalism only the blocks of the (LL|LL), (LL|SS), (SS|LL)
and (SS|SS) two-electron integrals are needed. The kinetic balance condi-
tion dictates that the gradient of each large component basis function is
contained in the small component basis set. Since we use real scalar one-
component basis function the size of the small component basis set is ap-
proximately 2 − 3 times larger than that of the large component basis set.
The bottleneck in the current program becomes therefore the index trans-
formation of two-electron integrals that involve the small component of the
wave function. Although the (SS|SS) type of two-electron integrals can of-
ten be neglected in actual applications, this is not the case for the (LL|SS)
and (SS|LL) type of integrals. In the case of DC-HF calculations it has
been shown that significant computational savings are possible by applying
a one-center approximation[48, 49] without losing much accuracy. In this
approximation all multi-center electron-repulsion integrals over the small-
component are removed. Generalization of this one-center approximation
in 4-index transformations has been outlined in reference [50], but is not
yet implemented in dirac. In a recent research paper Abe et al.[144] show
an alternative approach in which four-component spinors are expanded in
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a two-component basis set. This makes the index transformation more ef-
ficient since the size of the small component basis is then the same as the
size of the large component basis. Such restricted kinetic balance schemes
should give the most efficient approach in calculations on small molecules
where integral approximation schemes based on the local nature of the small
component and/or the neglect of spin-orbit coupling (SOC) terms[70] are not
appropriate.

The MP2 amplitudes and the corresponding energy in the dirac program
are calculated in the relccsd[142] module for the calculation of MP2 and
coupled-cluster energies. Since relccsd uses transformed MS integrals that
are stored on disk the current implementation of the MP2 first order molecu-
lar properties is not optimal. It requires two separate index transformations,
one to compute the MP2 amplitudes and diagonal blocks of the effective
density matrix, and another to obtain the amplitude dependent parts L1
and L2 of the Lagrangian. In this second index transformation of the AO
two-electron integrals, we transform only three of the four indices and con-
tract them ‘on the fly’ with the amplitudes. More efficient algorithms have
been reported in non-relativistic quantum chemistry, like the semi-direct al-
gorithm of Head-Gordon[129], where all these quantities are calculated in
the same index transformation. Since we plan to extend the current code
to the calculation of analytical first order coupled-cluster properties that ne-
cessitates a two-step procedure anyway, we have not made such a dedicated
implementation for MP2 calculations.

2.4 Conclusions

We have presented a formulation and implementation of analytical first-order
one-electron molecular properties at the Dirac-Coulomb MP2 level of theory.
The formalism allows the use of inactive spinors, which is especially advan-
tageous for systems containing heavy elements, since for most properties it is
sufficient to only correlate valence and subvalence electrons. Even though we
work in the no-pair formalism, negative energy spinors enter the equations
due to the full Hartree-Fock relaxation of the active spinors to the effect
of the applied perturbation. Time reversal symmetry is exploited by use of
quaternion algebra. To reduce computational costs further point group sym-
metry up to D2h is used. The bottleneck in the program is the transformation
over two-electron integrals that involve the small component. This bottle-
neck might be overcome in the future by use of an one-center approximation
as has already been applied successfully in Dirac-Coulomb HF theory.
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Chapter 3

The nuclear quadrupole
moment of 115In from
molecular data

The nuclear quadrupole moment of 115In has been determined by combining
the experimental nuclear quadrupole coupling constants and electric field
gradients, calculated at the four-component CCSD(T) level of theory, of four
indium halides. Our recommended value for the nuclear quadrupole moment
of 115In is 770(8) millibarn. A basis set study at the Dirac-Coulomb Hartree-
Fock level shows a slow convergence of the electric field gradient with respect
to higher angular momentum functions.

3.1 Introduction

In the ‘year-2001’[7] set of nuclear quadrupole moments (NQM), 26 new val-
ues are tabulated, as compared to the ‘year-1992’[145] set. Eleven of these
were solely determined via the molecular method and seven of these were
determined in combination with atomic or solid state methods. The molecu-
lar method combines very accurately measured nuclear quadrupole coupling
constants (NQCC) from microwave spectra, with a quantum chemical cal-
culation of the electric field gradient (EFG) at the nucleus of interest. It
has shown capable of producing accurate NQMs at relatively little expense.
Since the rather inaccurate NQM of 115In is not updated in the ‘year-2001’
set it is interesting to apply the molecular method to this isotope as well.

The standard value, 810 mb, for 115In[7] was obtained by Belfrage et
al.[146] from the observed hyperfine structure of the 5p 2P, 7p 2P and 8p
2P states of the 115In atom in combination with empirically derived values
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for 〈r−3〉 of these states[147]. The inaccuracy of these results is about 7%.
Leiberich et al.[148] noted that this value is probably too high as it leads to
inconsistencies between the experimental and calculated NQCCs in metal-
lic indium. They derive a lower value of 760 mb taking the X-ray data
and calculations on the muonic atom that were reported by Lee et al.[149]
The accuracy of this NQM should be about 6%. Recently, van Lenthe and
Baerends[150] computed NQCCs using the ZORA-4 DFT method for a range
of compounds including the indium halides treated in this study. They also
suggest a lower value of 740(30) mb for the NQM of 115In.

The NQCC, νQ (X), in a linear molecule is given by[151]:

νQ (X) = eq (X)Q (X) . (3.1)

Inversion of this relation gives the NQM, Q (in barns), expressed in terms of
the νQ (X) (in MHz) and the EFG, q (X), (in atomic units):

Q (X) =
νQ (X)

234.9647q (X)
. (3.2)

NQCCs for the indium halides tabulated to four digits accuracy or more
are available from the book by Lucken.[152] Since these are already to first
order corrected for vibrational effects it suffices to compute the EFG at the
equilibrium geometry. Errors due to higher order vibrational effects should
be small since the first order corrections are already small, ranging in the
vibrational ground state from 0.46% for InF to 0.07% for InI.

Accurate calculation of EFGs requires large basis sets to describe the
core and valence polarization. Halkier et al.[153] studied EFGs at the HF
and CCSD level of theory for several light diatomic molecules and found
that the EFG converges very slowly with standard basis set sequences, much
slower than electric dipole and quadrupole moments. To make things worse,
qualitative good basis sets for heavy elements are rare. For these reasons we
optimized dedicated basis sets for indium at the Dirac-Coulomb Hartree-Fock
(DC-HF) level of theory.

Apart from a large basis set one also needs to take relativistic effects and
electron correlation effects into account to obtain an accurate description of
the EFG. We do so by treating relativity at the Dirac-Coulomb (DC) level
of theory, while using the CCSD(T) method to describe electron correlation.

3.2 Methods and computational details

We started by performing an extensive basis set study for In at the DC-HF
level of theory. The two-step procedure to determine the optimal basis set
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necessary for accurate calculation of EFGs is comparable to the strategy used
in earlier work[126] on the EFGs of HBr and HI. In the first step we focus on
the energy of the indium atom in its ground state, while in the second step
we consider the EFG of the smallest of the four indium halides, InF.

We used so-called dual family basis sets[100] where the large component
(l+2)-exponents are a subset of the large component (l)-exponents. The ex-
ponents in these sets were constrained by the even-tempered prescription[108]
to limit the number of variable parameters. For the In atom this means that
only four variables, αs and βs for l = 0, 2, 4 and αp and βp for l = 1, 3, 5
had to be varied, what can readily be done with a modified[154] version of
grasp[155]. In this energy optimization step we used a 23s17p12d basis set
as starting point. When the optimal parameters were found, we performed
three new calculations, in which the basis set was extended with one tight s,
p or d-function, respectively, followed by reoptimization of αs, βs, αp and βp.
The set that gave the largest energy lowering formed the starting point for
new extensions. The procedure was repeated until the energy lowering upon
extending the basis set became less than 10 mEh.

In the second step, the α and β parameters were fixed and the conver-
gence of the EFG as a function of basis set extension was studied. To allow
for polarization in the molecule we first added three f-functions, centered
around the exponent closest to the one of the f-function in the cc-VDZ ba-
sis of Dyall[156] (1.562 709 4). Next we systematically extended the basis
to converge the EFG on In. Beginning with s-functions we added diffuse
functions until the change in EFG became less than 0.001 a.u., after which
we added additional tight functions until the same convergence was reached.
The same procedure was repeated, with the extended basis, for higher an-
gular momentum functions until the EFG with respect to g-functions was
converged.

The results of this optimization are described in section 3.3.1. The dif-
ferences between the strategy applied here and the one of reference [126]
are that in the old procedure all exponents were a subset of the s-exponents
and that in the study of the convergence of the EFG, several functions with
different l value were added simultaneously. In this new study, we add one
function of one particular l value at a time and also include g functions that
were not considered previously.

For the correlated calculations we used a similar strategy as proposed
by Kellö and Sadlej[9, 157] in the context of Douglas-Kroll EFG calcula-
tions. The valence and subvalence electrons are correlated at the CCSD(T)
level of theory, while the electron correlation contribution due to the deeper
lying shells is computed at the MP2 level of theory. This means that at
the CCSD(T) level for InF 28 electrons are correlated, for InCl 36 electrons
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are correlated and for InBr and InI 46 electrons are correlated. We thereby
found that virtual spinors with spinor energies higher than 13 a.u. could be
neglected (see section 3.3.2). All correlation contributions to the EFG are
calculated using the finite field method, in which the correlation energy is
differentiated with respect to the perturbation strength. The perturbation
strength for these calculations was taken equal to ±0.000 01 a.u. The total
EFG of a method is the finite field correlation contribution plus the analyt-
ical HF (expectation) value. This mixed analytical/finite field scheme was
introduced in reference [158], where an almost perfectly linear dependence of
the correlation energy to the applied field strength was found.

All calculations of the electric field gradient were performed at the exper-
imental equilibrium bond distances: Re(InF)=3.752 a.u.[159], Re(InCl)
=4.538 a.u.[160], Re(InBr)=4.806 a.u.[161] and Re(InI)=5.204 a.u.[162]. In
all our calculations we used fully uncontracted basis sets. The fluorine, chlo-
rine and bromine basis sets were the same as used by Pernpointner and
Visscher[158], except for chlorine where an extra diffuse p (0.0419) is added.
For iodine we used the cc-pVTZ basis from Visscher and Dyall[163] aug-
mented by one diffuse s (0.024 57), one tight p (250 937.594 414 2) and one
diffuse p (0.040), the resulting iodine basis is a 22s18p12d1f set. All these
basis sets can be considered as of approximately triple zeta quality, the ones
for the lighter atoms being close to the original cc-pVTZ basis sets of Dun-
ning and co-workers[101, 102, 164]. The electric field gradient calculations
were performed using the dirac[41] electronic structure code using the stan-
dard Gaussian charge distribution for the nucleus[165]. In order to study the
importance of scalar relativistic and spin-orbit coupling (SOC) contributions
we not only performed relativistic DC calculations but also non-relativistic
(NR) and scalar relativistic calculations. The non-relativistic (NR) calcula-
tions are based on the Lévy-Leblond Hamiltonian[69], the scalar relativistic
calculations are based on the spin-free (SF) Dirac equation introduced by
Dyall[51]. In all DC and SF EFG calculations we neglected the (SS|SS) type
of integrals, since earlier studies have shown that these are negligible for the
EFG[166]. As a check we performed one DC-HF calculation with (SS|SS)
integrals included for InF and found a difference in the EFG on In of only
0.02%.
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3.3 Results and discussion

3.3.1 Convergence of the electric field gradient in the
Hartree-Fock calculations

For the indium atom the result of the optimization is a 25s19p12d even-
tempered basis which gives an energy of −5880.410 40 Eh, 21 mEh above the
DC-HF limit as calculated with grasp[155] .The βs for the s and d functions
was 2.272 and the βp of the p functions was 2.234. The highest s, p and d-
exponents after the energy optimization were 20 702 066.70, 120 828.7227 and
2483.704 644 respectively.

The convergence of the EFG and the energy of InF by extending this ba-
sis is given in Table 3.1. The first g function that we used in the convergence
study had exponent 0.677 07, which is comparable to the most diffuse f. The
convergence of the EFG on In is very slow for the f and g functions, and
we see that especially many tight functions are needed. The final basis, for
which the EFG on In is converged within 0.001 a.u., is a 25s23p15d9f8g basis.
The highest s, p, d, f and g exponents were 20 702 066.70, 1 347 862.219 141 1,
12 823.109 75, 434.534 442 5 and 41.007 795 7 respectively. To analyze the
cause of this slow convergence we studied the individual spinor contributions
to the EFG on In in InF. In Table 3.2 we list partial sums of spinor contribu-
tions and the differences in these partial sums upon adding 6 f functions to
the 25s23p15d3f basis and adding 8 g functions to the resulting 25s23p15d9f
basis. The main difference to the EFG on In upon extending the basis with
f functions arises from the 2p spinors. When the basis is subsequently ex-
tended with g functions the main differences arise from the 3p and 3d spinors.
This dependence can be understood by realizing that the EFG operator con-
nects functions that differ by two units of angular momentum. It thereby
weights the small admixture of the f-character in the closed p shell and simi-
larly the small admixture of g-character in the closed d shell that occurs due
to the molecule formation. Surprising is that this effect is so large that it
needs to be taken into account to reach the desired accuracy. As could be
expected, since we have no occupied f-shell in In, the addition of h-functions
is not necessary. Adding a h-function to the 25s23p15d9f8g basis, with the
h exponent comparable to the most diffuse g exponent, gave a difference of
the EFG of only 0.0009 a.u.

We also did a minor study on the stability of the EFG on In for extending
the fluorine basis. We hereby used the mentioned cc-pVTZ, the aug-cc-pVTZ,
aug-cc-pVQZ and the aug-cc-pV5Z basis sets. The difference between the
cc-pVTZ and aug-cc-pVQZ is -0.011 a.u., the difference between the aug-
cc-pVQZ and aug-cc-pV5Z basis is -0.001 a.u. This means that with the
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Table 3.1: Electric field gradients at the indium and fluorine nuclei in InF in
atomic units using different basis sets for indium. The fluorine basis is the cc-
pVTZ basis with two additional p functions (see Ref. [158]). The convergence
(∆qIn) of the EFG at indium is also given. All calculations were performed at the
DC-HF level of theory. diff. means diffuse.

Basis set qIn ∆qIn qF

25s19p12d (b1): -4.4336 0.5438
25s19p12d3f (b2): (b1+3 diff. f) -4.4704 -0.0367 0.5348
26s19p12d3f (b3): (b2+diff. s) -4.4705 -0.0002 0.5362

(b4): (b2+tight s) -4.4703 0.0000 0.5348
25s20p12d3f (b5): (b2+diff. p) -4.4688 0.0015 0.5350

(b6): (b5+diff. p) -4.4688 0.0001 0.5350
(b7): (b5+tight p) -4.4723 -0.0034 0.5350
(b8): (b7+tight p) -4.4741 -0.0018 0.5350
(b9): (b8+tight p) -4.4756 -0.0015 0.5350
(b10): (b9+tight p) -4.4761 -0.0005 0.5350

25s23p13d3f (b11): (b9+diff. d) -4.4813 -0.0057 0.5287
(b12): (b11+diff. d) -4.4814 0.0000 0.5288
(b13): (b11+tight d) -4.4828 -0.0015 0.5287
(b14): (b13+tight d) -4.4847 -0.0019 0.5287
(b15): (b14+tight d) -4.4850 -0.0003 0.5287

25s23p15d4f (b16): (b14+diff. f) -4.4850 0.0000 0.5139
(b17): (b14+tight f) -4.4809 0.0037 0.5288
(b18): (b17+tight f) -4.4798 0.0012 0.5287
(b19): (b18+tight f) -4.4750 0.0048 0.5287
(b20): (b19+tight f) -4.4659 0.0091 0.5287
(b21): (b20+tight f) -4.4625 0.0034 0.5287
(b22): (b21+tight f) -4.4604 0.0021 0.5287
(b23): (b22+tight f) -4.4604 0.0000 0.5287

25s23p15d9f1g (b24): (b22+diff. g) -4.4396 0.0208 0.5289
(b25): (b24+diff. g) -4.4405 -0.0009 0.5288
(b26): (b25+diff. g) -4.4419 -0.0014 0.5280
(b27): (b26+diff. g) -4.4421 -0.0002 0.5281
(b28): (b26+tight g) -4.4340 0.0079 0.5284
(b29): (b28+tight g) -4.4319 0.0021 0.5285
(b30): (b29+tight g) -4.4285 0.0034 0.5285
(b31): (b30+tight g) -4.4238 0.0047 0.5285
(b32): (b31+tight g) -4.4211 0.0027 0.5285

25s23p15d9f9g (b33): (b32+tight g) -4.4202 0.0008 0.5285
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Table 3.2: Spinor contributions to the EFG (in atomic units) at indium in InF
for the 25s23p15d3f basis. Partial (Part.) sums of spinor contributions are also
given, as well as differences in these partial sums between the different indium
basis sets. The contribution of the F 1s1/2 spinor is added to the partial sum of
the In 3p shell because its energy is just between the 3p1/2 and the 3p3/2 indium.
All calculations have been performed at the DC-HF level of theory.

25s23p15d3f 25s23p15d3f 25s23p15d9f 25s23p15d9f8g
Spinor qi Part. sum qi Part. sum ∆qi Part. sum ∆qi
1s1/2 0.0086 0.0086 -0.0002 -0.0003
2s1/2 0.0129 0.0129 -0.0002 -0.0006
2p1/2 0.4598
2p3/2 3206.8787
2p3/2 -3207.4583 -0.1198 0.0187 0.0061
3s1/2 0.0052 0.0052 0.0000 -0.0004
3p1/2 1.7863
F1s1/2 -0.0757
3p3/2 595.4546
3p3/2 -597.4780 -0.3129 0.0082 0.0175
3d3/2 92.7105
3d3/2 -92.1772
3d5/2 123.4478
3d5/2 -25.1868
3d5/2 -98.8341 -0.0399 0.0001 0.0171
4s1/2 -0.0006 -0.0006 0.0000 0.0003
4p1/2 3.3431
4p3/2 97.2239
4p3/2 -101.2474 -0.6804 -0.0024 -0.0005
F2s1/2 -0.4570 -0.4570 -0.0001 -0.0002
4d3/2 11.0968
4d3/2 -9.7183
4d5/2 13.2589
4d5/2 -3.6756
4d5/2 -10.5747 0.3871 -0.0002 0.0078
5s− F2p -1.4601 -1.4601 -0.0005 -0.0027
F2p -0.0246
F2p -0.0338 -0.0585 -0.0003 -0.0006
5sp− F2p -2.1102 -2.1102 -0.0008 -0.0020

Total -4.8255 -4.8255 0.0222 0.0414
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25s23p15d9f8g basis for In and the aug-cc-pV5Z for F, the EFG on In should
be converged to almost 0.001 a.u. at the DC-HF level.

When doing correlated calculations, we have to compromise between basis
set size and computational feasibility. For l =0, l =1 and l =2, we took
those exponents from the HF EFG convergence study which made the EFG
converge within about 0.01 a.u. For f and g we only took the most important
functions, that could be chosen such that the EFG deviates less than 0.01
a.u. from the benchmark HF value. The final In basis which we used for
the correlated calculations became then a 25s19p13d4f2g basis where the
selected f exponents were 87.035 571 1, 3.491 740 3, 1.562 709 4 and 0.699 382 1
and the selected g exponents were 7.942 788 8 and 1.538 436 6. In Table 3.3
results for the four indium halides are presented. The deviation between
these benchmark results and the results with the basis that we used for the
correlated calculations are less than 0.01 a.u. and is used to correct the
correlated EFG values calculated in the smaller basis.

3.3.2 Convergence of the electric field gradient in the
correlated calculations

The uncontracted basis sets that we use generates many highlying virtual
spinors that are unimportant for the correlation of valence and subvalence
shells. To achieve better computational efficiency these virtuals are elimi-
nated by applying an energy treshold for inclusion in the correlation calcula-
tion. To study the effect of truncating the active virtual space in this manner
we varied this treshold in the spin-free formalism. Raising the virtual spinor
threshold from 13 to 100 a.u. gave a change in the calculated EFG at the
CCSD(T) level for InF, InBr and InI of 0.06% and for InCl of 0.21%. In the
all-electron calculations at the MP2 level, which we use to estimate the ef-
fect of core correlation, the effect of higher virtuals should be more important
because we then also consider core correlation. In these calculations we did
therefore take all the virtual spinors into account. These all electron results
can be compared to the smaller MP2 calculation (with the same active space
as in the coupled-cluster calculations) to provide an estimate of the joint
contribution of core correlation and the effect of higher lying virtual spinors
on the valence spinors. Because of the small effect of the virtual spinors with
energies between 13 and 100 a.u. on the valence correlation, and because
the all-electron MP2 calculations will also give a good estimate of this effect,
we conclude that it is justified to put the energy treshold at 13 a.u. in the
coupled-cluster calculations. The correction obtained by comparing the full
active space DC-MP2 and the small active space DC-MP2 calculations gives
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changes in the EFG ranging from 0.04% for InI to 0.36% for InCl and is
included in the CC values of Table 3.3.

