DIRAC pam run in /home/saue/Dirac/build_norecalc/test/fscc_highspin DIRAC serial starts by allocating 64000000 words (488 MB) of memory out of the allowed maximum of 2147483648 words (16384 MB) Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Lucas Visscher VU University Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast UiT The Arctic University of Norway * * Trond Saue Universite Toulouse III France * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer UiT The Arctic University of Norway * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Trygve Helgaker University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak Bhabha Atomic Research Centre India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC17 (2017), * * written by L. Visscher, H. J. Aa. Jensen, R. Bast, and T. Saue, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, * * Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, * * C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, * * G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, * * R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, * * A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, * * T. Winther, and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* Version information ------------------- Branch | norecalc Commit hash | 120e19c Commit author | Trond Saue Commit date | Fri Mar 10 19:54:13 2017 +0100 Configuration and build information ----------------------------------- Who compiled | saue Compiled on server | dirac Operating system | Linux-4.4.0-34-generic CMake version | 3.5.1 CMake generator | Unix Makefiles CMake build type | release Configuration time | 2017-03-16 20:41:26.640514 Python version | 2.7.1 Fortran compiler | /usr/bin/gfortran Fortran compiler version | 5.4.0 Fortran compiler flags | -g -fcray-pointer -fbacktrace -fno-range-check -DVAR_GFORTRAN -DVAR_MFDS C compiler | /usr/bin/gcc C compiler version | 5.4.0 C compiler flags | -g C++ compiler | /usr/bin/g++ C++ compiler version | 5.4.0 C++ compiler flags | -g -Wall -Wno-unknown-pragmas -Wno-sign-compare -Woverloaded-virtual -Wwrite-strings -Wno-unused Static linking | False 64-bit integers | False MPI parallelization | False MPI launcher | unknown Math libraries | /usr/lib/atlas-base/libatlas.so;/usr/lib/atlas-base/atlas/liblapack.so;/usr/lib/atlas-base/libf77blas.so;/usr/lib/atlas-base/libcblas.so;/usr/lib/atlas-base/libatlas.so Builtin BLAS library | OFF Builtin LAPACK library | OFF Explicit libraries | unknown Compile definitions | HAVE_ATLAS_BLAS;HAVE_ATLAS_LAPACK;MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;MOD_QCORR;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ESR;MOD_KRCC;MOD_SRDFT Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Fri Mar 17 07:58:33 2017 Host name : dirac Contents of the input file -------------------------- ! ! Calculation of molecular oxygen using unrestricted single reference CC ! Calculation done in D2h symmetry ! **DIRAC .TITLE Moelcular oxygen. Ground state. .WAVE F **HAMILTONIAN .LVCORR **WAVE FUNCTIONS .SCF .RELCCSD *SCF .CLOSED SHELL 6 8 .OPEN SHELL 1 2/4,0 **RELCCSD .NELEC 4 2 3 3 *CCSORT .USEOE ! Using HF orbital energies, instead of diagonal values of unrestricted Fock matrix *END OF Contents of the molecule file ----------------------------- INTGRL Molecular oxygen at eq. distance taken from NIST. Automatic symmetry detection: will identify the Dinfh group. C 1 A 8. 2 O .0000000000 0.0000000000 0.60376 O .0000000000 0.0000000000 -0.60376 LARGE BASIS cc-pVDZ FINISH ************************************************************************* ******************** Moelcular oxygen. Ground state. ******************** ************************************************************************* Jobs in this run: * Wave function ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in four-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals - SL-integrals - SS-integrals - GT-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- Molecular oxygen at eq. distance taken from NIST. Automatic symmetry detection: will identify the Dinfh group. Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 8.000 : 5.8631436655D+08 SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 The molecule has been centered at center of mass Symmetry point group found: D(oo,h) Centered and Rotated in original atom order ------------------------------------------- 8 0.00000000 0.00000000 -1.14094105 1 8 0.00000000 0.00000000 1.14094105 1 The following elements were found: X Y Z Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Full group is: D(oo,h) Represented as: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 28.047023097920 Isotopic Masses --------------- O 1 15.994915 O 2 15.994915 Total mass: 31.989830 amu Natural abundance: 99.521 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000 Atoms and basis sets -------------------- Number of atom types : 1 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- O 2 8 27 15 L - [9s4p1d|3s2p1d] 68 68 S - [4s10p4d1f|4s10p4d1f] ---------------------------------------------------------------------- 54 30 L - large components 136 136 S - small components ---------------------------------------------------------------------- total: 2 16 190 166 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 Elements References -------- ---------- H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published) Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993). Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). Ga - Kr: A.K. Wilson, D.E. Woon, K.A. Peterson, T.H. Dunning, Jr., J. Chem. Phys., 110, 7667 (1999) Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 6 1 O 1 x 0.0000000000 2 y 0.0000000000 3 z 1.1409410506 4 O 2 x 0.0000000000 5 y 0.0000000000 6 z -1.1409410506 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 2 O 0.0000000000 0.0000000000 0.6037600000 O 0.0000000000 0.0000000000 -0.6037600000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 1 1 1 0 1 1 1 0 Symmetry Ag ( 1) 1 O z [ 3 - 6 ]/2 Symmetry B3u( 2) 2 O x [ 1 + 4 ]/2 Symmetry B2u( 3) 3 O y [ 2 + 5 ]/2 Symmetry B1u( 5) 4 O z [ 3 + 6 ]/2 Symmetry B2g( 6) 5 O x [ 1 - 4 ]/2 Symmetry B3g( 7) 6 O y [ 2 - 5 ]/2 Interatomic separations (in Angstroms): --------------------------------------- O 1 O 2 O 1 0.000000 O 2 1.207520 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: O 2 O 1 1.207520 Nuclear repulsion energy : 28.047023097920 Hartree GETLAB: AO-labels ----------------- * Large components: 20 1 L O 1 s 2 L O 2 s 3 L O 1 px 4 L O 1 py 5 L O 1 pz 6 L O 2 px 7 L O 2 py 8 L O 2 pz 9 L O 1 dxx 10 L O 1 dxy 11 L O 1 dxz 12 L O 1 dyy 13 L O 1 dyz 14 L O 1 dzz 15 L O 2 dxx 16 L O 2 dxy 17 L O 2 dxz 18 L O 2 dyy 19 L O 2 dyz 20 L O 2 dzz * Small components: 40 21 S O 1 s 22 S O 2 s 23 S O 1 px 24 S O 1 py 25 S O 1 pz 26 S O 2 px 27 S O 2 py 28 S O 2 pz 29 S O 1 dxx 30 S O 1 dxy 31 S O 1 dxz 32 S O 1 dyy 33 S O 1 dyz 34 S O 1 dzz 35 S O 2 dxx 36 S O 2 dxy 37 S O 2 dxz 38 S O 2 dyy 39 S O 2 dyz 40 S O 2 dzz 41 S O 1 fxxx 42 S O 1 fxxy 43 S O 1 fxxz 44 S O 1 fxyy 45 S O 1 fxyz 46 S O 1 fxzz 47 S O 1 fyyy 48 S O 1 fyyz 49 S O 1 fyzz 50 S O 1 fzzz 51 S O 2 fxxx 52 S O 2 fxxy 53 S O 2 fxxz 54 S O 2 fxyy 55 S O 2 fxyz 56 S O 2 fxzz 57 S O 2 fyyy 58 S O 2 fyyz 59 S O 2 fyzz 60 S O 2 fzzz GETLAB: SO-labels ----------------- * Large components: 20 1 L Ag O s 2 L Ag O pz 3 L Ag O dxx 4 L Ag O dyy 5 L Ag O dzz 6 L B3uO px 7 L B3uO dxz 8 L B2uO py 9 L B2uO dyz 10 L B1gO dxy 11 L B1uO s 12 L B1uO pz 13 L B1uO dxx 14 L B1uO dyy 15 L B1uO dzz 16 L B2gO px 17 L B2gO dxz 18 L B3gO py 19 L B3gO dyz 20 L Au O dxy * Small components: 40 21 S Ag O s 22 S Ag O pz 23 S Ag O dxx 24 S Ag O dyy 25 S Ag O dzz 26 S Ag O fxxz 27 S Ag O fyyz 28 S Ag O fzzz 29 S B3uO px 30 S B3uO dxz 31 S B3uO fxxx 32 S B3uO