The SOC effect on the EFG can be calculated by comparing the Dirac-
Coulomb and the spin-free calculations. By comparing the DC-HF with the
NR-HF calculations we see that relativistic effects are indeed very important.
The relativistic contribution to the EFG ranges from -0.435 a.u. (9.83%) for
InF to 0.300 a.u. (7.97%) for InI. The main contribution to the relativistic
effects comes from scalar relativistic effects. For the benchmark basis the
SOC contributions range from -0.019 a.u. (0.47%) for InBr to -0.015 a.u.
(0.41%) for InI at the HF level. If we compare the CCSD(T) calculations
using the SF formalism and the DC formalism, including the contribution
of the all-electron MP2 calculations we see that the SOC effect ranges from
-0.021 a.u. (0.53%) for InCl to -0.013 a.u. (0.40%) for InI, so the electron
correlation effects do not affect the magnitude of SOC effects much in this
case. The total relativistic contribution and the correlation contributions
are of roughly the same magnitude but of opposite sign so that we see a
fortuitous agreement between the NR-HF and the DC-CCSD(T) values. A
similar cancellation was found for the EFG at Ag in AgCl by Pernpointner
et al.[167].

3.3.3 Nuclear quadrupole moment of In

The resulting nuclear quadrupole moments of In extracted by the different
methods from the four indium halides are presented in Table 3.4. At the HF
level we see a mean absolute deviation of 3.7 and 3.8 mb for the DC and
spin-free formalisms respectively and 8.4 mb at the non-relativistic level (for
the small basis). At the correlated level the deviations between the NQMs
of 115In derived from the different molecules become smaller. At the DC
level the mean absolute deviation in going from MP2 to CCSD(T) becomes
smaller, from 3.6 to 1.0 mb. The small spread in NQM values for 115In
determined at the CCSD(T) level from the different indium halides gives
already an indication of the quality of these calculations. In addition we also
did some additional calculations to check the convergence of the calculated
NQM.

As mentioned, the basis set that we used for the correlated calculations
gave an EFG on In in the indium halide molecules that was converged within
0.01 a.u. at the DC-HF level. To check that this basis is also good enough
for the correlated calculations we extended the basis with one diffuse p and
one diffuse d, with exponents 0.028 058 5 and 0.057 715 5 respectively and
performed a spin-free MP2 calculation for InF. The change in the EFG of
InF was only 0.0007 a.u., so about 0.02%, again a negligibly small effect.
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Table 3.3: EFG values at the indium nucleus (in atomic units) in different in-
dium halides, calculated using different methods. The ‘benchmark’ values are
calculated using the 25s23p15d9f8g basis for indium and the aug-cc-pV5Z basis
for the halides, except for iodine where an aug-cc-pVTZ basis is used. All other
values are calculated using the 25s19p13d4f2g basis for indium and the extended
cc-pVTZ basis for the halides. NR means nonrelativistic, SF spin-free and DC
Dirac-Coulomb.

Method InF InCl InBr InI
NR-HF -3.990 -3.671 -3.553 -3.462
SF-HF -4.409 -4.051 -3.898 -3.750
SF-HF benchmark -4.414 -4.054 -3.896 -3.739

SF-MP2 0.413 0.460 0.450 0.435
SF-MP2ca 0.408 0.453 0.443 0.438
SF-CCSDcb 0.330 0.337 0.320 0.310
SF-CCSD(T)cb 0.424 0.424 0.406 0.397

DC-HF -4.425 -4.067 -3.910 -3.762
DC-HF benchmark -4.432 -4.074 -3.914 -3.754

DC-MP2 0.416 0.462 0.452 0.439
DC-MP2ca 0.404 0.449 0.441 0.438
DC-CCSDcb 0.326 0.347 0.318 0.309
DC-CCSD(T)cb 0.420 0.422 0.405 0.400

DFT ZORA-4c -4.144 -3.783 -3.637 -3.475
aThe MP2 contribution to the EFG due to all electrons and all virtual spinors.
bCorrected for the contribution due to the core electrons and higher lying virtuals esti-
mated from the difference between the MP2c and MP2 results.
cReference [150].

So far our focus with respect to basis sets has mainly been on InF that
has the shortest bond distance of the four halides. To see whether enough
diffuse functions are present in the basis we also performed some additional
calculations on InI using the same diffuse functions as mentioned for InF.
At the spin-free correlated level we find that the effect on the EFG value
is indeed larger than in InF, although still very small. At the MP2 level a
lowering of 0.0055 a.u. (0.l7%) is seen, at the CCSD(T) level 0.0038 a.u.
(0.11%), giving rise to a slightly higher NQM.

Besides the spread in NQM values that is determined by comparing val-
ues from different molecules there is also a possibility of a systematic error
that does not contribute to the spread. This error is difficult to estimate.
Given the calculations that we performed, we believe the error in the basis
set is negligible, in any case far below 1%. The vibrational correction error is
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Table 3.4: NQMs of 115In (in mb) derived using different methods and from
different indium halides. The ‘benchmark’ values are calculated using the
25s23p15d9f8g basis for indium and the aug-cc-pV5Z basis for the halides, except
for iodine where an aug-cc-pVTZ basis is used. The correlation contributions are
calculated using the 25s19p13d4f2g basis for indium and the extended cc-pVTZ
basis for the halides. NR means nonrelativistic, SF spin-free, and DC Dirac-
Coulomb. At the correlated level the NQMs are corrected for the contribution due
to core correlation and higher lying virtuals.

Method InF InCl InBr InI Average
NR-HF 775.7 764.7 760.2 746.7 761.8± 8.4
SF-HF 701.8 693.0 692.9 689.5 694.3± 3.8
SF-HF benchmark 701.1 692.4 693.4 691.6 694.6± 3.3
SF-MP2 772.6 779.4 782.3 783.2 779.4± 3.4
SF-CCSD 757.8 755.2 755.5 754.1 755.6± 1.6
SF-CCSD(T) 775.6 773.3 774.0 773.8 774.2± 1.0
DC-HF 699.4 690.2 690.9 687.2 691.9± 3.7
DC-HF benchmark 698.3 689.1 690.1 688.7 691.6± 3.3
DC-MP2 768.3 774.6 777.6 779.7 775.1± 3.6
DC-CCSD 753.7 750.7 751.1 750.6 751.5± 1.1
DC-CCSD(T) 771.4 768.8 769.6 770.8 770.2± 1.0
DFT ZORA-4a 746.8 742.1 742.8 744.0 743.3± 1.5

aReference [150].

also expected to be very small. This leaves possible errors in the electron cor-
relation contribution as the largest source of uncertainty. From their ample
experience with the calculation of electric field gradients of small molecules
at the Douglas-Kroll CCSD(T) level of theory, Kellö and Sadlej[9, 168, 169]
believe that an inaccuracy of 1% to the total EFG, due to the neglect of
higher order electron correlation effects, should be an upper limit. We also
take this estimate for our CCSD(T) calculations which makes our recom-
mended value for the NQM of 115In 770(8) mb. This value for the NQM of
115In is in better agreement with the value favoured by Leiberich et al.[148]
(760(50) mb) than with the standard value form Belfrage et al.[146] (810(60)
mb), although it falls in both error bars. Our value for the NQM of 115In
indicates also that the value determined by van Lenthe and Baerends[150],
using ZORA-4 and the Becke-Perdew functional, is too low, even though the
spread in their values is of comparable size as ours.

The NQMs of other indium isotopes can be deduced by combining the
measured B factors of atomic states and the NQM of 115In. Eberz et al.[170]
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tabulate the B factors for the 2P3/2 states of the In isotopes 104-127. Here
we only give the NQM of 113In because it is, besides 115In, the only sta-
ble isotope (with a natural abundance of about 4%). Using the ratio[171]
Q (113In)/Q (115In)=0.986 362(15) we obtain a new value forQ (113In) of 759(8)
mb.

3.4 Conclusions

A new value for the nuclear quadrupole moment for 115In has been deter-
mined by combining experimental nuclear quadrupole couplings constants
with four-component CCSD(T) electric field gradient calculations of four in-
dium halides. Our recommended value for the nuclear quadrupole moment of
115In is 770(8) mb. Relativistic effects are shown to be almost as important
as electron correlation effects, both about 10%, but since they are of opposite
sign they almost cancel each other. A basis set study at the Dirac-Coulomb
Hartee-Fock level showed that multiple tight f and g functions are needed to
converge the electric field gradient for InF within 0.001 a.u.
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Chapter 4

Molecular relativistic electric
field gradient calculations
suggest revision of the value of
the nuclear quadrupole
moment of 127I

Relativistic ab initio methods are used to compute the electric field gradi-
ent at the iodine nucleus in nine different closed shell diatomic molecules.
Combining these theoretical electric field gradients with experimental nu-
clear quadrupole coupling constants gives a consistent value of the nuclear
quadrupole moment of 127I of -696(12) millibarn. We argue that this value
is more precise than the current standard value of the nuclear quadrupole
moment of 127I and recommend adjusting the reference value accordingly.
The precision of this determination is still determined by technical limita-
tions in the theoretical work, in particular the neglect of the two-electron
Gaunt interaction in the Hamiltonian and correlation contributions beyond
those described at the CCSD(T) level of theory, but the errors are reduced
relative to the theoretical work that underlies the current standard value of
this nuclear quadrupole moment. As a secondary study we also considered
the calculation of the small electric field gradient at the gold nucleus in the
AuI molecule and conclude that this computation remains a challenge for
theoreticians.
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4.1 Introduction

Of the various ways to determine the electric quadrupole moment of a nucleus[7]
one of the most successful has proven to be the molecular method where
nuclear quadrupole coupling constants (NQCC) obtained from microwave
spectra are combined with quantum chemical calculations of the electric field
gradient (EFG) at the nucleus of interest. The accuracy of this procedure
is determined by that of the quantum chemical method for which one needs
careful calculation of both relativistic and electron correlation effects.

The important nuclear quadrupole moment (NQM) of 127I has been sub-
ject of many previous studies[126, 150, 169, 172–174] and was recently re-
vised in the 2001 compilation of nuclear quadrupole moments[7, 175] where
the value suggested by Bieroń et al.[169], -710(10) mb, was adopted. This
reference value is the average of two atomic values (using the measured hy-
perfine interaction constant B ) and a ‘molecular’ value derived from the
NQCC observed in HI. These three values show a spread of 12 mb and the
authors indicate that the molecular value of -705(7) mb that is based on a
Douglas-Kroll-Hess CCSD(T) calculation might be the closest to the truth.
They also present a historical overview of literature values of the NQM of
iodine where one can see that the atomic and molecular values show a fairly
good convergence.

In the present work we chose to use multiple molecular NQCCs to deter-
mine the NQM of 127I. This provides for a more systematic way of estimating
error bars on the derived NQM than is possible in a study on a single mole-
cule. We chose the series of eight molecules: HI, IF, ICl, IBr, I2, CuI, AgI
and TlI that were used in the comprehensive ZORA-4 DFT study of van
Lenthe and Baerends[150]. To this series we added AuI since the NQM of
this molecule was also recently measured[176].

The spread of the NQMs calculated from different molecular NQCCs gives
an indication of the quality of the theoretical method and it is interesting to
see how well different quantum chemical methods perform. Using ZORA-4
DFT van Lenthe and Baerends found a consistent value of the NQM of 127I
of -690(30) mb upon excluding the CuI and AgI results that were not in line
with the other values. The poor performance of the DFT method for coinage
metals halides was also observed in CuCl by Schwerdtfeger et al.[177] who
related this to the problem that the currently available density functionals
have in reproducing the dipole moment of these molecules. Ab initio methods
like MP2, CCSD and CCSD(T) give accurate results for these lighter coinage
metal halides and it is interesting to investigate whether this trend persists
in the iodides.
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4.2 Theory

The NQM Q(X) (in barns, b) of nucleus X in a linear molecule can be
calculated from[178]:

Q (X) =
νX

Q

234.9647qX
, (4.1)

with νX
Q the observed NQCC in MHz and qX the EFG at this nucleus in

atomic units. We usually compute only the value of qX at Re since vibra-
tionally corrected NQCCs, νX,0

Q , are either directly available from the litera-
ture [152, 172, 179, 180] or assessable via a first order fit [152, 176, 181]:

νX
Q (υ) = νX,0

Q +

(
υ +

1

2

)
νX,1

Q , (4.2)

of the observed couplings νX
Q (υ). The exception is CuI for which the exper-

iment only provides the NQCC in the vibrational ground state[182]. This
means that we calculate the EFG for this specific state via[183]

qX (υ) = qX,0 +

(
υ +

1

2

)
qX,1, (4.3)

which involves the computation of qX,0 = qX (Re) and the first and second
derivative with respect to the reduced distance ξ = (R−Re) /Re

qX,1 =
Be

ωe

[
3

(
1 +

αeωe

6B2
e

)(
∂qX

∂ξ

)
ξ=0

+

(
∂2qX

∂ξ2

)
ξ=0

]
. (4.4)

The spectroscopic constantsBe, ωe and αe can be taken from experiment[184].
An overview of other experimental data that was used, equilibrium geome-
tries and NQCCs, is given in Table 4.1.

4.3 Methods and computational details

Since relativistic effects strongly influence the computed EFGs[185] we treat
relativity with the four-component relativistic Dirac-Coulomb (DC) Hamil-
tonian. In order to analyze these relativistic effects we also performed non-
relativistic (NR) and scalar relativistic calculations. This could easily be
done with the relativistic electronic structure code dirac[41] that besides
performing the DC calculations also allows transformations[70] to the non-
relativistic (NR) Lévy-Leblond[69] or scalar relativistic spin-free (SF) Dirac
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Table 4.1: References to the equilibrium geometries and vibrationally corrected
NQCCs.

X Re (a.u.) νX,0
Q (MHz)

H 3.040 95a −1807.81b

F 3.609 38a −3440.7482c

Cl 4.386 05a −2928.91d

Br 4.665 73a −2753.8e

I 5.038 01a −2453.530f

Cu 4.418 18a −938.07g

Ag 4.809 35a −1060.85d

Au 4.669 71h −1706.4h

Tl 5.317 69a −438.123d

aReference [184].
bReference [179].
cReference [180].
dReference [152].
eNQCC vibrationally corrected using NQCCs from reference[181].
fReference [172].
gReference [182]. The NQCC could not be vibrationally corrected. The EFG is calculated
for the vibrational ground state.
hNQCC vibrationally corrected using NQCCs from reference [176].

equations[51]. In all cases we describe the nucleus by an isotropic Gaussian
charge distribution[165] and model its quadrupole moment separately[158].

For efficiency reasons we omitted the evaluation of the Coulomb (SS|SS)
and Gaunt (SL|SL) types of two-electron integrals in most of the relativistic
calculations. Of these two classes the most important are the Gaunt inte-
grals that appear in the Dirac-Coulomb-Breit formalism. The contribution
to molecular properties due to this relativistic two-electron operator was re-
cently investigated by Pernpointner[186] in a study of the EFG on Tl in TlH.
He found that inclusion of Gaunt integrals makes the EFG less negative by
0.6%. This is in line with earlier work by one of us [126] on HF, HCl and
HBr where the effect on the EFG on the halogen atom was 0.03%, 0.19%
and 0.29% respectively. We estimate that an effect of the order of 0.5%
on the EFG in iodine compounds is therefore likely. Since Gaunt-type in-
tegrals are not available in the present dirac implementation, and because
the molfdir program package[75] that was used in the earlier work is not
suited for calculations with the large basis sets that we use here, we had
unfortunately to disregard this significant contribution. The smaller (SS|SS)



4.3 Methods and computational details 65

integral contribution, that forms part of the Dirac-Coulomb Hamiltonian,
was included in cases where it gave a significant (> 0.1%) contribution. This
was only so for the 6th row compounds AuI and TlI where we computed and
added it at the Hartree-Fock level of theory.

Systematic studies of basis set convergence of the EFG on a nucleus in
light molecules by Halkier et al.[153] show that use of a sufficiently large
all-electron basis set is mandatory. Since a suitable basis set for iodine was
not available we developed a new basis set using almost the same procedure
as in our previous studies [126, 127]. The main difference, compared to this
earlier work, is that in the present work the EFG calculations are performed
for a wider range of diatomic molecules. This puts more emphasis on the
flexibility of the basis set and made us revise the molecular verification pro-
cedure slightly by studying the convergence of two rather than one molecular
EFG.

The first step in the basis set development consists of energy optimization
of an even-tempered[108] dual-family[100] set at the Dirac-Coulomb Hartree-
Fock (DC-HF) level of theory. This optimization is rather straightforward
since only four parameters αs and βs for l = 0, 2 and αp and βp for l
= 1 need to be determined. The optimal values of these weakly coupled
parameters are readily found using a special[154] version of the grasp[155]
program. After satisfactory convergence of the atomic HF energy we keep
the α and β parameters fixed and look at the convergence of the molecular
EFG as function of basis set extension. As criteria we take the EFG on I
in two molecules with different polarity, H+I− and F−I+, to ensure that the
iodine basis set will be flexible enough for all molecules that we study.

All calculations are performed using fully uncontracted basis sets. The
newly developed iodine basis set is discussed in more detail in the results
section while the size and origin of the basis sets used for the ligands is
displayed in Table 4.2. For convenience we also give a short description here.

For hydrogen we use the same basis set as described previously by Viss-
cher et al.[126] which is the Sadlej[190] set extended with extra tight p and
d functions. The fluorine, chlorine and bromine basis sets are the cc-pVTZ
Dunning[101, 102, 164] sets extended with extra tight and diffuse functions
as described in reference[127, 158]. For copper and silver we used the basis
sets of Pernpointner et al.[187]. The gold basis is the PJHN[191] basis set
extended with the two g exponents listed by Hess and Kaldor[188]. The thal-
lium basis set is the 24s22p16d10f2g basis used by Fægri and Visscher[189]
for the determination of spectroscopic constants of TlH.

Electron correlation is as important as relativity in the calculation of
EFGs. We use a combination of MP2 and CCSD(T) calculations to compute
both the important (sub)valence as well as core-valence and core-core corre-
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Table 4.2: The basis sets that were used for the ligands (X) in the diatomic
molecules.

X basis set
H 11s6p3da

F 11s7p2d1fb

Cl 16s11p2d1fb

Br 21s15p9d1fb

Cu 20s15p11d3f c

Ag 21s17p14d3f c

Au 21s17p11d7f2gd

Tl 24s22p16d10f2ge

aReference [126].
bReference [127].
cReference [187].
dReference [188].
eReference [189].

lation effects. In the CCSD(T) calculations we chose the active space such
that all valence and subvalence electrons are correlated. This corresponds to
inclusion of the 4s, 4p, 4d, 5s and 5p spinors of iodine and all other spinors
that are in this energy range (above -10.7 a.u.). To reduce computational ef-
forts we thereby deleted the highest virtuals with energies above 20 a.u. that
are of little importance for valence and subvalence correlation. The effect of
this removal of high-energy virtuals and the effect of electron correlation due
to deeper lying shells was, however, calculated at the MP2 level of theory
and used to correct the CCSD(T) values. This two-step strategy to calculate
the electron correlation effects to the EFG was initially proposed by Kellö
and Sadlej[9, 157] and works quite well if core contributions are small.

The full active space (all electrons correlated, no virtuals deleted) DC-
MP2 calculations for all molecules were done with the integral direct MP2
module of dirac[192] while the other MP2 calculations as well as all the
coupled-cluster calculations were performed with the relccsd[142] module
of dirac. Because this module does not have an analytic gradient imple-
mentation we calculated the EFG correlation contribution via the finite field
method. The perturbation strength used in these calculations was set to
±0.000 01 a.u. The total EFG is obtained by adding the finite field correla-
tion contribution to the HF expectation value[158].

Experimental bond distances were taken from Radzig and Smirnov[184]
with the exception of AuI where the recent value of Reynard, Evans and
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Gerry[176] was used. For CuI, where the derivatives of qX are needed for the
vibrational term qX,1 of equation 4.4, we used a quartic fit to the qX values
calculated at Re, Re ± 0.025 a.u. and Re ± 0.050 a.u. These derivatives are
determined at the DC-MP2 level of theory since the accuracy of that method
is sufficient to describe the small vibrational correction.

4.4 Results and discussion

4.4.1 Basis set development

The atomic energy optimization for iodine lead to a 26s19p13d even-tempered
basis set which gives a DC-HF energy of −7115.771 52 Eh that is 23 mEh

above the DC-HF limit calculated by grasp[155]. Analysis of the spinor
coefficients shows that this basis has triple zeta character. The defining
parameters are the ratio between the s (and d) exponents βs = 2.2385, the
ratio between p exponents βp = 2.2345 and the highest s, p and d-exponents
of 2.53× 107, 1.90× 105 and 7.99× 103 respectively.

The EFG convergence study was started with this basis augmented by
two f functions with exponents 1.10 and 0.493. The first g function that was
added had exponent 0.226, which is comparable to the most diffuse f function.
We then systematically added functions until the EFG on I in both HI and
IF converged within 0.025%. This point was reached for a 26s24p15d11f8g
basis (called the benchmark basis in the following) for which the highest s,
p, d, f and g functions are 2.53 × 107, 4.74 × 106, 7.99 × 103, 6.84 × 102

and 6.35 × 101 respectively. The slow convergence of the EFG with respect
to tight f and g functions was analyzed in our earlier convergence study of
InF[127] and found to be due to the core contribution that requires many
tight functions to stabilize. We should, however, note that the difference
between the benchmark set and the start set is for both molecules only about
0.5%. While this difference is too high for the benchmark purpose that we
have in this work, it also indicates that smaller sets may be used in ordinary
production runs.

Using large uncontracted sets to reach the Hartree-Fock limit is feasible
with the direct SCF implementation of dirac. This is, however, not the
case for correlated calculations because coupled-cluster calculations with the
benchmark basis require an extraordinary amount of memory, even when the
virtual space is truncated by an energy threshold. We therefore modified the
benchmark basis using the following criteria:

1. Only functions that made a contribution of more or equal than 0.25%
to the EFG of iodine in HI and IF in the EFG HF convergence study
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are included.

2. If two functions together made a contribution of more or equal than
0.25% in the EFG HF convergence study we take the basis function
that gives the largest contribution.

3. Since correlated calculations are especially sensitive to basis set com-
pleteness with respect to diffuse functions we also calculate this con-
tribution at the SF-MP2 level of theory. We thereby use the same
criterion: include the function if it changes the EFG on HI, IF or IBr
by more than 0.25%.

These criteria led to a 26s20p15d5f2g basis (the correlation basis) that
was used in the correlation calculations. It consists of the same s- and d-
functions as the benchmark basis but differs in the p basis by deletion of
the four tightest exponents. The five f functions that were selected are those
with exponents 137.0, 12.3, 1.10, 0.493 and 0.220, the selected g exponents
are 0.505 and 0.226. Of the diffuse functions that we tested in step 3 we
found that only the addition of a diffuse d-function (exponent 0.045) had a
significant effect on the EFG (0.27% in IBr).

4.4.2 Selection of the active space in the CCSD(T) cal-
culations

Possible errors due to truncation of the virtual space were tested at the SF-
MP2 level for HI, IF, CuI and TlI as a representative sample for the molecules
that we study. Increasing the virtual spinor energy threshold from 20 to 100
a.u. gives a change in the EFG on iodine of 0.06%, 0.03%, 0.29% and 0.04%
respectively. To verify that these estimates are also reliable at higher levels
of theory we performed the same calculation also at the SF-CCSD(T) level
for the CuI molecule. The two methods agree well: upon increasing the
threshold from 20 to 100 a.u. the MP2 method gives a change in EFG of
0.018 a.u. whereas CCSD(T) gives 0.021 a.u. This demonstrates that the
small effect of high lying virtuals on the valence correlation is well described
by the more economical MP2 method.

4.4.3 Relativistic effects on the electric field gradient

The strong influence of relativistic effects on the EFG at the iodine nucleus
is apparent from the comparison between the HF values at the NR and the
DC level in Table 4.3. For the larger EFGs found in HI and the interhalogens
the effect runs from 17% (HI, IBr) to 13% in IF. The smaller EFGs of the
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coinage metal iodines show much larger relativistic effects that increase from
27% in CuI to 65% in AuI. This is consistent with previous findings in atomic
calculations[185] and other calculations on coinage metal chlorides[187]. The
relativistic effects for the heaviest molecule, TlI, is smaller again at 29%. In
all molecules, relativistic effects make the absolute value of the EFG larger
which can be explained by the fact that the dominating contribution comes
from a hole in the 5p shell for which the expectation value of 〈r−3〉 increases
due to relativity[185].

This qualitative picture of an EFG being increased by the relativistic
contraction of the 5p shell does not consider spin-orbit coupling (SOC) effects.
In TlI we see by comparing the DC-HF and SF-HF calculations that SOC
alone makes the EFG on iodine in the TlI molecule almost 13% larger. SOC
effects are for this molecule thus almost as large as scalar relativistic effects.
The SOC effects in the interhalogens are smaller but still significant ranging
from 2.6% for IF to 1.5% for IBr and make the EFG smaller in this case. For
the other molecules SOC hardly influences the EFG: the effects range from
0.6% for AuI to only 0.20% in HI.

The importance of SOC effects on the EFG at iodine in TlI was already
reported by van Lenthe and Baerends[150] who found an effect of 20% using
the ZORA-4 formalism. Interesting is that, expressed in absolute terms the
SOC contribution is 0.546 a.u. at the ZORA-4 DFT level while it is below
0.4 a.u. when calculated as difference between DC and SF calculations: HF
gives then 0.356 a.u. while CCSD(T) gives 0.376 a.u. No systematic trend
with respect to this difference in the ZORA and 4-component Hamiltonians
can be identified, for the smaller SOC contributions in the other molecules
the ZORA-4 DFT value is sometimes below the DC-HF value or has even a
different sign. This is probably a manifestation of the fact that there is no
unique spin-free Dirac equation[53] and hence also no unique SOC operator.
It is somewhat surprising, however, that this difference is so large because the
effect on the energy of different choices of SOC operators is rather small[53].

As already mentioned in the section 4.2 the contribution of the (SS|SS)
type of two-electron integrals was only accounted for in the AuI and TlI
calculations. This is done by calculating the effect of the (SS|SS) integrals
at the DC-HF and SF-HF level in the correlation basis and then adding
this as a correction to the benchmark DC and SF HF values respectively.
In both molecules the effect was about 0.1%. For HI, I2 and AgI we also
calculated the (SS|SS) contribution but found it to be negligibly small at
0.03%, 0.03% and 0.05% respectively. Since this is also expected for the
other light diatomics, CuI, IF, ICl and IBr, we did not explicitly calculate
the effect of (SS|SS) integrals there.
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4.4.4 Nuclear quadrupole moment of 127I

Given the final values of the EFGs in the nine molecules considered we may
now study the consistency of the derived NQMs of 127I. In Table 4.4 we see a
clear convergence of the DC values through the hierarchy of wave-functions
HF, MP2, CCSD and CCSD(T). The mean absolute deviation goes from
147.2 mb, 21.1 mb, 15.4 mb to 5.4 mb, whereas the difference between the
lowest and highest determined NQM decreases from 408 mb at the HF level
to 18.6 mb at the CCSD(T) level.

Looking at these deviations from the average value we see that the EFGs
in the coinage metal iodines are clearly the most challenging to calculate. The
HF method performs very poorly and underestimates the EFGs by roughly
50%. Going to MP2 gives a dramatic improvement but the deviation from
the average values still indicates that also this method overestimates the
EFGs by roughly 5%. CCSD and especially CCSD(T) perform well and
give NQMs close to the average CCSD(T) value. We conclude that the
applied ab initio methods are able to represent the EFG on iodine in the
coinage metal iodines and that the discrepancy found in the corresponding
DFT calculations is indeed due to the difficulties that contemporary density
functionals have in describing such transition metal molecules[150, 177].

TlI also presents a difficult case. In this case HF gives an NQM at iodine
in TlI close to the average CCSD(T) value, but it is now the MP2 method
that overestimates the correlation contribution significantly. The problem
persists to some extent to the CCSD(T) level since the NQM from TlI shows
the largest deviation, 9.8 mb, from the average. One reason for this relatively
large deviation might be the magnitude of the EFG in TlI, since this NQM
is derived from the smallest NQCC of the molecules that were studied. Since
this value of the NQCC is still larger than the EFG in other systems to
which the molecular method could be successfully applied[158, 194] it is,
however, more likely that the combination of a large core with substantial
core correlation effects and large SOC effects is responsible for the relatively
low accuracy of the electronic structure calculation.

Looking closer at the results of the HI molecule obtained by Bieroń et
al.[169] in their reference study we find a substantial difference between our
DC-CCSD(T) NQM value and their DKH-CCSD(T) value. We find a NQM
for 127I of -693.1 mb which differs almost 2% from the value of -705 mb that
they report. Because the HI molecule is often used as benchmark system
we would like to find out what is causing this discrepancy. Analyzing the
differences between the two methods made us identify four possible causes.
The most prominent one is at first sight the difference in Hamiltonians: we
use the fully relativistic DC Hamiltonian whereas Bieroń et al.[169] apply
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the scalar relativistic Douglas-Kroll-Hess (DKH)[58, 60] Hamiltonian. Other
differences are the nuclear model, the difference in basis set, and the difference
in the number of electrons correlated at the CCSD(T) level. All of these
can be examined via explicit calculation and we decided to perform these
calculations to locate the most important cause of the observed discrepancy.

Computing the EFG with a point nucleus model instead of a finite nucleus
model gives a negligible effect on the EFG of 0.002%. Choosing a smaller
active space (correlating 18 instead of 26 electrons) at the CCSD(T) level like
Bieroń et al. did makes the NQM 1.6 mb less negative. This is significant
and indicates that MP2 treatment of the subvalence 4s and 4p electrons does
gives rise to an error but it is not the chief cause of the discrepancy. More
important is the fact that the basis sets used by Bieroń et al., a contracted
[23s18p15d2f/23s18p9d2f ] set for iodine and a contracted [11s7p2d/7s4p2d]
set for hydrogen, are smaller than the ones that we used. We verified this
hypothesis by uncontracting their set and applying the resulting basis in a
DC-HF and DC-CCSD(T) calculation. We then found that while at the
DC-HF level the calculated NQM is almost the same as calculated with the
benchmark basis, -660.6 compared to -662.2 mb, the deviation at the cor-
related level is substantial. Using Bieroń’s basis in a correlated calculation
(correlating 18 electrons at the DC-CCSD(T) level) gives a value of -709.6 mb
which is indeed close to their DK-CCSD(T) value but almost 20 mb larger
than the one obtained with our 26s20p15d5f2g correlation basis (-691.7 mb).
The large influence of the basis set on the correlation contribution to the EFG
is a manifestation of the slow convergence of the correlation energy with re-
spect to basis set size and we think that the additional tight f and g functions
are important in this respect. We have not explicitly performed calculations
using the scalar relativistic DKH formalism to further test the effect of the
different formalisms to describe relativistic effects but we conclude that given
the good agreement of the methods when the same basis is used, and the ear-
lier observation that SOC effects are small for HI, this difference plays only
a minor role. The most important factor is the smaller basis set that Bieroń
et al. used which appears to be not fully converged at the correlated level.

Given the larger basis set and correlating space that we use we thus
conclude that the ‘molecular’ value of Bieroń et al., -705 mb, is too high.
Taking also the other eight molecular values into account we find an average
value of the NQM of -696(5) mb. This makes the deviation from Bieroń’s
‘atomic’ values, -711.1 mb and -717.1 mb, even higher although they already
mention that the lower molecular value may be closer to the true value. The
consistency of the derived molecular NQMs from the nine different molecules
give us reason to believe that our even lower value is still more accurate.

Finally we investigate sources of possible systematic errors in the applied
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strategy that may not manifest themselves directly in the observed mean
absolute deviation. Looking at the NQCCs that are used we conclude that
higher order vibrational effects are negligible since the first order vibrational
effects, that we corrected for, are already small at a maximum of 1% for HI.
Concerning the Hamiltonian that we used in the EFG calculation: we already
discussed the influence of the choice of nuclear model and the neglect of the
Breit interaction. The influence of the nuclear model is negligible while we
estimate the effect of the Gaunt interaction in HI to be of the order of 0.5%
on basis of the results in the series HF, HCl and HBr. The magnitude and
the direction of this effect can of course be different for the other molecules
and this might make the net effect on the average smaller. Since we have no
direct evidence for such cancellations we allow for 0.5% uncertainty in our
NQM value due to neglected Breit interactions.

Turning to the basis sets that were used in the calculations we should keep
in mind that, even with the large sets that we applied and the satisfactory
convergence with basis set size at the HF level of theory, the question of
saturation at the correlated level is not fully answered. Explicit convergence
studies at the CCSD(T) level of theory would be helpful but these are not
feasible with the current implementation and available computer hardware.
Remaining systematic errors due to possible insaturation are therefore hard
to exclude. Another source of error that arises from the treatment of core
electrons and high energy virtuals at the MP2 level of theory instead of
CCSD(T) can, however, be estimated via the formula

∆qCCSD(T) core =

(
qCCSD(T) valence corr. − qMP2 valence corr.

)
qMP2 valence corr.

×
(
qMP2 all electron corr. − qMP2 valence corr.

)
, (4.5)

where qCCSD(T) valence corr. stands for the correlation contribution to the EFG
of the valence and subvalence electrons at the CCSD(T) level, qMP2 valence corr.

for the corresponding MP2 contribution and qMP2 all electron corr. is the MP2
correlation contribution of all electrons. Using this estimate we find that the
error in treating the effect of the core electrons and high energy virtuals at
the MP2 level is 1 mb in the calculated NQM for all molecules, except for TlI
where it amounts to 3 mb. This error is therefore quite small and is taken
into account by adding 1 mb to the error bar.

Looking at errors due to the correlation method we find that higher order
correlation effects beyond CCSD(T) are hard to estimate. In many applica-
tions it is observed that CCSD(T) is significantly more accurate than CCSD
but quantitative studies beyond this level of theory are rare. Halkier et
al.[195] compared EFGs in BF and HF calculated using full configuration-
interaction (FCI) with CCSD and CCSD(T) values and concluded that the
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difference between FCI and CCSD(T) is smaller than the difference between
CCSD(T) and CCSD. For the molecules that we studied the average absolute
difference between the CCSD(T) and CCSD EFGs is of the order of 3% and
this gives reason to believe that the estimate of 1% used by Bieroń et al.[169]
for the CCSD(T) error in HI is applicable to our series as well.

Summing up the various sources of errors that we discussed above we
arrive at an error bar for the derived NQM of 12 mb. This error bar is more
than twice as large as the observed mean absolute deviation of the calculated
NQMs from the different molecules and we are therefore reasonably confident
that it also includes systematic errors that are made in our applied method.
We therefore recommend a new value of the NQM of 127I of -696(12) mb.

Coming to the earlier DFT work that is also shown in Table 4.4 we con-
clude they show good overall agreement with our CCSD(T) results. The chief
problem in DFT is in the description of the coinage metal compounds: if these
are excluded the ZORA-4 Hamiltonian with the Becke-Perdew functional[95,
97] as applied by van Lenthe and Baerends[150] gives an NQM that devi-
ates only 1% percent from the average CCSD(T) value. This deviation is
smaller than observed in our previous work on indium[127] where a differ-
ence of about 4% between such ab initio and DFT results was found. Using
the Perdew-Wang exchange[97] and Perdew correlation[196] functional to-
gether with the Douglas-Kroll-Hess Hamiltonian, Malkin et al.[193] report
systematically lower values of the derived NQM for HI, ICl and IBr, with an
average of -710 mb. The value of -689 mb derived from the I2 molecule by
Haas and Petrilli[172], who used the Perdew-Burke-Ernzerhof functional[197]
does agree quite well with our results.

4.4.5 Electric field gradient at Au in AuI

Because analytical evaluation of first order molecular properties at the cor-
related level is not implemented in the dirac program we would need to
perform additional finite field calculations to obtain the EFG on the ligand
atoms. In that case one should of course also investigate more closely the
completeness of the basis set on these atoms with respect to the tight func-
tions that are important for the EFG. Since this was not the primary purpose
of the current study we did not perform such additional calculations. For the
EFG on Au in the AuI molecule we, however, made an exception because
this EFG is of more interest than the others. The measurement of the NQCC
is relatively recent[176] and due to the small EFG it presents a challenging
case for electronic structure calculations.

Similar molecules, the coinage metal chlorides, were studied in 1999 by
Pernpointner et al.[187] at the DKH-CCSD(T) level of theory. For CuCl and
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AgCl they found very good agreement with experiment for the NQCC on
the metal as well as for the NQCC on the chlorine atom while for AuCl the
experimental NQCCs were not known at that time. A year later Evans and
Gerry[198] measured those NQCCs and reported that the NQCC on chlo-
rine was in good agreement with the predicted value of Pernpointner et al.
The measured NQCC on Au was, however, quite different. The theoretical
DKH-CCSD(T) value is 75.43 MHz while experiment gives only 10.01 MHz.
In this case there is little reason to believe that a too inaccurate value of the
NQM is the cause of the discrepancy because this value is rather precisely
determined[199]. Clearly the problem is in the size of the small EFG which
is a very difficult task even for an accurate method as DKH-CCSD(T). Since
the (vibrationally corrected) NQCC of Au in AuI is almost an order of mag-
nitude larger than that of AuCl, 78 MHz compared to 10 MHz, it would be
interesting to see whether this case might be easier for ab initio calculation.
We tackled this problem using the same computational methods as applied
in the calculation of the EFG of iodine on AuI, but reduced the basis sets
on iodine and expanded the one on gold. For iodine we now employed the
same basis set[163] as in the calculation of the EFG on indium in InI[127].
For gold we constructed an adequate basis by taking the basis set as used
by Pernpointner et al.[187] in AuCl and augmenting it by three g functions,
with exponents 4.506, 0.948 and 0.394, which results in a 23s20p14d10f3g
basis. As usual both basis sets were used in uncontracted form.

The results of calculations on the NQCC of Au in AuI are given in Table
4.5. It is apparent that the applied ab initio methods are also in this molecule
not able to reproduce the experimental NQCC correctly. HF is completely
off and gives even the wrong sign for the EFG. MP2 gives the correct sign but
at a value that is more than twice too large. CCSD improves substantially
by giving a value that deviates only 10% from the experimental number but
this is an accidental cancellation of errors since going to CCSD(T) makes the
deviation increase again to 85%. Because the basis set on gold is not much
larger than the iodine EFG basis, while gold has 26 electrons more, one
may expect improvement by enlarging this basis set. Since the EFG at Au
was not our main interest in this study we have not performed a convergence
study. Interesting to note is, however, that both the relative and the absolute
difference between CCSD and CCSD(T) values is large. The large relative
difference of 41% is of course partly explained by the small value of the EFG
but the large absolute difference between the CCSD and CCSD(T) values of
0.47 a.u. suggests that higher order correlation effects may also be important.
Given both the accurate measurement of the NQCC and the availability of
a reliable NQM makes this a suitable molecule to benchmark methods upon
and further work would be interesting.
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Table 4.5: NQCC at the gold nucleus in AuI.

Methoda NQCC (MHz)b

NR-HF -350.8
SF-HF -281.3
DC-HF -292.4
DC-MP2 186.4
DC-MP2cc 197.3
DC-CCSDcd 85.5
DC-CCSD(T)cd 145.4
Experimentale 78.3

aNR means non-relativistic, SF spin-free and DC Dirac-Coulomb.
bThe ab initio NQCCs are calculated using the corresponding EFGs and the NQM of
197Au, reference [199].
cThe MP2 value due to all electrons and all virtual spinors.
dCorrection for the contribution due to the core electrons and higher lying virtuals esti-
mated from the difference between the MP2c and MP2 results.
eReference [176].

4.5 Conclusions

Combining electric field gradients from Dirac-Coulomb CCSD(T) calcula-
tions with experimental nuclear quadrupole coupling constants for a series of
molecules we derived a consistent value of the nuclear quadrupole moment
of 127I. Systematic reduction of the mean absolute deviation was observed
upon going through the hierarchy HF−MP2−CCSD−CCSD(T). The previ-
ous molecular determination of the nuclear quadrupole moment of 127I was
shown to suffer from basis set insaturation errors. We propose a new value
for the NQM of 127I as -696(12) mb for which the error bar is chiefly deter-
mined by errors due to the neglect of higher order correlation effects (1%)
and neglect of two-electron relativistic effects (0.5%). Other sources of er-
rors were also investigated but proven to play a minor role. As a secondary
study we also briefly investigated the NQCC of the gold nucleus in AuI. The
computation of a reliable EFG is difficult because even the Dirac-Coulomb
CCSD(T) method gives a value that deviates by 85% from the experimental
value. Improvement may come from the use of larger basis sets but it might
also be possible that one needs to include higher order correlation effects or
(and) the Breit interaction to obtain a satisfactory result.
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Chapter 5

Theoretical and experimental
evaluation of the radial
function for electric dipole
moment of hydrogen iodide

From relativistic quantum-chemical calculations of the molecular electronic
structure of hydrogen iodide HI in electronic state X1Σ+ or 0+ using the
Dirac-Coulomb CCSD(T) method, we have evaluated the electric dipole mo-
ment µ at 17 values of internuclear distance R . On this basis we have calcu-
lated the pure vibrational expectation value in the vibrational ground state
and matrix elements of µ (R) for transitions from that ground state to the
first seven vibrationally excited states within the electronic ground state. For
comparison with these results, we have undertaken a reanalysis of all exist-
ing data of intensities of vibration-rotational transitions in infrared spectra,
combined with an experimental value of the expectation value of µ (R) in the
ground state from the Stark effect, to generate a radial function for electric
dipole moment. Agreement between calculated and experimental values of
vibrational matrix elements of electric dipole moment is satisfactory, resolv-
ing outstanding questions about experimental and computational accuracy
in the literature. We predict matrix elements for intensities of vibration-
rotational bands 6− 0 and 7− 0, not yet measured.

5.1 Introduction

The objective of our present work is to re-examine the theoretical dipole
moment of HI using quantum-chemical methods at the state of the art, ex-
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pecting that there is room for improvement of the theoretical results reported
by Iliaš et al.[200]. In particular we investigate whether their suspicion of
experimental data is well founded. For the purpose of such an examination,
it is essential that also all secondary experimental data be subjected to crit-
ical analysis. We therefore generated also a new potential-energy curve and
a new radial function for electric dipole moment directly from experimental
data according to well developed methods[201].

Many researchers have undertaken calculations on the electric dipole mo-
ment of the hydrogen iodide molecule, either only at the equilibrium inter-
nuclear distance Re or as a function of distance R[122, 125, 200, 202–211].
After non-relativistic calculations in the 1970s [202, 203], the first relativistic
calculations appeared in the 1980s [204–206], in the 1990s the latter calcula-
tions, combined with sophisticated methods to describe electron correlation,
yielded results in reasonable agreement with experiment[207–209]. Of previ-
ous publications on the dipole moment of HI, only some recent, and − for
our purpose − relevant ones are summarised below.

Alekseyev et al.[210] employed a scalar relativistic effective core potential
(RECP) in their multi-reference configuration-interaction (MR-CI) calcula-
tion of the dipole-moment function of HI. After inclusion of a spin-orbit
coupling (SOC) contribution −0.009 a.u., their result, 0.176 a.u., coincided
with the experimental value for the dipole moment at Re[212]. This agree-
ment should, however, be considered fortuitous because their basis set con-
tained only one f function and no higher angular-momentum functions, and
was hence too small to prevent significant basis-set truncation errors. The
RECP treatment of relativistic effects on the dipole moment was proven
to be reliable by Norman et al.[122] who performed non-relativistic (NR),
RECP, Douglas-Kroll-Hess (DKH) and Dirac-Coulomb (DC) Hartree-Fock
(HF) calculations of static response properties, at Re, of hydrogen halides.

Maroulis[209] performed NR-CCSD(T) calculations with a larger basis
and supplemented these with a relativistic correction −0.040 a.u. taken from
the work of Kellö and Sadlej[125]. On a basis of a discrepancy 9 per cent be-
tween his computed µ(Re) = 0.191 a.u and the experimental value, Maroulis
suggested that new measurements of dipole moment be performed. Iliaš et
al.[200] reported an extensive study of correlation and relativistic effects on
the dipole moment and dipole polarizability; they included relativistic ef-
fects by means of the DKH Hamiltonian using also the CCSD(T) method
to account for electron correlation. Through estimation of the omitted small
effect of SOC by configuration-interaction calculations, they reported a value
0.154± 0.03 a.u. that deviated significantly from Maroulis’s value and from
the experimental value; they concluded also that the experimental values of
the dipole moment and its first derivative with distance were inaccurate.
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The dependence of the dipole moment on internuclear distance is not ob-
served directly but derived from infrared absorption spectra. Experimental
measurements of spectral intensities of lines in infrared bands of a diatomic
species in absorption yield data from which a radial function for the electric
dipole moment is deduced. Although there is no measurement of intensity in
the pure rotational band of HI, a measurement by van Dijk and Dymanus[212]
of the Stark effect on the first transition in that band yielded an expectation
value 〈0|µ(R)|0〉 = 0.4477± 0.0005 D = 0.1761± 0.0002 a.u. that underlies
the value of µ at Re questioned by Maroulis and by Iliaš et al. Ameer and
Benesch[213], Niay et al.[214], Riris et al.[215] and Bulanin et al.[216] mea-
sured intensities of lines of HI in the fundamental vibration-rotational band
with increasing precision in that chronological order. Benesch[217], Meyer
et al.[218] and Bulanin et al.[219] measured intensities of lines of HI in band
υ′ = 2 ← υ = 0. Meyer et al.[218] and Riris et al.[215] published measure-
ments of intensities in band υ′ = 3 ← υ = 0, and Niay et al.[220] reported
that their own measurements verified those of Meyer et al.[218] as presented
in Haeuslers thesis[221]. For bands υ′ = 4, 5 ← υ = 0, Niay et al.[220] re-
ported the only known data. Many authors have reported measurements of
frequency type for both HI and DI, from the pure rotational bands to the
sixth overtone υ′ = 7← υ = 0.

5.2 Methods and computational details

The most important factors determining the quality of theoretical calcula-
tions on molecules containing only light elements are the treatment of electron
correlation and the basis set[222]. For molecules containing heavy elements,
such as iodine in this case, relativity becomes an important factor as well[223].
In the following paragraphs we describe how we treat these aspects in our
calculations.

For hydrogen we used the same basis set as for the calculation of the elec-
tric field gradient in HI[126, 224] which is the Sadlej basis[190] extended with
additional tight p and d functions. For iodine we generated a new basis: we
applied a strategy similar to that in previous work on electric field gradients
[126, 127, 224], according to which we extend the basis set until the value
of the property studied converges within a certain criterion. Specifically, for
iodine we began with the same optimised atomic Dirac-Coulomb Hartree-
Fock (DC-HF) basis as in our previous calculations on iodine compounds
[224], which is a 26s19p13d even-tempered dual-family basis set augmented
with two f functions. Beginning at l = 0 we added individual functions
on the small exponent side of the range until the DC-HF dipole moment of
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HI altered less than 0.001 au. At that point we began to add functions on
the large exponent side. This process of successively adding diffuse-like and
tight-like functions was repeated for values of l up to four. For correlated
calculations the requirements of a basis set are more severe than for uncor-
related calculations [82]. To ensure that our basis set is sufficient to describe
the dipole moment of HI at the correlated level, we tested the convergence of
the dipole moment also at the spin-free Dirac-Coulomb (SFDC) CCSD level.
We specifically investigated the convergence of the dipole moment by adding
complete diffuse spdfgh shells to the iodine basis. The results of this study of
the influence of the basis set on the computed dipole moment are reported
in section 5.3.

To describe the effect of electron correlation we applied the CCSD(T)
method. For reasons of computational efficiency we used spinors in the en-
ergy range only between −15 hartree and +50 hartree in the correlated calcu-
lations. Contributions from core spinors and from virtual spinors with higher
energies are negligible (less than 0.0002 a.u.), as was verified in several test
calculations at the DC-MP2 and SFDC-CCSD levels of theory, respectively.

The DC Hamiltonian includes all relativistic effects which makes direct
comparison with earlier calculations difficult. To assess the relative impor-
tance of scalar and SOC effects we therefore also performed non-relativistic
calculations using the Lévy-Leblond Hamiltonian[69] and scalar relativistic
calculations using the SFDC formalism of Dyall[51].

In all calculations of electronic structure we used the dirac program[41]
and conformed to our customary procedure of neglecting the numerous two-
electron integrals that involve only the small component, S, of the wave
function[47]. Test calculations show that this omission gives an error less
than 0.000 01 a.u. in this case. To calculate the dipole moments we added the
HF expectation value and the finite-field correlation contributions computed
using field strengths +0.0005 and −0.0005 a.u. We calculated 17 dipole
moments in a range R/10−10 m = [1.2, 1.9] and fitted these to a polynomial
in x = (R−Re)/Re.

Although the basis set was optimised for our main interest the dipole
moment, we expect this basis to be adequate also for spectral parameters.
We obtained spectral parameters with the CCSD(T) method, with the same
active space as for calculations of the dipole moment. Two-electron integrals
of type (SS|SS) were again neglected. We calculated 19 energy points in
a range R/10−10 m = [0.8, 2.5] and corrected all these points for basis-set
superposition errors. The minimum of each curve was obtained with a cubic
fit, using five points about the minimum, spaced 1 pm from each other.
Other spectral parameters were obtained on fitting energies of vibration-
rotational states E (υ, J), obtained through use of the level program[225],
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to the expression
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)
. (5.2)

5.3 Results

5.3.1 Function for the dipole moment from quantum-
chemical calculations

In this section we compare the effects of basis set, electron correlation and
relativity on the dipole-moment function. To allow a fair study of the effect of
one parameter on the dipole-moment function, we tried to eliminate errors in
other parameters as much as possible to avoid interference and cancellation
of errors. For example, when seeking the effect of relativity on the dipole
moment, we used the CCSD(T) method to describe electron correlation and
applied our best basis set.

Table 5.1 presents results of our study of the basis set: the upper part
shows the variation of dipole moment at the DC-HF level on extending the
basis set as described in the preceding section; the lower part shows the anal-
ogous variation at the SFDC-CCSD level (at the HF level only the additions
of the basis functions that contribute sufficiently to be retained in the set are
shown). At the DC-HF level, few basis functions are required to make the
dipole moment converge. Evident are the additions of a diffuse p function,
which has exponent 0.0441, that contributes −0.0257 a.u., and of two diffuse
d functions, which have exponents 0.2255 and 0.1007, with contributions
−0.0086 a.u. and −0.0115 a.u. respectively. Addition of the first diffuse
shell for the correlated calculations is important: the SFDC-CCSD value is
altered by 0.0221 a.u. Addition of an i function and of a tight shell of spdfgh
functions is unimportant. The final basis set for which the SFDC-CCSD
dipole moment alters less than 0.001 a.u. with respect to the next basis
is a 28s22p17d5f3g2h basis. Applying this basis set in the correlated DC
calculations, we obtained an accurate theoretical dipole-moment function of
HI.
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Table 5.1: Convergence of dipole moment µ at Re on systematic extension of
the iodine basis seta; the upper part corresponds to Dirac-Coulomb Hartree-Fock
values, the lower part to spin-free CCSD values. For the Hartree-Fock values only
the relevant values are shown.

Basis I µ/a.u. ∆µ/a.u.
DC-HF

26s19p13d (b1): -0.1699
26s19p13d2f (b2): (b1+2 diff. f) -0.1664 0.0035
26s20p13d2f (b3): (b2+diff. p) -0.1921 -0.0257
26s20p14d2f (b4): (b3+diff. d) -0.1955 -0.0086
26s20p15d2f (b5): (b4+diff. d) -0.2000 -0.0115
26s20p15d2f1g (b6): (b5+tight g) -0.1988 0.0012

SFDC-CCSD
26s20p15d2f1g (b7): (b6) -0.1648
26s20p15d3f1g (b8): (b7+tight f) -0.1633 0.0015
26s20p15d4f1g (b9): (b8+tight f) -0.1627 0.0006
27s21p16d4f2g1h (b10): (b8+diff. spdfgh) -0.1853 -0.0220
28s22p17d5f3g2h (b11): (b10+diff. spdfgh) -0.1880 -0.0027
29s23p18d6f4g3h (b12): (b11+diff. spdfgh) -0.1880 0.0000
28s22p17d5f3g2h1i (b13): (b11+diff. i) -0.1879 0.0001
29s23p18d6f4g3h (b14): (b11+tight spdfgh) -0.1880 -0.0001

aThe basis set for hydrogen is Sadlej’s basis set[190] plus extra tight p and d functions[126]
resulting in an 11s6p3d set; this basis is large enough to fulfil the desired criteria.

Fig. 5.1 shows the dipole moments as a function of R for some basis
sets listed in Table 5.1. Both the magnitude of the dipole moment near
Re and the dependence of the dipole moment on distance alter significantly
on proceeding from small to large basis sets, underlining the importance of
employing large basis sets in the calculation.

In Fig. 5.2 we present curves for µ (R) for electron-correlation methods
MP2, CCSD and CCSD(T). We performed these calculations using the DC
Hamiltonian and a 28s22p17d5f3g2h basis. This plot demonstrates that the
perturbative MP2 approach fails even for small displacements from Re, as
noted by Maroulis[209].

Fig. 5.3 shows curves for µ (R) calculated using various Hamiltonians;
the NR results are calculated using the Lévy-Leblond Hamiltonian and the
SFDC results using the spin-free Hamiltonian of Dyall, whereas the DC re-
sults are the full Dirac-Coulomb results, all at the CCSD(T) level. The new
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Figure 5.1: DC-CCSD(T) dipole moment µ versus internuclear distance in a
region R/10−10 m = [1.4, 1.8] using various basis sets for iodine. The position of
Re is indicated with an arrow.

experimental curve is explained in the subsection on analysis of spectral data
and in the discussion.

A fit of the DC-CCSD(T) points of calculated dipole moment to a poly-
nomial in x for comparison with previous results yielded this formula

µ (x) /a.u. = (0.173 566 7± 0.000 005 3)− (0.037 12± 0.000 08)x

+ (0.2258± 0.0005)x2 − (0.8068± 0.0053)x3

− (0.0440± 0.0132)x4 + (0.369± 0.103)x5

+ (0.863± 0.116)x6 + (0.124± 0.743)x7 (5.3)

− (11.18± 0.46)x8 + (16.76± 2.15)x9

+ (11.9± 0.7)x10 − (24.0± 2.1)x11

in which the uncertainties specified as single standard deviations represent
only the error of fitting to that polynomial. An essentially exact fit of the
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Figure 5.2: Dipole moment µ versus internuclear distance in a region R/10−10

m = [1.2, 2.0] using various correlated methods. The position of Re is indicated
with an arrow.

17 computed points, within the last digit of each computed value, required
a polynomial of degree 11. The terms beyond x7 have little statistical or
physical significance and reflect merely the constraint to an exact fit; these
terms are not further used.

An analogous fit of computed energies to provide a potential-energy curve
was impracticable because the computed points are not spaced sufficiently
densely for this purpose. As the study of the dipole-moment function was our
main interest, we therefore chose to combine the computed dipole-moment
function with a function for potential energy derived from experimental data.
With the above theoretical function for electric dipole moment, this function,
according to the coefficients presented in Table 5.5, produced theoretical esti-
mates of matrix elements of electric dipole moment for vibrational transitions
presented in Table 5.2.



5.3 Results 87

T
ab

le
5.

2:
P

ur
e

vi
br

at
io

na
lm

at
ri

x
el

em
en

ts
of

el
ec

tr
ic

di
po

le
m

om
en

t
fr

om
th

eo
re

ti
ca

lc
al

cu
la

ti
on

s
an

d
fr

om
fit

s
of

in
te

ns
it

ie
s

of
in

di
vi

du
al

lin
es

in
vi

br
at

io
n-

ro
ta

ti
on

al
ba

nd
s

of
H

I,
H

er
m

an
-W

al
lis

co
effi

ci
en

ts
C

υ
′

0
an

d
D

υ
′

0
,a

nd
so

ur
ce

s
of

in
te

ns
it
y

da
ta

.

B
an

d
<
υ
′
|µ

(R
)|
υ
>

/C
m

C
υ

′
0

D
υ

′
0

re
f.

0
−

0
1.

47
31
×

10
−

3
0

a

(1
.4

93
4
±

0.
00

17
)
×

10
−

3
0

b

1
−

0
−

1.
66

72
×

10
−

3
2

a
0.

13
23

c
0.

00
35

c

(−
1.

35
8
±

0.
01

1)
×

10
−

3
2

d
0.

13
1

91
±

0.
00

0
01

d
0.

00
4

42
±

0.
00

0
01

d
[2

16
]

2
−

0
7.

17
88
×

10
−

3
3

a
0.

03
17

c
0.

00
02

5c

(6
.5

82
±

0.
03

3)
×

10
−

3
3

d
0.

03
0

99
±

0.
00

0
01

d
−

0.
00

0
24

4
±

0.
00

0
00

1d
[2

19
]

3
−

0
−

4.
02

11
×

10
−

3
3

a
0.

01
16

c
0.

00
0

02
3c

(−
4.

08
5
±

0.
42

)
×

10
−

3
3

d
0.

00
88
±

0.
00

15
d

−
0.

00
1

56
±

0.
00

0
14

d
[2

15
,
21

8]
4
−

0
1.

43
25
×

10
−

3
3

a
0.

01
63

c
0.

00
0

06
6c

(1
.3

32
±

0.
15

6)
×

10
−

3
3

d
0.

02
13
±

0.
00

08
d

0.
00

20
±

0.
00

01
d

[2
20

]
5
−

0
−

4.
77

45
×

10
−

3
4

a
0.

01
69

c
0.

00
0

24
c

(−
4.

52
1
±

0.
05

2)
×

10
−

3
4

d
0.

01
43
±

0.
00

13
d

0.
00

27
±

0.
00

02
d

[2
20

]
6
−

0
1.

68
96
×

10
−

3
4

a

7
−

0
−

6.
24

95
×

10
−

3
5

a

a
Fr

om
th

eo
re

ti
ca

l
ca

lc
ul

at
io

ns
.

b
Fr

om
th

e
St

ar
k

eff
ec

t,
re

fe
re

nc
e

[2
12

].
c
C

al
cu

la
te

d
w

it
h

µ
(x

)
fr

om
ex

pe
ri

m
en

t.
d
Fr

om
di

re
ct

fit
ti

ng
of

ex
pe

ri
m

en
ta

l
da

ta
in

th
e

sp
ec

ifi
ed

re
fe

re
nc

es
.



88 Dipole moment function of HI

Figure 5.3: Dipole moment µ versus internuclear distance in a region R/10−10 m
= [1.2, 2.0] calculated using various Hamiltonians; experimental values correspond
to the new dipole moment function, equation 5.7. The position of Re is indicated
with an arrow.

5.3.2 Spectral parameters from quantum-chemical com-
putations

For transitions involving only the lower vibrational states it is possible to
calculate spectral parameters with reasonable accuracy. We have done so at
the CCSD(T) level of theory using the Lévy-Leblond, spin-free and Dirac-
Coulomb Hamiltonians, and also using the SFDC-CCSD(T) energies aug-
mented with HF SOC contributions; the results for these parameters are
collected in Table 5.3. The experimental equilibrium binding energy, De,
combines a value of the spectral dissociation energy D0 from the literature
[226] with a zero-point vibrational energy from our analysis of frequency
data.
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5.3.3 Analysis of spectral data

A detailed overview of methods to fit experimental data to a potential-energy
curve in various functional forms appears elsewhere [201]. We fitted frequen-
cies and wave numbers of pure rotational and vibration-rotational transitions
from the available experimental data, summarised in Table 5.4, to Dunham
coefficients Ykl. With a minimal number of coefficients, consistent with con-
straints through parameters cj, a potential-energy curve,

V (z) = c0z
2

(
1 +

∑
j

cjz
j

)
, (5.4)

was defined that is practically independent of nuclear mass. In equation (5.4)
z = 2(R−Re)/(R+Re) is a reduced displacement variable. Other coefficients
sj, tj and uj, explained below, are related to vibrational and rotational g
factors and adiabatic corrections, respectively, for each atomic type, and were
included empirically within applicable auxiliary coefficients Zkl[201] to yield
the best fit of available experimental data of frequency type. All coefficients
Ykl and Zkl beyond the minimal range defined consistently through these
radial coefficients are taken to have zero value, but further radial coefficients
of types cj, sj, tj and uj in the several series are merely indeterminate and
have not zero value in general. Like c9 and c10, not listed in Table 5.5 as
they pertain to bands for which no experimental intensity data are reported,
values of other radial coefficients are irrelevant for the present work.

To take into account extra-mechanical effects due to electrons imper-
fectly following rotational and vibrational motions of the nuclei, we include
parameters u1, u3 and u4 for adiabatic effects, s0 related to the vibrational
g factor at Re and t1 and t3 related to the radial function for the rotational
g factor[201]. Parameters u2 and t2 that occur in only linear manner were
constrained to zero during the fit because, when left freely adjustable, their
values were zero within their estimated standard errors. We constrained
values of tH0 and tI0 to values consistent with the measured rotational g fac-
tor, gr(Re) = 0.096± 0.010[235] and permanent electric dipole moment[212],
as described elsewhere[236]. Values of all these parameters are listed, with
their uncertainties as single standard errors, in Table 5.5. With these val-
ues of radial parameters, we then calculated values of experimental spectral
parameters reported in the latter column of Table 5.3, except De that is
indeterminate from infrared data.

After deriving this potential-energy curve, we collected all known data
[213–221] of intensities of spectral lines in vibration-rotational bands of 1H127I
into a spreadsheet, converted them to squares of individual vibration-rotational
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Table 5.4: Sources of data for derivation of a function for potential energy of HI.

Band number ref. number ref. number ref.
of lines of lines of lines

HI DI TI
0− 0 2 [227] 3 [227] 1 [228]
0− 0 11 [229] 9 [230]
1− 0 24 [231] 28 [232]
2− 0 34 [232] 40 [232]
3− 0 34 [232] 39 [232]
3− 0 6 [233]
4− 0 31 [232] 34 [232]
4− 0 4 [233]
5− 0 24 [232] 29 [232]
5− 0 1 [220] 3 [233]
6− 0 30 [234]
7− 0 18 [234]

matrix elements |〈υ′, J |µ(R)|0, J ′′〉|2, and scrutinised these values taking into
account their individual or collective uncertainties of measurement. We
transferred data for each band to a Maple worksheet and applied a method −
weighted linear regression with criterion of least sum of weighted squares of
residuals − to estimate from individual measurements of squares of vibration-
rotational matrix elements the square of the pure vibrational matrix element
|〈υ′|µ(R)|0〉|2 and Herman-Wallis coefficients Cυ′

0 and Dυ′
0 for each band ac-

cording to the relation[201]

|〈υ′, J |µ(R)|0, J ′′〉|2 = |〈υ′|µ(R)|0〉|2
(
1 + Cυ′

0 ı+Dυ′

0 ı
2
)
, (5.5)

in which running number ı is defined to be ı = 1
2
[J ′(J ′+1)−J ′′(J ′′+1)]. The

source of particular data for each band used is identified in Table 5.2 with
results of these fits; for band υ′ = 3 ← υ = 0, we combined old data[218]
with more recent data[215] by scaling the former to be consistent with the
latter, because the latter data are sparse.

Assuming a radial function of the form µ(x) =
∑

j µjx
j, to conform to

previous notation [237] in which x = (R − Re)/Re, we solved a system of
linear simultaneous equations

〈υ′|µ(x)|0〉 =
∑

j

µjx
j〈υ′|xj|0〉 , j = 0, ..., 5 (5.6)
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Table 5.5: Values of parameters fitted or constrained in analysis of frequency
data of HI and DI.

parameter value uncertainty
c0/m

−1 204 699 00 81
c1 −1.547 358 0.000 197
c2 0.985 396 0.000 75
c3 −0.5809 0.0135
c4 −0.0369 0.074
c5 −0.446 0.26
c6 3.08 2.5
c7 −0.12 6.0
c8 −42.6 17.
sH
0 0.6659 0.0025
tH0 [0.1908]
tH1 0.0540 0.0164
tH2 [0]
tH3 -13.11 1.44
tI0 [0.0749]
uH

1 /106 m−1 -4.4082 0.0161
uH

2 [0]
uH

3 /106 m−1 10.96 0.78
uH

4 /106 m−1 41.9 3.7
Re/10−10 m−1 1.609 048 98 0.000 000 55

Values enclosed within brackets are constrained; the uncertainty of Re includes errors of
fundamental constants h and NA. The maximum range of validity of pertinent radial
functions is R/10−10 m = [1.3, 2.3].

in which pure vibrational matrix elements 〈υ′|xj|0〉 are calculated directly
from symbolic expressions [201, 238], involving coefficients cj of potential
energy presented in Table 5.5. The resulting radial function for electric dipole
moment is

µ (x) /a.u. = 0.1759− 0.030x+ 0.2234x2

− 0.7925x3 − 0.2363x4 + 0.6243x5. (5.7)

Figure 5.4 presents a curve of this function in R in a range R/10−10 m =
[1.25, 2.25], with a graphical representation of the theoretically derived func-
tion, eqn. 5.3.

We evaluated the signs of 〈υ′|µ(R)|0〉, indicated with superscript suf-
fix c in Table 5.2, to produce best agreement between calculated values of
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Figure 5.4: Theoretical and experimental radial functions µ(R) of electric dipole
moment from equations 5.3 and 5.7.

Herman-Wallis coefficient Cυ′
0 , indicated with suffix d in Table 5.2, and the

corresponding experimental values. Calculated values of both Cυ′
0 and Dυ′

0

are based on trial µ(x) through algebraic expressions [201, 238].

5.4 Discussion

5.4.1 Dipole moment function

The experimental radial function for electric dipole moment, eqn (5.7), agrees
satisfactorily with the theoretical one, eqn (5.3). This condition is reflected
in the agreement between theoretical values of matrix elements of µ(R) for
vibrational transitions and the experimental values up to υ′ = 5, both shown
in the second column of Table 5.2. Most errors are within a few per cent
with the largest deviation for 〈1|µ(R)|0〉, that is about 25 per cent too large.
That the slope of µ(R) near Re is atypically small leads to a large relative
error; the absolute error is modest in all computed matrix elements. On this
basis we have confidence that predictions for 〈6|µ(R)|0〉 and 〈7|µ(R)|0〉 in
the above table will also prove accurate within 10 per cent.

Use of a method better than CCSD(T) to achieve higher-order correla-
tion might further improve agreement with experimental results. Fortuitous
cancellation of errors in the CCSD method likely produces agreement with
experiment slightly better than with CCSD(T) for the dipole moment at
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Figure 5.5: Comparison of the DC-CCSD, DC-CCSD(T) and Padé[237] dipole
moment µ(R) over a large range of distance.

Re. For other coefficients of dipole moment the CCSD(T) results agree bet-
ter with experiment. For distances with R/10−10m > 2.5, the CCSD method
appears superior. In Fig. 5.5 we plot the dipole moment for CCSD, CCSD(T)
and the Padé function from 1980[237] in a range R/10−10m = [0.24, 4.8]. The
Padé function is a combination of experimental data near Re with the non-
relativistic two-configuration MCSCF calculations of Ungemach et al.[202]
for R at long range. The CCSD plot follows the Padé function, with its cor-
rect asymptotic behavior, over a greater range of R better than the CCSD(T)
curve. This result is likely comparable to the superior behavior of CCSD com-
pared to CCSD(T) for the potential-energy curve of molecules HF and F2

[239]. The reason is that the (T) correction is based on a fifth-order pertur-
bation expression that for nearly degenerate wave functions diverges. CCSD
itself, as an iterative or infinite-order method, is not based on perturbation
theory and thus provides a better description at large R. For R/10−10m < 1.1
the coupled-cluster and Padé functions begin to deviate from each other. The
coupled-cluster values in this region are probably nearer the true values than
the Padé function because the latter, for small R, is based on a functional
form that is correct only in a limiting region R = 0.

Comparison of the plots based on various Hamiltonians with the curve
from experiment, Fig. 5.3, makes clear that relativistic effects are important
to render an accurate description of the dipole-moment function of HI. The
slope of the scalar relativistic dipole-moment function has the wrong sign
at distances larger than Re; apparently SOC is important not only for a
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quantitative description of the dipole moment of HI near Re but also for a
qualitative description of its dependence on internuclear distance. This effect
might be due to an avoided crossing allowed through SOC, but analysis
of this point is difficult in our calculations. The importance of this spin-
orbit interaction furthermore indicates that even inclusion of the two-electron
Gaunt interaction in the Hamiltonian might be required to improve on the
DC-CCSD(T) results.

The curves for non-relativistic and scalar relativistic CCSD(T) dipole
moments of Maroulis[209] and of Iliaš et al.[200] show no increase in dipole
moment on increasing internuclear distance near Re. To rationalize this
difference with our DC-CCSD(T) results, we plot the SFDC-CCSD(T) curve
for the dipole moment of HI in Fig. 5.6. Improving the quality of the basis
set raises the curve for dipole moment but also greatly alters the slope of
the curve beyond the equilibrium distance, changing it from negative for
the 26s20p14d2f basis to positive for the large 28s22p17d5f3g2h basis. A
similar qualitative picture holds for the NR-CCSD(T) method. From these
observations we conclude that the negative slopes obtained by Maroulis and
by Iliaš et al. reflect a cancellation of errors − the use of too small a basis
set and the lack of SOC.

The close agreement between the experimental radial function of electric
dipole moment of HI and the DC-CCSD(T) function enables us to conclude
that previously expressed doubts about the accuracy of the experimental
dipole moment on basis of theoretical work are not well founded. The gap
between calculation and experiment becomes closed through use of a large
basis set, including g and h functions, and the inclusion of spin-orbit coupling.

5.4.2 Spectral parameters

Agreement between the DC-CCSD(T) values and experiment for the spec-
tral parameters, according to Table 5.3, is satisfactory overall. The SFDC-
CCSD(T) method also agrees satisfactorily with experiment, except for De

because it lacks the spin-orbit splitting of the H(2S) + I(2P) asymptote.
For all calculated spectral parameters, the SFDC-CCSD(T) values that are
corrected with HF SOC contributions result in almost the same values as
the full DC-CCSD(T) values, at a much smaller computational cost because
single-group symmetry suffices for SFDC-CCSD(T) calculations. Visscher et
al.[240] calculated the effect of inclusion of the two-electron Gaunt interac-
tion on Re, ωe and De of HI; the effect found on Re was an increase 0.1 pm, on
ωe a decrease 2 cm−1, and a negligible effect on De. Also shown in this Table
are results from Feller et al.[106], who used a newly designed large aug-cc-
pRV5Z basis set for use with a small-core RECP. For De their result agrees
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Figure 5.6: SFDC-CCSD(T) dipole moment µ versus internuclear distance in a
region R/10−10m = [1.4, 1.8] using various basis sets for iodine; the Iliaš curve is
obtained from reference [200]. The position of Re is indicated with an arrow.

better with experiment than our DC-CCSD(T) value, with deviations 3.4
and 4.6 kJ mol−1 respectively. For the calculation of De Feller et al. applied,
besides use of a RECP, scalar relativistic corrections and SOC corrections
that are expected to approach the Dirac-Coulomb-Breit limit. Rather than
the difference in Hamiltonians, the reason for their superior agreement with
experiment is likely the still greater quality of their basis set. For Re and
ωe their agreement with experiment is worse than ours; two reasons for this
condition might be that for these properties they applied no extra relativistic
correction, beyond the use of a RECP, and that their FCI estimation was
based on a continued-fraction approximation[241], which might in some cases
improve results but worsen them in others.
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5.5 Conclusions

The satisfactory agreement between quantum-chemical computations and
experimentally observable molecular properties of HI, specifically the fre-
quencies and intensities of vibration-rotational transitions, indicates both a
mature state of calculations of molecular electronic structure involving atoms
of fairly large atomic number and the efficacy of the Dunham approach to
analysis of vibration-rotational spectra. Our work provides no support for
doubt about the accuracy of the experimental dipole moment because the
discrepancy between theory and experiment becomes resolved through use of
a large basis set, including g and h functions, and the inclusion of spin-orbit
coupling in a variational manner. Our predictions of matrix elements for
intensities of vibrational transitions for the fifth and sixth overtone bands of
HI can serve as guides for experimental measurements of these properties.
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Chapter 6

Relativistic correction to the
dipole moment surface of water

The effect of special relativity on the dipole moment surface of water is
calculated. The effect is small and quite constant over the entire surface,
about 0.20% - 0.30%. For all calculated points, relativity makes the dipole
moment smaller, which means that calculated intensities of the rotation-
vibration spectrum of water will be smaller as well.

6.1 Introduction

Despite the availability of quantum chemical methods that allow investi-
gation of large, chemically interesting systems such as for example DNA
fragments[242], complexes in solution[243] and large metal clusters[244], cal-
culations on a single water molecule still presents many challenges. These
challenges are in the calculation of properties of water as accurately as pos-
sible. Especially the description of the bending behavior of water is far from
trivial. Upon bending, the oxygen valence electrons rehybridize from sp3 to
sp, causing substantial changes. This is reflected in difficulties in calculating
the barrier to linearity of water accurately[245, 246].

The rotation-vibration spectrum of water is perhaps the most important
of all molecular spectra. Water spectra are important in several applications.
Hot water is a major product of nearly all combustion processes. Transitions
of water in these environments can give spatial information on the distribu-
tion of water and on the local temperature. This kind of information is very
useful, since it allows the monitoring and optimization of the performance
of internal combustion processes. Another example of an important area of
applications includes the study of the atmosphere of planets (including our
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own).
In principle, much of information needed can be obtained from labora-

tory experiments. However, in practice this is difficult since it is necessary to
properly assign all of the transitions in order to model the temperature de-
pendence. An example of difficulties in the interpretation of spectra at high
temperatures is given by the spectra of sunspots. Sunspots have a temper-
ature of about 3000◦C. The complicated spectra of sunspots have about 50
lines/cm−1. However, experimental databases only allow the assignment of
a handful of lines to water, even though many more water lines are present.

Another difficulty for experimental measurements are the numerous weak
transitions of water. Worthy of mention in this respect is the status of at-
mospheric models. At the moment, about 30% more radiation is absorbed
by the atmosphere than any ‘state of the art’ model can account for. A
possible explanation of this failure might be the poor representation of the
near-infrared, visible and near-ultraviolet absorption features of water in at-
mospheric databases. Since water is the dominant absorber of radiation in
the atmosphere (it is responsible for about 70% of the absorption) it is ev-
ident that the ability to model the absorption of water accurately, also at
weak transitions, is of extreme importance.

If the right methods are used, the theoretical calculation of the absorp-
tion of radiation by water allows a more complete and consistent data set.
The calculated high-temperature list of 300 million lines by Partridge and
Schwenke[12] may in this context be called very impressive. The largest chal-
lenge are the electronic structure calculations that have to be of enormously
high quality.

The theoretical calculation of (parts of) the rotation-vibration spectrum
require both an accurate potential energy (PES) and dipole moment surface
(DMS). The PES determines the position of the lines in the spectrum, e.g.
the frequencies. The DMS is subsequently needed to obtain the correspond-
ing intensities. A very accurate PES has recently been reported by Polyansky
et al.[247]. To approach an accuracy better than 1 cm−1 on average these
authors showed that it was necessary to perform MRCI calculation using 5Z
and 6Z basis sets followed by an extrapolation to the complete basis set limit.
Corrections that had subsequently to be added are: core correlation effects,
relativistic corrections (including the Breit interaction), QED corrections (the
Lamb shift), first order diagonal Born-Oppenheimer corrections and second-
order Born-Oppenheimer corrections (a non-adiabatic correction).

So far, the effect of relativity has been neglected for the DMS. The purpose
of this work is to calculate this relativistic correction. This work is part
of a more extensive project, coordinated by Professor Jonathan Tennyson
from University College London. The aim of the entire project is to obtain
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Table 6.1: Geometries used for the test calculations. Bond lengths are in Å.

θ r1 r2
equilibrium 104.52◦ 0.9576 0.9576
near linear 170.00◦ 0.8000 1.0000
bond compressed 100.00◦ 0.7500 0.9500
bond stretched 100.00◦ 0.9500 1.0000

both a more accurate PES and a more accurate DMS. At the moment of
writing this chapter the project is still ongoing and spectra still have to be
calculated. This chapter is thus not about interesting new features discovered
in the rotation-vibration spectrum of water, but is about the calculation
of relativistic effects on the dipole moment surface of water. To this end
relativistic effects are calculated at different geometry points.

6.2 Methods and computational details

The geometric variables used to construct a DMS of water are the O-H bond
distances, r1 and r2, and the bond angle, θ. 364 geometry points have been
used to construct a relativistic correction to the ab initio DMS. The fitting
of these points to an analytical representation is not discussed in this thesis1.

The method applied for the calculation of the relativistic effect on the
DMS of water was tested at four geometries that each probe a different re-
gion of the surface (see Table 6.1 for the precise coordinates). The water
molecule was oriented in such a way that the z-axis was perpendicular to
the molecular plane and the x-axis bisects the angle between the two OH
bonds. The relativistic effect on the dipole moments is defined as the dif-
ference between relativistic and nonrelativistic values. The nonrelativistic
calculations are based on the Lévy-Leblond reformulation of the Schrödinger
equation[69]. Both relativistic and nonrelativistic calculations are performed
using the dirac program[41] and employ a nucleus that is modeled by a
Gaussian charge distribution[165].

The test calculations were performed at the Hartree-Fock (HF), MP2,
CCSD and CCSD(T) levels of theory. In the HF method dipole moments
were calculated analytically (as an expectation value) while the correlation
contribution to the dipole moments was calculated using a finite-field method
with perturbation strengths of ±0.0002 a.u. No electrons were frozen in the
correlated calculations.

1This will be discussed in a paper that has to appear.
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Table 6.2: Effect of spin-orbit coupling on the dipole moment. SFDC are the
spin-free calculations, SOC are the calculations including spin-orbit coupling, SOC-
effect indicates the effect of spin-orbit coupling. Given is the magnitude of the
dipole moment vector in a.u.

SFDC SOC SOC-effect
equilibrium 0.785 038 0.785 036 −0.000 002
near linear 0.255 316 0.255 314 −0.000 001
bond compressed 0.780 764 0.780 763 −0.000 002
bond stretched 0.819 326 0.819 323 −0.000 002

To isolate the effect of spin-orbit coupling (SOC) on the dipole moment
of water we have compared calculations using the full Dirac-Coulomb (DC)
Hamiltonian with calculations based on the spin-free formalism of Dyall[51].
These calculations were performed at the HF level using the aug-cc-pVDZ
basis of Dunning[248] in uncontracted form. The results are shown in Ta-
ble 6.2 and indicate that SOC effects are very small. We therefore decided to
compute the SOC correction only at the HF level of theory where its inclusion
does not increase the computation cost. Inclusion in the correlated relativis-
tic calculations makes the computations more demanding as this prohibits
use of single group symmetry.

For efficiency reasons we furthermore neglected contributions from the
(SS|SS) part of the Coulomb repulsion operator and from the Gaunt inter-
action. Calculations with and without inclusion of the (SS|SS) type of two
electron integrals indicate that the contribution of this type of integrals is
negligible for the dipole moment of water (below 10−7 a.u.). The Gaunt
(SL|SL) type integrals come in at order α2 (α = 1/137. ...) which is one or-
der higher than the (SS|SS) integrals that contribute at order α4.However,
the fact that spin-orbit effects are small does indicate that also the spin-
other-orbit effects (to which the Gaunt or Breit interaction amounts in a
two-component picture) will be small.

Four different basis sets from the correlation consistent family of basis sets
were tested, the aug-cc-pVTZ, aug-cc-pVQZ[248], aug-cc-pCVTZ and aug-cc-
pCVQZ[249]. These were all decontracted because the standard contraction
coefficients are determined using non-relativistic methods and not suitable
for our purpose. For the oxygen atom a complication arises in decontracting
the aug-cc-pCVXZ sets because the additional tight exponents lie close to
other exponents. We resolved this by dropping for the aug-cc-pCVTZ set the
two tight s exponents and replacing them individually by exponents that lie
in between existing exponents using an even-tempered scheme
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αb =
√
αaαc, (6.1)

where αa and αc are the existing (aug-cc-pVXZ) exponents and αb is the
new tight exponent. For example, the tight s exponent 7.845 from the aug-
cc-pCVTZ set has been replaced by 10.199 which is obtained by applying
the above formula to the exponents 16.760 and 6.207. The same idea was
applied to the three extra s exponent from the aug-cc-pCVQZ set and to two
of the three extra p exponents from the same aug-cc-pCVQZ basis. All other
extra tight exponents are well separated from others and could be included
without modification.

The CCSD(T) results of the basis set study are shown in Table 6.3. The
difference, on the relativistic effect, between the aug-cc-pVTZ and aug-cc-
pCVQZ is of the order of 1 or 2%. However, the absolute differences, on
these relativistic contributions calculated using different basis sets, are very
small compared to the total dipole moment. The difference between the
aug-cc-pVTZ and aug-cc-pCVQZ relativistic effects is only about 0.003%
compared to the total aug-cc-pCVQZ dipole moment. Going from the aug-cc-
pVTZ to the aug-cc-pCVTZ basis the difference between the aug-cc-pCVQZ
basis is almost halved. Because the number of basis functions of the aug-cc-
pCVTZ basis is not much larger than the aug-cc-pVTZ basis we decided to
perform the correlated calculations using the aug-cc-pCVTZ basis. Because
the HF calculations are relatively fast we have, however, calculated the HF
contribution to the relativistic effect on the dipole moment using the largest
aug-cc-pCVQZ basis.

In the complete set of geometries used to calculate the dipole moment
surface of water there were three geometries that appeared to be problem-
atic for the CCSD(T) method. All coordinates of these geometries have
θ = 104.52◦, r1 = 0.95 Å, while the r2 is respectively 3.0, 5.0 and 7.0 Å. These
geometries, for which water shows a large multi-configuration character, have
been treated separately using the complete active space self-consistent-field
(CASSCF) method. The effect of relativity on the dipole moment was cal-
culated using the Mass-Velocity-Darwin (MVD) operator in a perturbative
manner. HF test calculations on the geometries in Table 6.1 using the aug-
cc-pVDZ basis show that the difference on the relativistic effect between
MVD and DC is about 5%. Knowing that these three geometries will not
be so important for the intensity calculations we consider this difference be-
tween DC and MVD on the small relativistic contribution acceptable. The
CASSCF calculations are performed in Cs symmetry with the same active
space as used by Partridge and Schwenke[12], six a ′ and two a ′′ orbitals and
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Figure 6.1: Relativistic contribution to the dipole moment, in %, for the geome-
tries used to construct the dipole moment surface.

eight electrons active using the aug-cc-pCVQZ basis with the dalton elec-
tronic structure program[250]. Comparison of the non-relativistic CCSD(T)
values with non-relativistic MRCI values for the other geometries of the set
confirmed that CCSD(T) should be an adequate method to calculate the
relativistic effect for the other 361 points.

6.3 Results and discussion

This section is not extensive, only some very general comments on the results
are given. A more detailed description of the effect of relativity on the dipole
moment surface and hence the intensities of the rotation-vibration spectrum
of water will be given in a paper that has to appear.

In Fig. 6.1 the relativistic contribution, in %, to the x-component of the
dipole moment of the calculated points is shown. The points are ordered on
increasing r2. The general observation is that for all points relativity makes
the dipole moment smaller and that for most points the effect is on the order
of 0.20% - 0.30%. However, when r2 is larger than 1.2 Å there are numerous
points that show a larger relativistic effect (a maximum relativistic effect is
found for the point θ = 120◦, r1 = 1.10 Å, r2 = 1.70 Å, where the effect is
1.39%). For the y-component a similar trend is observed.

Of the 364 points, 36 are at rOH = r1 = r2 = 0.95 Å. In Fig. 6.2 the
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Figure 6.2: Relativistic contribution to the dipole moment, in %, for varying
angle (in degrees) using a fixed rOH distance of 0.95 Å

relativistic contribution to the dipole moment, in %, is shown for this bond
distance with varying angle. It is apparent that there is, at least for this rOH,
a smooth angle dependence.

In Fig. 6.3 the relativistic effect, again in %, is shown as a function of
rOH, where the angle is constant at 100◦ (and r1 = r2). The increase of the
relativistic effect seems to be quite linear with increasing rOH for this angle.

6.4 Conclusions

We have computed the relativistic effect on the dipole moment surface (DMS)
of water at the DC-HF level of theory with neglect of (SS|SS) integrals and us-
ing the uncontracted aug-cc-pCVQZ basis set. These HF values were supple-
mented by a correlation contribution calculated using the spin-free CCSD(T)
method, also neglecting the (SS|SS) type integrals. The CCSD(T) calcula-
tions were performed using the uncontracted aug-cc-pCVTZ basis.

A more detailed discussion of the effect of relativity on the DMS will
be given in a coming paper, where the DMS is used to calculate intensities
of the rotation-vibration spectrum of water. A general observation is that
relativity makes the dipole moment smaller for all calculated points and that
the effect is quite constant, on the order of 0.20% - 0.30%. This means that
the inclusion of relativistic effects will reduce the intensities of the lines of a
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Figure 6.3: Relativistic contribution to the dipole moment, in %, for varying rOH

distance using a fixed angle of 100◦

calculated rotation-vibration spectrum of water.
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Chapter 7

MP2 calculations on
parity-violation interactions in
hydrogen peroxyde analogs

The effect of electron correlation on parity-violation energies has been calcu-
lated using an implementation of analytical first-order MP2 molecular prop-
erties. The calculations have been performed on H2X2 (X = O, S, Se, and
Te). Electron correlation does not play an essential role for this property in
this kind of systems, but the correlation effect is shown to be very geometry
dependent.

7.1 Introduction

Parity-violation is a well known phenomenon in nuclear physics[19, 20] and
is described in the standard model for electroweak interactions by Glashow,
Weinberg and Salam[21–23]. It can also be observed in electronic transitions
of atoms[251, 252]. For molecules, the electroweak interactions introduce an
energy difference, ∆EPV, between the enatiomers of chiral molecules[253–
255]. This energy difference has not yet been detected due to the extremely
high precision that needs to be achieved in the experiments. The effect
should, however, be observable in molecules which contain heavy atoms[26]
and have a rather rigid structure so that ∆EPV is larger than the tunneling
splitting[256]. Theoretical calculations serve to propose promising candidates
for experimental observation of the PV splittings. Recently Schwerdtfeger
and Bast[30] predicted large parity-violation effects in the vibrational spec-
trum of a number of stable organometallic compounds, that become close
to what is detectable in current state of the art experiments[257]. To make
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sure that predictions are reliable one needs to consider the size of the errors
made in state-of-the-art computational approaches. One source of errors is
the normal mode approximation made by Schwerdtfeger and Bast. Recent
calculations by Quack and Stohner[258] indicate that results can sometimes
be significantly influenced if the effect of anharmonic couplings is taken into
account. Another possible source of errors is the (partial) neglect of electron
correlation in the calculation of the parity-violation energy hypersurface. Not
much is known about the effect of electron correlation on parity-violation en-
ergies in molecules. In the non-relativistic regime correlated calculations were
performed at the CASSCF and RASCI level by Quack and coworkers[258–
260] and at the DFT level by Hennum et al.[261]. In such calculations it is
not clear how much of the correlation effect is accounted for since a CASSCF
calculation will only describe valence correlation and the functionals used in
DFT are also optimized for valence correlation. The MP2 approach makes
possible to systematically include core electron correlation effects that may
be of importance as well. We chose to compute such effects with the new
analytical DC-MP2 implementation in some of the simplest stable chiral
molecules, the hydrogenperoxide analogs H2X2 (X = O, S, Se, Te). Cor-
related calculations at the four-component level were so far restricted to
the lightest members of this series systems due to the use of the finite-field
method. We can now extend the work done by Thyssen et al. on the H2O2

and H2S2 molecules by computing the heavier analogues of this series H2Se2

and H2Te2 as well. These small benchmark molecules are not of direct inter-
est for observation of EPV splittings since the barrier for conversion between
the two enantiomers is too low, but serve as a standard test to compare the
different theoretical methods. In forthcoming work we will also look at the
performance of DC-MP2 and DC-DFT for the calculation of parity-violation
effects for the C-F stretching mode of the more interesting class of chiral
methyl fluorides.

Because in the DC formalism spin-orbit coupling (SOC) is included in
a variational manner we can calculate parity-violation energies simply as a
first-order property[26]. In a non-relavistic framework one needs to add SOC
explicitly as an extra perturbation so that the parity-violation energies are
calculated as a second order property. This more complicated method is
followed by most of the other groups[27, 261–263] active in the field.

The operator for the calculation of parity-violation energies, EPV, is the
nuclear spin-independent P-odd operator,

Ĥp =
GF

2
√

2

∑
i,n

QW,nγ
5
i %n (ri) , (7.1)

where the summations run over the electrons i and the nuclei n. GF =
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1.166 37 × 10−11 MeV−2 = 2.222 55−14 a.u. is the Fermi coupling constant,
the pseudo-scalar γ5 chirality operator is given by

γ5 =

(
0 I
I 0

)
, (7.2)

where I and 0 are the 2×2 unit and zero matrix respectively. The normalized
nucleon density is %n and QW,n = −Nn +Zn

(
1− 4sin2θW

)
is the weak charge

of nucleus n with Nn neutrons and Zn protons. For the terms depending on
the Weinberg mixing angle θW we used the value sin2θW = 0.2319.

7.2 Computational details

For completeness we also performed, besides H2Se2 and H2Te2, calculations
on H2O2 and H2S2. The basis sets for H, O, and S used by Thyssen et al.[128]
have been used in our study as well. For Se and Te we used similar basis
sets. For H this is an uncontracted cc-pVDZ set, for O, S, Se and Te an
uncontracted cc-pVDZ + np set, where n = 3 for O and n = 2 for S, Se and
Te. The cc-pVDZ sets are the correlation consistent double zeta basis sets
developed by Dunning[101] for light elements. For the heavier elements, Se
and Te in this case, these basis sets have been developed, following the same
recipe, by Dyall[156]. The np indicates additional high exponent p-functions.
These additional exponents were generated as an even-tempered series with
ratio = 8.0 to give a better description of the p1/2-type spinors.

Calculations have been performed for dihedral angles in the range 0◦ to
180◦ using the same bond angles, bond distances and definition of the di-
hedral angle as used by Laerdahl and Schwerdtfeger[26]. All calculations
have been performed in C2 symmetry. Isotropic Gaussian nuclear charge
distributions[165] have been used in all our calculations. To reduce compu-
tational cost, we neglected the (SS|SS) type of two-electron integrals in our
calculations, as was done also in previous four-component parity-violation
calculations[26, 128] on the hydrogen peroxyde analogs.

Besides performing calculations in which all electrons are correlated, Thys-
sen et al.[128] also performed calculations applying a frozen (inactive) core
approximation. They found that freezing a 1s core hardly changes the re-
sults in case of H2S2 whereas freezing a 1s2s2p core did alter the sign of the
correlation contribution. We investigated the effect of frozen cores further,
to determine the influence of core correlation, and because we want to apply
our method to larger systems, where freezing of the core may be necessary
to make the calculations feasible.
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Table 7.1: Parity-violation energies for H2S2, in a.u., using different active spaces.
Results are shown for dihedral angles 15◦, 90◦ and 120◦.

Method 15◦ 90◦ 120◦

Hartree-Fock −1.083× 10−17 −0.580× 10−17 0.811× 10−17

MP2 (full) −1.118× 10−17 −0.511× 10−17 0.939× 10−17

correlation contr. −0.035× 10−17 0.069× 10−17 0.128× 10−17

MP2 (..,1000 a.u.) −1.118× 10−17 −0.511× 10−17 0.939× 10−17

correlation contr. −0.035× 10−17 0.069× 10−17 0.128× 10−17

MP2 (..,100 a.u.) −1.117× 10−17 −0.510× 10−17 0.937× 10−17

correlation contr. −0.034× 10−17 0.069× 10−17 0.127× 10−17

MP2 (..,50 a.u.) −1.115× 10−17 −0.509× 10−17 0.935× 10−17

correlation contr. −0.032× 10−17 0.070× 10−17 0.125× 10−17

7.3 Results and discussion

In Table 7.1 and 7.2 parity-violation energies of H2S2 and H2Se2 for dihedral
angles 15◦, 90◦ and 120◦ using different active spaces are shown. The active
space used in a particular calculation is indicated between brackets, (full)
means taking all spinors into account, (..,100 a.u.) means taking into account
all occupied spinors and taking virtuals into account with an energy up to
100 a.u., (-63,..,100 a.u.) means the same virtual space but indicates that
spinors with an energy lower than -63 a.u. are kept frozen, as well.

The results for H2S2 in Table 7.1 indicate that deleting virtuals above
1000 a.u. (taking 73% of the virtuals into account) does not change the
results at all. Deleting virtuals above 100 a.u. (52% of the virtuals taken
into account) changes the results slightly and deleting virtuals above 50 a.u.
(taking 41% of the virtuals into account) changes the correlation contribution
by only a few percent, which is still acceptable.

In the case of the H2Se2 molecule, Table 7.2, deleting virtuals above 10 000
a.u. (taking 83% of the virtuals into account) does not change the results
at all. Removal of virtuals above 1000 a.u. (78% of the virtuals correlated)
changes the correlation contribution insignificantly (< 1%). Deleting virtuals
in the range 100 - 1000 a.u. (taking 52% of the virtuals into account) has more
effect on H2Se2 than on H2S2. For the angles 90◦ and 120◦ the correlation
contribution changes by several percent, for φ = 15◦ the relative change
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Table 7.2: Parity-violation energies for H2Se2, in a.u., using different active
spaces. Results are shown for dihedral angles 15◦, 90◦ and 120◦.

Method 15◦ 90◦ 120◦

Hartree-Fock −1.181× 10−15 −0.368× 10−15 1.336× 10−15

MP2 (full) −1.208× 10−15 −0.277× 10−15 1.474× 10−15

correlation contr. −0.026× 10−15 0.091× 10−15 0.138× 10−15

MP2 (..,10 000 a.u.) −1.208× 10−15 −0.277× 10−15 1.474× 10−15

correlation contr. −0.026× 10−15 0.091× 10−15 0.138× 10−15

MP2 (..,1000 a.u.) −1.207× 10−15 −0.277× 10−15 1.473× 10−15

correlation contr. −0.026× 10−15 0.091× 10−15 0.137× 10−15

MP2 (..,100 a.u.) −1.219× 10−15 −0.280× 10−15 1.487× 10−15

correlation contr. −0.038× 10−15 0.088× 10−15 0.151× 10−15

MP2 (-63,..,100 a.u.)a −1.219× 10−15 −0.280× 10−15 1.487× 10−15

correlation contr. −0.038× 10−15 0.088× 10−15 0.151× 10−15

MP2 (-56,..,100 a.u.)b −1.222× 10−15 −0.280× 10−15 1.490× 10−15

correlation contr. −0.040× 10−15 0.087× 10−15 0.154× 10−15

MP2 (-10,..,100 a.u.)c −1.205× 10−15 −0.276× 10−15 1.470× 10−15

correlation contr. −0.023× 10−15 0.092× 10−15 0.134× 10−15

MP2 (-7,..,100 a.u.)d −1.228× 10−15 −0.277× 10−15 1.504× 10−15

correlation contr. −0.047× 10−15 0.091× 10−15 0.168× 10−15

MP2 (-6,..,100 a.u.)e −1.185× 10−15 −0.271× 10−15 1.445× 10−15

correlation contr. −0.003× 10−15 0.097× 10−15 0.112× 10−15

a1s frozen
b1s2s frozen
c1s2s2p frozen
d1s2s2p3s frozen
e1s2s2p3s3p frozen
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in the correlation contribution is percentually large, but the total effect of
electron correlation on EPV is small for this angle. Subsequently freezing the
1s spinors of Se does not change the results. Freezing also the 2s spinors gives
a minor change and subsequently freezing the 2p spinors gives again results
which are close to the full calculation. This is apparently due to a cancellation
of errors as there is no a priori reason why these contributions should cancel
each other. There is a large difference in the correlation contributions for
an 1s2s2p3s frozen core and an 1s2s2p3s3p frozen core, and we conclude
that both frozen cores can not be recommended for Se as the correlation
contributions deviates tens of percents from the full result for this property.

The efficiency of the calculations can thus be improved by deleting high
lying virtuals but not as much as we observed previously for other properties,
see references [127] and [264]. Deleting 30 to 50% of the virtuals gives results
which are acceptable. Freezing occupied spinors is also more difficult. In
contrast to most other molecular properties almost all electrons have to be
taken into account in correlated calculations. From these two conditions we
may conclude that correlated parity-violation calculations are very demand-
ing, since much larger active spaces than for the calculation of other first
order 1-electron properties is required.

Since our algorithm is not yet fully parallellized, the full reference cal-
culation on H2Te2, with 294 large and 692 small component basis functions
respectively and 215 virtual Kramers’ pairs, is currently not feasible. For the
calculations at the different dihedral angles we chose an 1s2s2p frozen core
and put the threshold for the virtual spinors at 100 a.u. Extrapolation of
the results for S and Se indicates that these limits may not be sufficient to
obtain a fully converged result, but that the residual error should be small.
The threshold for the virtual space at 100 a.u. is furthermore justified by
one calculation at φ = 120◦ with a virtual space up to 1000 a.u., in which
the effect on the correlation contribution of the extended virtual space was
found to be only 0.51%.

The results of the full H2O2 and H2S2 calculations are shown in Table
7.3. For H2O2 correlation effects are positive for all angles. The correlation
contribution is about 15 to 20% for angles up to approximately 60◦, a rela-
tive maximum of the correlation contribution occurs in the region where EPV

goes through zero, around 100◦. For the larger dihedral angles the correlation
contribution is smaller, less then 5%. For H2S2 the geometric dependence of
electron correlation is different from H2O2. Correlation effects are negative
for dihedral angles up to 60◦ and positive for larger angles. For the angles
up to 60◦ correlation is not important, it only contributes a few percent.
For larger angles electron correlation is, in contrast to H2O2, more impor-
tant, about 10%. Thyssen et al.[128] give a graphical representation of their
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Figure 7.1: Variation of EPV with the dihedral angle in H2Te2. The solid and
dashed curves are the DC-HF and DC-MP2 values respectively.

results, while explicit values are only given for φ = 45◦, for that reason we
repeated the finite-field calculations, the results are given in Table 7.3 as well,
in parenthesis. Comparing the finite-field values with the analytical values
we see that for H2O2 the difference between the finite-field method and the
analytical method is about 0.01% and 0.05% for HF and MP2 respectively.
For H2S2 the difference is somewhat larger, for both HF and MP2 about
0.2%. However, overall it can be concluded that for these molecules the
overall agreement between the analytical and finite-field methods is satisfac-
tory and that criticism about the applicability of the finite-field method[25]
even for molecules containing only light elements is definitely not supported
by our results.

For H2Se2 and H2Te2 the results are shown in Table 7.4. The results
for H2Se2 are quite similar to the results of H2S2. Correlation effects are
negative for small angles, although this contribution becomes positive earlier
than for H2S2. In the region where EPV goes through zero electron correlation
seems to be more important than for H2S2, but for larger angles the relative
contribution is similar as for H2S2, about 10%.

The calculated EPV for H2Te2, as a function of the dihedral angle, is
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Table 7.3: Parity-violation energies for H2O2 and H2S2, in a.u., as a function of
dihedral angle, φ. Finite-field values are given in parenthesis.

φ Hartree-Fock MP2 corr. contribution
H2O2 15◦ −3.630× 10−19 −3.185× 10−19 0.444× 10−19

(−3.630× 10−19) (−3.174× 10−19) (0.456× 10−19)
30◦ −6.127× 10−19 −5.329× 10−19 0.798× 10−19

(−6.127× 10−19) (−5.330× 10−19) (0.797× 10−19)
45◦ −6.784× 10−19 −5.788× 10−19 0.996× 10−19

(−6.783× 10−19) (−5.787× 10−19) (0.997× 10−19)
60◦ −5.492× 10−19 −4.467× 10−19 1.025× 10−19

(−5.492× 10−19) (−4.468× 10−19) (1.025× 10−19)
90◦ 0.939× 10−19 1.666× 10−19 0.728× 10−19

(0.939× 10−19) (1.664× 10−19) (0.725× 10−19)
120◦ 6.942× 10−19 7.270× 10−19 0.328× 10−19

(6.943× 10−19) (7.273× 10−19) (0.330× 10−19)
150◦ 6.712× 10−19 6.815× 10−19 0.103× 10−19

(6.713× 10−19) (6.813× 10−19) (0.100× 10−19)
165◦ 3.874× 10−19 3.920× 10−19 0.046× 10−19

(3.875× 10−19) (3.925× 10−19) (0.051× 10−19)

H2S2 15◦ −1.083× 10−17 −1.118× 10−17 −0.035× 10−17

(−1.085× 10−17) (−1.120× 10−17) (−0.035× 10−17)
30◦ −1.826× 10−17 −1.874× 10−17 −0.048× 10−17

(−1.830× 10−17) (−1.878× 10−17) (−0.048× 10−17)
45◦ −2.077× 10−17 −2.112× 10−17 −0.036× 10−17

(−2.081× 10−17) (−2.116× 10−17) (−0.036× 10−17)
60◦ −1.866× 10−17 −1.873× 10−17 −0.007× 10−17

(−1.870× 10−17) (−1.876× 10−17) (−0.007× 10−17)
90◦ −0.580× 10−17 −0.511× 10−17 0.069× 10−17

(−0.581× 10−17) (−0.512× 10−17) (0.070× 10−17)
120◦ 0.811× 10−17 0.939× 10−17 0.128× 10−17

(0.812× 10−17) (0.940× 10−17) (0.128× 10−17)
150◦ 1.096× 10−17 1.216× 10−17 0.120× 10−17

(1.098× 10−17) (1.218× 10−17) (0.120× 10−17)
165◦ 0.667× 10−17 0.738× 10−17 0.071× 10−17

(0.667× 10−17) (0.739× 10−17) (0.071× 10−17)
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Table 7.4: Parity-violation energies for H2Se2 and H2Te2, in a.u., as a function
of dihedral angle, φ. For H2Te2 an 1s2s2p frozen core is used, virtuals up to 100
a.u. are taken into account.

φ Hartree-Fock MP2 corr. contribution
H2Se2 15◦ −1.181× 10−15 −1.208× 10−15 −0.026× 10−15

30◦ −1.999× 10−15 −2.031× 10−15 −0.031× 10−15

45◦ −2.263× 10−15 −2.275× 10−15 −0.012× 10−15

60◦ −1.982× 10−15 −1.960× 10−15 0.022× 10−15

90◦ −0.368× 10−15 −0.277× 10−15 0.091× 10−15

120◦ 1.336× 10−15 1.474× 10−15 0.138× 10−15

150◦ 1.591× 10−15 1.718× 10−15 0.128× 10−15

165◦ 0.957× 10−15 1.034× 10−15 0.077× 10−15

H2Te2 15◦ −1.910× 10−14 −2.059× 10−14 −0.149× 10−14

30◦ −3.212× 10−14 −3.432× 10−14 −0.220× 10−14

45◦ −3.612× 10−14 −3.806× 10−14 −0.193× 10−14

60◦ −3.151× 10−14 −3.249× 10−14 −0.098× 10−14

90◦ −0.603× 10−14 −0.447× 10−14 0.156× 10−14

120◦ 2.108× 10−14 2.467× 10−14 0.359× 10−14

150◦ 2.571× 10−14 2.936× 10−14 0.365× 10−14

165◦ 1.559× 10−14 1.782× 10−14 0.223× 10−14

shown in Fig. 7.1. We see a similar geometry dependence of electron correla-
tion as for H2S2 and H2Se2, although electron correlation is more important
for H2Te2 than for the other two molecules. For angles up to 60◦ electron
correlation contributes about 5%, for angles of 120◦ and larger electron cor-
relation contributes about 10 to 15%. For a dihedral angle of 60◦ electron
correlation has a negative contribution to EPV, just like observed in H2S2.

7.4 Conclusions

Our implementation of first-order analytical MP2 properties has been ap-
plied to the calculation of parity-violation energies in H2O2, H2S2, H2Se2 and
H2Te2. The calculations on H2Se2 and H2Te2 are the first correlated relativis-
tic calculations on parity-violation effects in molecules containing elements
from period 4 or 5 of the periodic table. Previous correlated relativistic cal-
culations, using the finite-field method, were, due to numerical instability,
restricted to molecules containing lighter elements. Electron correlation does
not play a very important role on parity-violation energies for this type of
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molecules, roughly ranging from a few percent to about 15%, with a strong
geometry-dependence. The calculations indicate that parity-violation ener-
gies are quite sensitive to the active space used. Only a few occupied spinors
can be kept inactive and this makes correlated parity-violation ab initio calcu-
lations computationally very intensive. It is therefore interesting to compare
the results of four component MP2 to the more economical four component
DFT method. Such a comparison between HF, DFT and MP2 for methane
analogs is currently undertaken.
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Chapter 8

Relativistic second-order
many-body and density
functional theory for the
parity-violation contribution to
the C-F stretching mode in
CHFClBr

A comparison between four-component Hartree-Fock, second-order Møller-
Plesset (many-body) perturbation theory and density functional theory for
the calculation of parity-violation effects in the C-F stretching mode of CHF-
ClBr is made. The difference between the methods is large for the total
parity-violation energies but modest for vibrational transitions.

8.1 Introduction

The tiny difference in properties between the two enantiomers of a chiral mo-
lecule, caused by the electroweak current between electrons and nucleons[254,
255], has not been detected in experiments so far[256]. Perhaps the best
strategy to measure these parity-violation (PV) effects in molecules is via
vibrational spectroscopy. CO2 lasers are highly stable, have a high spectral
purity and are tunable. A vibrational mode that lies within the tunable
range of the CO2 laser and that shows a high intensity is the C-F stretching
mode. CHFClBr has been used in recent years in the experimental search
for the manifestation of parity-violation in molecules[257, 265].
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Several molecules have been used in theoretical calculations on parity-
violation effects[24, 28, 29] of the C-F stretching mode. However, these
calculations have been based on four-component Hartree-Fock. The effect
of electron correlation has been completely neglected. Not much is known
about the effect of electron correlation on parity-violation in molecules yet.
Test calculations on H2X2 (X = O, S, Se and Te) indicate that the differences
between Hartree-Fock (HF), DFT and correlated ab initio methods are not
so large[128, 261, 266]. The aim of the current research is to compare HF,
MP2 and DFT for the calculation of the effect of PV on the vibrational
frequencies of the C-F stretching mode of CHFClBr.

8.2 Methods and computational details

All calculations employed the four-component Dirac-Coulomb (DC) Hamilto-
nian and have been performed using the dirac[41] program. As in the previ-
ous Dirac-Coulomb Hartree-Fock (DC-HF) calculations on CHFClBr[24] the
(SS|SS) type of two-electron integrals were neglected. For all the elements
an isotropic nuclear charge distribution was used[165]. The basis sets are
also the same as in the previous HF calculations, uncontracted cc-pVDZ +
np sets[102, 248] augmented by diffuse functions. Calculations have been
performed at seven different points along the C-F normal mode, at the equi-
librium geometry and at ±0.188 97 a.u., ±0.377 94 a.u. and ±0.944 86 a.u.
away from equilibrium. All these geometries correspond to CHFClBr in the
R-configuration.

The operator for the calculation of parity-violation energies, EPV, is the
nuclear spin-independent P-odd operator,

Ĥp =
GF

2
√

2

∑
i,n

QW,nγ
5
i %n (ri) , (8.1)

where the summations run over the electrons i and the nuclei n. GF =
1.166 37 × 10−11 MeV−2 = 2.222 55−14 a.u. is the Fermi coupling constant,
the pseudo-scalar γ5 chirality operator is given by

γ5 =

(
0 I
I 0

)
, (8.2)

where I and 0 are the 2×2 unit and zero matrix respectively. The normalized
nucleon density is %n and QW,n = −Nn +Zn

(
1− 4sin2θW

)
is the weak charge

of nucleus n with Nn neutrons and Zn protons. For the Weinberg mixing
angle θW we used the value sin2θW = 0.2319.
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The MP2 calculations have been performed using our recent analytical
first-order property implementation[266]. Due to computational limitations
not all spinors have been taken into the active space. The bromine 1s, 2s and
2p and the chlorine 1s spinors have been left inactive, which means that in
total 56 electrons are correlated. The energy threshold for inclusion of virtual
spinors has been kept at 100 a.u. The thresholds in both the occupied and
virtual space are consistent with those chosen in earlier work on H2Se2 and
H2Te2[266].

The four-component implementation of DFT in dirac has been described
in references [267] and [211]. The functionals used were LDA[94], the gener-
alized gradient approximations BLYP[95, 96] and PW86[97] and the hybrid
functional B3LYP[98]. Standard non-relativistic functionals have been used
since relativistic corrections do not lead to large changes in properties[78].

The effect of parity-violation on the C-F stretching mode has been cal-
culated as follows, see also reference [24]. First a normal mode analysis has
been applied at the CCSD(T) level using ECPs, obtaining displacement co-
ordinates for the C-F stretching mode. Along this C-F normal coordinate, q,
the CCSD(T) potential energy curve V(q) was calculated stepwise. A poly-
nomial fit of V(q) has been used as input for a numerical Numerov-Cooley
integration procedure to obtain vibrational wavefunctions |n〉 (in the rota-
tional groundstate, J = 0). Since the parity-violation contribution is so small
the natural choice to calculate the effect of parity-violation on the vibrational
levels is to use first-order perturbation theory. This means that the following
expectation value has to be calculated:

En
PV = 〈n|EPV(q)|n〉, (8.3)

for the vibrational level with quantum number n. For this purpose the parity-
violation contributions to the total electronic energy, EPV(q), are fitted to a
polynomial.

8.3 Results

Fig. 8.1 shows the parity-violation energies as a function of the C-F stretching
mode, q. It is clear that the different electronic structure methods give
quite different results. In Table 8.1 the results at the equilibrium C-F bond
distance, q = 0, are shown, here the contribution has also been divided in
contributions per atom. Apparently electron correlation is important for the
absolute parity-violation energies, at q = 0 it more than halves the HF EPV.

The large difference in absolute EPVs in CHFClBr is in contrast to the
results of the hydrogen peroxyde analogs[128, 261, 266], where HF, DFT and
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Figure 8.1: Electroweak contribution to the total electronic energy (scaled by
2
√

2/GF ) as a function of the C-F stretching normal mode (in a.u.). q = 0 defines
the equilibrium C-F bond distance.

correlated ab initio methods are shown to give quite similar results. It is
apparent that the most important contribution to the EPVs come from the
heaviest elements, Cl and Br. Also the most important correlation contribu-
tions come from these atoms, as shown in Fig. 8.2. The contributions from
Cl and Br cancel each other out to some extent.

The question is now how much parity-violation contributes to experimen-
tal observables, the vibrational transitions. Table 8.2 shows parity-violation
contribution to the first four C-F vibrational modes, these contributions are
as expected quite large, as for the absolute EPVs. The EPV differences be-
tween different modes, which determine the effect of parity-violation on vi-
brational transition frequencies, are much smaller, see the last two columns
of table 8.2. That the effect of parity-violation on the vibrational transitions
of CHFClBr doesn’t show a large dependency on the method can easily be
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Figure 8.2: Electroweak contribution per atom (scaled by 2
√

2/GF ) due to elec-
tron correlation as a function of the C-F stretching normal mode. q = 0 defines
the equilibrium C-F bond distance.

understood from Fig. 8.1. Although the absolute positions of the curves
differ, they are all quite parallel around equilibrium. It is not the absolute
value of EPV at q = 0 that matters, but the relative variation of EPV with
distance. If the value of EPV at q = 0, for a particular method, is subtracted
form the EPVs for the other distances it is clear that the different methods
give similar results, this is illustrated for HF, MP2 and LDA in Fig. 8.3.

For the fundamental transition the parity-violation effect varies from
−1.39 × 10−19 a.u. for HF to −1.98 × 10−19 a.u. for B3LYP. For MP2
the effect is −1.86 × 10−19 a.u., which is equal to −1.2 mHz. For the fre-
quency difference between the R and S enantiomers we obtain thus ∆νRS =
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Figure 8.3: Parity-violation energy (scaled by 2
√

2/GF ) with respect to the value
at equilibrium, q = 0, as a function of the C-F stretching normal mode.

υR − νS = −2.4 mHz. Using νC−F = 32.29 THz[268], we obtain the ratio
∆νRS/νC−F = −7.56×10−17. This has to be compared with the recent exper-
imental frequency difference sensitivity of 5× 10−14 obtained by Chardonnet
and co-workers[257] for the C-F stretching mode of CHFClBr. This illus-
trates that the detection of parity-violation effects in molecular spectroscopy
presents a great challenge and the resolution of experimental setup has to be
improved by several orders of magnitude.

It is difficult to judge which method gives most reliable results. CHFClBr
is a molecule for which both DFT and MP2 should perform quite well for
standard properties, but since not much is known about the relative per-
formance of these methods for the calculation of parity-violation effects it
is difficult to give a ranking here. A test using more molecules seems nec-
essary. Also a comparison with high level coupled-cluster methods is very
desirable. However, at the four-component level this requires first the for-
mulation and implementation of formulas for the analytical evaluation of
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first-order coupled-cluster properties.

8.4 Conclusions

Relativistic four-component electronic structure methods have been applied
to the calculation of parity-violation effects on the C-F stretching mode of
CHFClBr. A large absolute difference is seen between Hartree-Fock, MP2
and DFT methods. However, the relative difference between the applied
methods is quite small. This results in contributions of parity-violation to
vibrational frequencies that are not so method dependent. Tests on a larger
number of molecules seems desirable as well as comparison with coupled-
cluster methods.
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Summary

The availability of computer programs that allow the calculation of prop-
erties of molecules is very valuable in chemistry and physics. For example,
calculated NMR spectra might be very useful in the elucidation of molecular
structures if the experimental spectra are complicated, or if there are un-
certainties about the molecules present. Also, theoretical calculations often
allow a more detailed understanding of what is really happening in dynam-
ical processes. Many examples can be given where theoretical calculations
are worthwhile. For some applications it is sufficient if the model used gives
results of reasonable accuracy, while for others theoretical computations are
only useful if they are of very high quality. Most of the applications pre-
sented in this thesis are of the second type. In general, the aim is to obtain
an accuracy as high as possible.

For molecules containing only light elements, to achieve high accuracy in
electronic structure calculations, the main ‘parameters’ of concern are the
electronic structure method and the quality of the basis set. When heavy
elements are present, or when the electron density in the vicinity of the nuclei
is important for the property of interest, the effects of special relativity on
the physics have to be taken into account as well.

In this thesis theoretical calculations of first-order molecular properties on
small closed-shell molecules are presented. Most of these molecules contain
one or more heavy elements. Relativity is incorporated in a rigorous manner
in our models by employing the Dirac-Coulomb Hamiltonian, guaranteeing
that the most important relativistic effects are taken into account. In most
applications careful attention is payed to the use of suitable basis sets. While
the most common basis sets in quantum chemistry are energy optimized
basis sets, some of the basis sets that are used in this work are specially
developed to give good results for the properties of interest. These basis sets
are systematically optimized using an even-tempered basis set scheme. The
electronic structure method that gives the best results for the investigated
systems, within an affordable time, is expected to be the coupled-cluster
singles doubles with non-iterative triples method (CCSD(T)). This is thus
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the method that has been used in most of the calculations presented here.
The coupled-cluster correlation contribution to the properties has been

calculated using the finite-field method, i.e. calculations using different per-
turbation strengths are performed, and numerical differentiation on the per-
turbed energies is applied. One of the disadvantages of the finite-field method
is that it is not suitable for all molecular properties. The finite-field method
can only be applied to the calculation of parity-violation energies if light ele-
ments are present. Due to numerical problems it can not be applied for this
property if heavier elements are present. Numerical problems can be avoided
if analytical formulas are derived for the calculation of properties. In chapter
2 formulas for the analytical evaluation of first-order molecular properties
at the second-order Møller-Plesset perturbation theory (MP2) level are pre-
sented. The derivation starts from the MP2 correlation energy expression
within a Dirac-Coulomb framework which is differentiated with respect to a
general perturbation strength parameter, λ.

It is common practice in calculations on systems that contain somewhat
heavier elements to include only the valence (and subvalence) electrons in the
correlation part of the calculation. High energy virtual spinors (orbitals) can
safely be neglected as well. The analytical formalism presented allows for the
use of these so-called inactive spinors. Although the inactive spinors do not
enter the MP2 energy expression, they show up in the analytical derivative
expressions, due to full-relaxation of the active spinors to the perturbation.
The same is true for the negative energy spinors: they are not present in
the MP2 energy expression but appear in the expressions for the analytical
derivative.

The formalism described has been implemented in the four-component
electronic structure program dirac. Explicit transformation of two-electron
integrals to indices that correspond to inactive spinors can be avoided by
applying the transformation to these indices in a later stage, i.e. after the
formation of the Lagrangian in AO or mixed AO/MO basis. The need to solve
a set of coupled equations for each perturbation has been circumvented by
use of the Z-vector technique of Handy and Schaefer. The bottleneck of the
current implementation is the transformation of two-electron integrals that
include small components. This bottleneck might be overcome by neglecting
two-electron integrals that include small component basis functions on differ-
ent nuclei − the one-center approximation. This approximation has already
been applied successfully in Dirac-Coulomb Hartree-Fock theory. Further
speed up can be obtained by parallelizing the analytical MP2 property code.

This code is used for the calculation of parity-violation energies in chiral
molecules. The electroweak neutral current between electrons and nucleons
causes a small difference in properties between mirror image molecules. Par-
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ity is violated. However, this effect is so small, that, up to now, it is yet to
be detected in experiments. Theoretical calculations might help in finding
suitable molecules for experiment, and can predict where to look; however,
more experience of the effect of different approximations in these molecular
calculations has to be gained. For example, not much is known about the
effect of electron correlation on parity-violation energies. In chapter 7 the
effect of electron correlation has been calculated on H2X2 (X = O, S, Se,
and Te). Previous correlated relativistic calculations on these systems, em-
ploying the finite-field method, were restricted to X = O and S. The newly
developed analytical formalism allows calculations on heavier elements. In
general, the effect of electron correlation on these systems does not appear to
be essential, ranging from a few percent to about 15%. There is, however, a
strong geometry-dependence. Compared to other properties, the correlation
contribution to this property is very sensitive to the active space used. Only
a few occupied spinors can be kept inactive.

A molecule that is more suitable for experimental observation of parity-
violation effects is CHFClBr. Currently this molecule is being investigated
using molecular beam spectroscopy. Calculations on this molecule are shown
in chapter 8. The effect of parity-violation on the C-F stretching mode of
CHFClBr is investigated using Hartree-Fock (HF), MP2 and density func-
tional theory (DFT). Although the different methods show quite large differ-
ences in the total parity-violation energies, the differences in the fundamental
transition frequencies of the C-F stretching mode are not so large. The fre-
quency differences between the two enantiomers of CHFClBr range from 1.8
mHz using HF to 2.6 mHz if B3LYP is employed. MP2 gives 2.4 mHz. How-
ever, these numbers indicate that the sensitivity of the current experimental
setups has to be improved by roughly a factor thousand to be able to detect
this tiny frequency difference between R-and S-isomers!

The combination of experimental nuclear quadrupole coupling constants
(NQCC) at a nucleus with a theoretical value of the electric field gradient
(EFG) allows for the determination of the electric quadrupole moment of
the corresponding nucleus. This route to obtain a value for the nuclear
quadrupole moment (NQM) is called the ‘molecular method’ since it needs
the molecular NQCC and EFG as input. In chapter 3 and 4, new values for
the NQM of 115In and 127I are derived.

The new value for the NQM of 115In is 770(8) mb, compared to the old
standard value of 810(60) mb. This value is obtained by combining the
vibrationally corrected NQCCs of four indium halides with calculated DC-
CCSD(T) EFGs at In in these molecules. An extensive and systematic basis
set study at the DC-HF level of theory is performed and it is shown that
the EFG converges very slowly toward the HF basis set limit, especially for
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high angular momentum functions. Relativistic effects are found to be very
important, contributing about 10%. Correlation contributions are of the
same magnitude but are of opposite sign.

The new recommended value for the NQM of 127I is −696(12) mb, com-
pared to the value of -710(10) mb in the 2001 compilation of NQMs. To
get a good insight into the consistency of the NQMs obtained (in principle
the value should be independent of the molecule used) we used nine differ-
ent diatomic molecules. The molecules giving results that deviate most from
the average value are the coinage metal containing molecules (CuI, AgI and
AuI) and TlI. In contrast to DFT, coupled-cluster methods appear to work
quite well for the coinage metals. Relativistic and correlation effects are very
large on the EFGs of these systems. The main deficiencies in the theoretical
model used are believed to be the neglect of higher order correlation contri-
butions (∼ 1%) and the Gaunt (or Breit) two-electron relativistic interaction
(∼ 0.5%). Calculations of the EFG at Au in AuI appear to have failed. This
EFG is very small and will need calculations of a higher quality.

Besides the parity-violation energies and EFGs, the third kind of first-
order molecular property that is calculated is the dipole moment. In chapter
5 the dipole moment curve of hydrogen iodide (HI) is calculated. In a recent
publication the accuracy of the experimentally measured dipole moment of
HI was questioned. In this chapter we show that these questions are un-
warranted. To show this the DC-CCSD(T) method is used with a set of
systematically ‘property’ optimized basis sets. It is shown that it is very
important to use a large enough basis set, that includes several g and h type
functions. Also, the variational inclusion of spin-orbit coupling is essential to
obtain agreement between theory and experiment. It is found that without
the inclusion of spin-orbit coupling, the slope of the dipole moment curve
even has the wrong sign close to the equilibrium geometry.

The relativistic effect on the dipole moment surface (DMS) of water is
presented in chapter 6. The relativistic contribution to the DMS of water is
currently being used as a correction to a highly accurate non-relativistic ab
initio DMS by a collaborating research group. Together with a state of the
art potential energy surface, this should help in the interpretation of high
temperature rotation-vibration spectra of water. Rotation-vibration spectra
of water have a lot of important applications. As expected, the relativistic
effect on the dipole moment of a light molecule like water is very modest. On
a large part of the surface the effect is on the order of 0.20% - 0.30%. On the
entire surface, relativistic effects make the dipole moment smaller and hence
the intensities of the rotation-vibration lines will be lower.

Future Dirac-Coulomb coupled-cluster calculations on first-order proper-
ties would certainly benefit from an implementation of analytical formulas.
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Besides a reduction in the number of calculations that need to be performed,
it would also allow the calculation of coupled-cluster parity-violation energies
in systems containing heavier elements. With the formulation and implemen-
tation of the formulas for MP2, as presented in this thesis, a first step in this
direction has been made.
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Computerprogramma’s waarmee eigenschappen van moleculen uitgerekend
kunnen worden zijn van grote waarde in de scheikunde en natuurkunde. The-
oretisch berekende NMR spectra kunnen bijvoorbeeld goed van pas komen als
de experimentele spectra complex zijn of als er onduidelijkheid is over de aard
van de aanwezige moleculen. Met behulp van theoretische berekeningen is het
ook mogelijk om een beter begrip te krijgen van wat er nu precies gebeurt in
dynamische processen. Al met al zijn er vele voorbeelden te noemen waaruit
het nut van theoretische berekeningen blijkt. Voor sommige toepassingen
is het voldoende wanneer het gebruikte model resultaten geeft die van een
redelijke nauwkeurigheid zijn. Voor andere toepassingen zijn berekeningen
echter alleen waardevol wanneer ze van een zeer hoge nauwkeurigheid zijn.
De meeste resultaten die in dit proefschrift zijn beschreven, zijn van de tweede
soort. Het doel is in het algemeen een zo hoog mogelijke nauwkeurigheid te
bereiken.

Voor moleculen waarin alleen lichte elementen aanwezig zijn, zijn de be-
langrijkste ‘parameters’ om een hoge nauwkeurigheid te bereiken de electro-
nenstructuurmethode die gebruikt wordt, en de kwaliteit van de basisset. Als
er echter zware elementen aanwezig zijn of als de electronendichtheid in de
nabijheid van de kern belangrijk is voor de eigenschap waar naar gekeken
wordt, dan moeten de consequenties die speciale relativiteit op de beweging
van de electronen heeft ook in rekening worden genomen.

In dit proefschrift zijn berekeningen van eerste-orde-eigenschappen aan
kleine gesloten-schil moleculen beschreven. In de meeste van deze moleculen
zijn één of meer zware elementen aanwezig. Relativiteit is op een ade-
quate manier in het gebruikte model verdisconteerd door de Dirac-Coulomb-
Hamiltoniaan te gebruiken. Op deze manier kunnen we er zeker van zijn
dat de belangrijkste relativistische effecten zijn meegenomen. In de meeste
toepassingen is veel aandacht besteed aan het gebruik van goede basissets.
Terwijl de meeste basissets die in de quantumchemie worden gebruikt naar
energie geoptimaliseerd zijn, zijn sommige basissets die voor dit onderzoek
gebruikt zijn speciaal ontwikkeld om een goed resultaat te geven voor de
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eigenschap waar op dat moment naar gekeken is. Deze basissets zijn op een
systematische manier geoptimaliseerd met behulp van een even-getempereerd
basissetschema. Verwacht mag worden dat de electronenstructuurmethode
die de beste resultaten oplevert, binnen een veroorloofbare rekentijd, de
gekoppeld-clustermethode met enkele, dubbele en niet-iteratief behandelde
drievoudige excitaties (CCSD(T)), is. Om die reden is deze dan ook de ge-
bruikte methode in de meeste van de hier beschreven berekeningen.

De bijdrage van de gekoppeld-clustercorrelatie aan de eigenschappen is
uitgerekend met behulp van de eindig-veld-methode; dat wil zeggen dat er
berekeningen met verschillende verstoringen zijn uitgevoerd en dat er vervol-
gens numerieke differentiatie op deze verstoorde energieën is toegepast. Een
van de nadelen van de eindig-veld-methode is echter dat deze niet toepas-
baar is voor alle moleculaire eigenschappen. De eindig-veld-methode kan
alleen worden toegepast voor het berekenen van pariteitsverbrekingsenergieën
als er lichte elementen aanwezig zijn. Vanwege numerieke problemen kan
de eindig-veld-methode niet worden gebruikt voor deze eigenschap als wat
zwaardere elementen aanwezig zijn. Deze problemen kunnen worden verme-
den als analytische formules voor moleculaire eigenschappen worden gebruikt.
In Hoofdstuk 2 worden formules voor het analytisch uitrekenen van eerste-
orde eigenschappen voor tweede-orde Møller-Plesset-storingsrekening (MP2)
gegeven. De afleiding van deze formules begint bij de Dirac-Coulomb-MP2-
correlatieënergieuitdrukking, die wordt gedifferentieerd naar een algemene
verstoringssterkteparameter λ.

Het is gebruikelijk om in berekeningen aan systemen die enigzins zware
elementen bevatten alleen de valentie- (en soms subvalentie-) electronen in
het gecorreleerde gedeelte van de berekening mee te nemen. Hoog ener-
getische, virtuele spinoren (orbitalen) kunnen eveneens worden verwaarloosd.
Het analytische formalisme dat is beschreven in dit proefschrift, laat het
gebruik van deze zogenaamde inactieve spinoren dan ook toe. Hoewel de
inactieve spinoren niet in de MP2-energieuitdrukking voorkomen, verschij-
nen ze wel in de uitdrukking voor de analytische afgeleide. Dit komt door
de volledige relaxatie van de actieve spinoren aan de verstoring. Hetzelfde
geldt voor de negatieve-energie spinoren, deze zijn niet present in the MP2-
energieuitdrukking maar wel in de uitdrukking voor de analytische afgeleide.

Het beschreven formalisme is gëımplementeerd in het vier-componenten
electronenstructuurprogramma dirac. Expliciete transformaties van de twee-
electronintegralen naar indices die corresponderen met inactieve spinoren
kunnen worden vermeden door de transformaties naar deze indices in een
later stadium uit te voeren, namelijk na de vorming van de Lagrangiaan in
AO- of gemengde AO/MO-basis. Het oplossen van een verzameling gekop-
pelde vergelijkingen voor iedere verstoring is vermeden door gebruik te maken
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van de Z-vector methode van Handy en Schaefer. De flessehals van de huidige
implementatie is de transformatie van twee-electronintegralen die kleine-
component basisfuncties bevatten. Deze flessehals zou in de toekomst kunnen
worden overwonnen door twee-electronintegralen die kleine-component basis-
functies op verschillende kernen bevatten, te verwaarlozen, de zogenaamde
één-centrumbenadering. Deze benadering is reeds succesvol toegepast in
Dirac-Coulomb-Hartree-Fock-theorie. Verdere versnelling van het programma
kan worden behaald door de analytische MP2-eigenschapcode te parallellise-
ren.

De code is gebruikt voor het uitrekenen van pariteitsverbrekingsenergieën
in chirale moleculen. De electro-zwakke neutrale-stroominteractie tussen
electronen en nucleonen veroorzaakt een klein verschil tussen de eigenschap-
pen van spiegelbeeldmoleculen. Pariteit is verbroken. Dit effect is echter
zo klein, dat het, tot op heden, niet is aangetoond in het laboratorium.
Theoretische berekeningen zouden van nut kunnen zijn bij het vinden van
geschikte moleculen voor experimenten en zouden vervolgens gebruikt kun-
nen worden bij het vinden van de verschillen in de spectra van twee spiegel-
beeldisomeren. Echter, voordat berekeningen echt van waarde kunnen zijn
voor dit onderzoeksgebied moet er meer inzicht worden verworven in de ver-
schillende benaderingen die worden gemaakt. Er is bijvoorbeeld nog niet
veel bekend over het effect van electronencorrelatie op pariteitverbrekingsen-
ergieën. In Hoofdstuk 7 wordt het effect dat electronencorrelatie heeft op
deze energieën in H2X2 (X = O, S, Se, en Te) beschreven. Eerdere gecor-
releerde relativistische berekeningen aan deze systemen waren beperkt tot
X = O en S. Het nieuwe analytische formalisme maakt het nu mogelijk om
aan zwaardere elementen te rekenen. Al met al blijkt het effect van elec-
tronencorrelatie op deze systemen echter niet zo groot te zijn, variërend van
een paar procent tot ongeveer 15%. Er valt echter wel een sterke geome-
trieafhankelijkheid te constateren. Vergeleken met andere eigenschappen is
de correlatiebijdrage ook erg gevoelig voor de actieve ruimte die gebruikt
wordt: slechts weinig bezette spinoren kunnen inactief worden gelaten.

Een molecuul dat meer geschikt is voor het experimenteel aantonen van
pariteitsverbrekingseffecten is CHFClBr. Dit molecuul wordt momenteel
onderzocht met behulp van molecuulbundelspectroscopie. Resultaten van
berekeningen aan dit molecuul zijn te vinden in Hoofdstuk 8. Het effect van
pariteitsverbreking op de C-F strekvibratiemodus van CHFClBr is onder-
zocht met behulp van Hartree-Fock (HF), MP2 en dichtheidsfunctionaalthe-
orie (DFT). Hoewel de verschillende methoden behoorlijk grote verschillen
laten zien in de totale pariteitsverbrekingsenergieën is het verschil in de fun-
damentele overgangsfrequentie van de C-F strekvibratiemodus niet zo groot.
Het verschil tussen de twee enatiomeren van CHFClBr varieert van 1,8 mHz
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met HF, 2,4 mHz met MP2 tot 2,6 mHz wanneer B3LYP wordt gebruikt.
Deze getallen geven echter aan dat de gevoeligheid van huidige experimentele
opstellingen met ongeveer een factor duizend verbeterd moet worden om het
frequentieverschil tussen de R-and S-isomeren te kunnen detecteren!

De combinatie van experimentele kernquadrupoolkoppelingsconstanten
(NQCC) op een kern in een molecuul met de electrische veldgradient (EFG)
op die kern maakt het mogelijk om het electrische quadrupoolmoment van
de desbetreffende kern te bepalen. Deze manier om een waarde van het kern-
quadrupoolmoment (NQM) te verkrijgen wordt de ‘moleculaire methode’ ge-
noemd omdat zij de moleculaire NQCC en EFG nodig heeft. In Hoofdstukken
3 en 4 worden nieuwe waarden voor de NQM van 115In en 127I bepaald.

De nieuwe waarde voor de NQM van 115In is 770(8) mb. Deze moet wor-
den vergeleken met de oude standaardwaarde van 810(60) mb. Deze waarde
is verkregen door combinatie van de vibrationeel-gecorrigeerde NQCC’s van
vier indium-halogeniden met uitgerekende DC-CCSD(T) EFG’s op In in deze
moleculen. Een uitgebreide en systematische basissetstudie op DC-HF niveau
liet zien dat de EFG zeer langzaam convergeert naar de HF basissetlim-
iet, met name voor hoge baanimpulsmomentfuncties. Relativistische effecten
zijn, met een bijdrage van ongeveer 10%, zeer belangrijk. Correlatiebijdragen
zijn ongeveer even groot, maar zijn tegengesteld van teken.

De nieuwe aanbevolen waarde voor de NQM van 127I is −696(12) mb. De
waarde in de samenvatting van NQM’s uit 2001 is -710(10) mb. Om inzicht
te krijgen in de consistentie van de verkregen NQM’s − in principe zou de
waarde onafhankelijk moeten zijn van het gebruikte molecuul − zijn er negen
verschillende twee-atomige moleculen gebruikt. De moleculen die resultaten
geven die het meest van de gemiddelde waarde afwijken, zijn de muntmetaal
bevattende moleculen (CuI, AgI en AuI) en TlI. In tegenstelling tot DFT
werkt de gekoppeld-clustermethode behoorlijk goed voor de muntmetalen.
Relativistische en correlatieëffecten zijn erg groot in deze systemen. De be-
langrijkste deficiënties in het gebruikte theoretische model zijn waarschijnlijk
de verwaarlozing van hogere orde correlatiebijdragen (∼ 1%) en de Gaunt (of
Breit) twee-electron relativistische interactie (∼ 0, 5%). Berekeningen van de
EFG op Au in AuI blijken niet succesvol te zijn. De EFG op goud is erg klein
en berekeningen van een hogere kwaliteit zijn nodig.

Een derde eerste-orde-eigenschap, na de pariteitsverbrekingsenergieën en
de EFG’s, waar aan gerekend is, is het dipoolmoment. In Hoofdstuk 5 wordt
het resultaat van de berekening van de dipoolmomentcurve van waterstofjo-
dide (HI) getoond. In een recent artikel werd de nauwkeurigheid van het
experimenteel bepaalde dipoolmoment van HI in twijfel getrokken. In dit
hoofdstuk wordt aangetoond dat deze twijfels niet gegrond zijn. Om dit te
bewijzen is gebruik gemaakt van de DC-CCSD(T)-methode met basissets,
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systematisch geoptimaliseerd naar ,,eigenschap”. Aangetoond wordt dat het
erg belangrijk is een basisset te gebruiken die groot genoeg is en die verschei-
dene g en h functies bevat. Om overeenstemming van theorie met experiment
te verkrijgen is het eveneens essentieel om spin-baan-koppeling op een vari-
ationele manier in rekening te nemen. Zonder spin-baan-koppeling mee te
nemen heeft de helling van de dipoolmomentcurve zelfs het verkeerde teken
rond de evenwichtsgeometrie.

De relativistische effecten op het dipoolmomentoppervlak (DMS) van wa-
ter zijn te vinden in Hoofdstuk 6. De relativistische bijdrage aan de DMS van
water wordt momenteel gebruikt als een correctie op een hoog-nauwkeurige
niet-relativistische ab initio DMS door een samenwerkende onderzoeksgroep.
Samen met een state-of-the-art potentiele-energie-oppervlak moet dit van nut
zijn voor de interpretatie van hoge-temperatuur-rotatie-vibratiespectra van
water. Rotatie-vibratiespectra van water hebben vele belangrijke toepassin-
gen. Zoals verwacht is het relativistische effect op het dipoolmoment van wa-
ter zeer gering. Op een groot gedeelte van het oppervlak is het effect ongeveer
0,20% - 0,30%. Over het gehele oppervlak maken relativistische effecten het
dipoolmoment kleiner. Dit betekent dan ook dat de intensiteiten van rotatie-
vibratielijnen lager zullen zijn wanneer relativistische effecten meegenomen
worden.

Toekomstige Dirac-Coulomb gekoppeld-cluster berekeningen aan eerste-
orde eigenschappen zullen zeker voordeel hebben van een implementatie van
analytische formules. Naast een reductie van het aantal berekeningen dat
uitgevoerd moet worden zou het ook betekenen dat pariteitsverbrekingsen-
ergiën aan systemen met zware elementen op gekoppeld-cluster niveau gedaan
kunnen worden. Met de uitwerking en de implementatie van een analytisch
formalisme voor MP2, zoals beschreven in dit proefschrift, is een eerste stap
in deze richting gezet.
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[69] J. M. Lévy-Leblond, Commun. Math. Phys. 6, 286 (1967).

[70] L. Visscher and T. Saue, J. Chem. Phys. 113 (2000).

[71] G. Y. Hong, M. Dolg, and L. M. Li, Chem. Phys. Lett. 334, 396 (2001).



BIBLIOGRAPHY 149

[72] M. Dolg, in Relativistic Electronic Structure Theory − Part 1: Funda-
mentals, edited by P. Schwerdtfeger (Elsevier, Amsterdam, 2002), p.
793.

[73] E. J. Baerends, W. H. E. Schwarz, P. Schwerdtfeger, and J. G. Snijders,
J. Phys. B 23, 3225 (1990).

[74] M. Pernpointner and P. Schwerdtfeger, Chem. Phys. Lett. 295, 347
(1998).

[75] L. Visscher, O. Visser, P. J. C. Aerts, H. Merenga, and W. C. Nieuw-
poort, Comput. Phys. Commun. 81, 120 (1994).

[76] K. G. Dyall, in Relativistic and Correlation Effects in Molecules and
Solids, edited by G. L. Malli (Plenum, New York, 1994), p. 17.

[77] I. P. Grant and H. Quiney, Int. J. Quant. Chem. 80, 283 (2000).

[78] S. Varga, E. Engel, W. D. Sepp, and B. Fricke, Phys. Rev. A 59, 4288
(1999).

[79] W. J. Liu, G. Y. Hong, D. D. Dai, L. M. Li, and M. Dolg, Theor.
Chem. Acc. 96, 75 (1997).

[80] T. Yanai, T. Nakajima, Y. Ishikawa, and K. Hirao, J. Chem. Phys.
114, 6526 (2001).

[81] R. McWeeny, Methods of molecular quantum mechanics, 2nd edition
(Academic Press, London, 1989).

[82] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic Structure
Theory (Wiley, Chichester, 2000).

[83] B. O. Roos and P.-O. Widmark, European Summerschool in Quantum
Chemistry 2003 (Lund University, Lund, 2003).

[84] W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Func-
tional Theory (Wiley-VCH, Weinheim, 2000).

[85] M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett.
208, 359 (1993).
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[89] M. Schütz and H.-J. Werner, J. Chem. Phys. 114, 661 (2001).
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[125] V. Kellö and A. J. Sadlej, J. Chem. Phys. 93, 8122 (1990).



152 BIBLIOGRAPHY

[126] L. Visscher, T. Enevoldsen, T. Saue, and J. Oddershede, J. Chem.
Phys. 109, 9677 (1998).

[127] J. N. P. van Stralen and L. Visscher, J. Chem. Phys. 117, 3103 (2002).

[128] J. Thyssen, J. K. Laerdahl, and P. Schwerdtfeger, Phys. Rev. Lett. 85,
3105 (2000).

[129] M. Head-Gordon, Mol. Phys. 96, 673 (1999).

[130] J. Gauss and D. Cremer, in Advances in quantum chemistry, edited by
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[185] P. Pyykkö and M. Seth, Theor. Chem. Acc. 96 (1997).

[186] M. Pernpointner, J. Phys. B 35, 383 (2002).

[187] M. Pernpointner, P. Schwerdtfeger, and B. A. Hess, Int. J. Quant.
Chem. 76, 371 (2000).

[188] B. A. Hess and U. Kaldor, J. Chem. Phys. 112, 1809 (2000).

[189] K. Fægri, Jr. and L. Visscher, Theor. Chem. Acc. 105, 265 (2001).

[190] A. J. Sadlej, Czech. Chem. Commun. 53, 1995 (1988).

[191] A. Pizlo, G. Jansen, B. A. Hess, and W. von Niessen, J. Chem. Phys.
98, 3945 (1993).

[192] J. K. Laerdahl, T. Saue, and K. Fægri, Jr., Theor. Chem. Acc. 97, 177
(1997).

[193] I. Malkin, O. L. Malkina, and V. G. Malkin, Chem. Phys. Lett. 361,
231 (2002).
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[200] M. Iliaš, V. Kellö, T. Fleig, and M. Urban, Theor. Chem. Acc. 110,
176 (2003).

[201] J. F. Ogilvie, The vibrational and rotational spectrometry of diatomic
molecules (Academic press, London, 1998).

[202] S. R. Ungemach, H. F. Schaefer III, and B. Liu, J. Mol. Spectrosc. 66,
99 (1977).

[203] H.-J. Werner, E. Reinsch, and P. Rosmus, Chem. Phys. Lett. 78, 311
(1981).
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