fxyy 33 S B3uO fxzz 34 S B2uO py 35 S B2uO dyz 36 S B2uO fxxy 37 S B2uO fyyy 38 S B2uO fyzz 39 S B1gO dxy 40 S B1gO fxyz 41 S B1uO s 42 S B1uO pz 43 S B1uO dxx 44 S B1uO dyy 45 S B1uO dzz 46 S B1uO fxxz 47 S B1uO fyyz 48 S B1uO fzzz 49 S B2gO px 50 S B2gO dxz 51 S B2gO fxxx 52 S B2gO fxyy 53 S B2gO fxzz 54 S B3gO py 55 S B3gO dyz 56 S B3gO fxxy 57 S B3gO fyyy 58 S B3gO fyzz 59 S Au O dxy 60 S Au O fxyz Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 37 20 20 6 37 20 20 6 Number of large orbitals in each symmetry: 8 3 3 1 8 3 3 1 Number of small orbitals in each symmetry: 29 17 17 5 29 17 17 5 * Large component functions Symmetry Ag ( 1) 3 functions: O s 1+2 2 functions: O pz 1-2 1 functions: O dxx 1+2 1 functions: O dyy 1+2 1 functions: O dzz 1+2 Symmetry B3u( 2) 2 functions: O px 1+2 1 functions: O dxz 1-2 Symmetry B2u( 3) 2 functions: O py 1+2 1 functions: O dyz 1-2 Symmetry B1g( 4) 1 functions: O dxy 1+2 Symmetry B1u( 5) 3 functions: O s 1-2 2 functions: O pz 1+2 1 functions: O dxx 1-2 1 functions: O dyy 1-2 1 functions: O dzz 1-2 Symmetry B2g( 6) 2 functions: O px 1-2 1 functions: O dxz 1+2 Symmetry B3g( 7) 2 functions: O py 1-2 1 functions: O dyz 1+2 Symmetry Au ( 8) 1 functions: O dxy 1-2 * Small component functions Symmetry Ag ( 1) 4 functions: O s 1+2 10 functions: O pz 1-2 4 functions: O dxx 1+2 4 functions: O dyy 1+2 4 functions: O dzz 1+2 1 functions: O fxxz1-2 1 functions: O fyyz1-2 1 functions: O fzzz1-2 Symmetry B3u( 2) 10 functions: O px 1+2 4 functions: O dxz 1-2 1 functions: O fxxx1+2 1 functions: O fxyy1+2 1 functions: O fxzz1+2 Symmetry B2u( 3) 10 functions: O py 1+2 4 functions: O dyz 1-2 1 functions: O fxxy1+2 1 functions: O fyyy1+2 1 functions: O fyzz1+2 Symmetry B1g( 4) 4 functions: O dxy 1+2 1 functions: O fxyz1-2 Symmetry B1u( 5) 4 functions: O s 1-2 10 functions: O pz 1+2 4 functions: O dxx 1-2 4 functions: O dyy 1-2 4 functions: O dzz 1-2 1 functions: O fxxz1+2 1 functions: O fyyz1+2 1 functions: O fzzz1+2 Symmetry B2g( 6) 10 functions: O px 1-2 4 functions: O dxz 1+2 1 functions: O fxxx1-2 1 functions: O fxyy1-2 1 functions: O fxzz1-2 Symmetry B3g( 7) 10 functions: O py 1-2 4 functions: O dyz 1+2 1 functions: O fxxy1-2 1 functions: O fyyy1-2 1 functions: O fyzz1-2 Symmetry Au ( 8) 4 functions: O dxy 1-2 1 functions: O fxyz1+2 *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Dirac-Coulomb Hamiltonian * SS integrals neglected: Interatomic Coulombic SS-contributions modelled by classical repulsion of small component atomic charges using tabulated charges. * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 1 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - contracted large component basis set - uncontracted small component basis set Information about the restricted kinetic balance scheme: * Default RKB projection: 1: Pre-projection in scalar basis 2: Removal of unphysical solutions (via diagonalization of free particle Hamiltonian) ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF RELCCSD Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Run RELCCSD code =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Open shell SCF calculation using Average-of-Configuration * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 14 3 4 1.0000 1.0000 0.0000 Open shell no. 1 2.00 2 0 0.5000 0.6667 0.6667 ---------------------------------------------------------------------------- Total 16.00 5 4 f is the fraction occupation; a and alpha open shell coupling coefficients. * Sum of atomic potentials used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 to improve convergence (default value). The final open-shell orbital energies are recalculated with 1.0 scaling, such that all occupied orbital energies correspond to Koopmans' theorem ionization energies. ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. SL-integrals from iteration 1 ---> this is default setting from Hamiltonian input ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. =========================================================================== **RELCC: Set-up for Coupled Cluster calculations =========================================================================== * General print level : 0 No input for integrals transformation, using defaults =========================================================================== TRPINP: Property integral transformation =========================================================================== * Print level: 0 *The following operators will be transformed: 1 XDIPLEN B3u T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : XDIPLEN +00+ 1.0000000000000 (real) ........................................................................... 2 YDIPLEN B2u T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : YDIPLEN +00+ 1.0000000000000 (real) ........................................................................... 3 ZDIPLEN B1u T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : ZDIPLEN +00+ 1.0000000000000 (real) ........................................................................... --------------------------------------------------------------------------- =========================================================================== TRAINP: Set-up for index transformation =========================================================================== * General print level : 0 * Electronic orbitals only. * Total active space. Fermion ircop:E1g No explicit orbitals specified Fermion ircop:E1u No explicit orbitals specified * Set-up for 2-index transformation * SS Integrals not included in core Fock-matrix * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 * Set-up for 4-index transformation * Following scheme : 6 - write half-transformed integrals (ij|rs) to disk - sorting of intermediate 1HT integrals is disabled * Screening threshold :1.00E-14 * MO integral threshold :1.00E-14 * SS Integrals not transformed. * Gaunt Integrals not transformed. * 4-index transformed integrals written to file. * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.91E-01 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.21E+01 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.30E+00 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.30E+00 S B3u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.42E-01 S B2u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.42E-01 S B1u * Deleted: 5(Proj: 5, Lindep: 0) Smin: 0.81E-02 S Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.50E+00 L B3u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 L B2u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 L B1u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.23E-01 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.19E+01 S Ag * Deleted: 5(Proj: 5, Lindep: 0) Smin: 0.27E-01 S B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.65E+00 S B2g * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.26E-01 S B3g * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.26E-01 Output from MODHAM ------------------ * Applied strict kinetic balance ! * Applied SL-regrouping on AO2MO tranf.matrix in SLSORT. Output from LINSYM ------------------ Parity MJ Functions(total) Functions(LC) Functions(SC) 1 1/2 18 9 9 1 -3/2 8 4 4 1 5/2 2 1 1 -1 1/2 18 9 9 -1 -3/2 8 4 4 -1 5/2 2 1 1 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 14 14 28 No. of positronic orbitals (NPSH): 14 14 28 Total no. of orbitals (NORB): 28 28 56 **************************************************************************** ************************* Hartree-Fock calculation ************************* **************************************************************************** *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by a sum of atomic screening potentials. ########## START ITERATION NO. 1 ########## Fri Mar 17 07:58:33 2017 E_HOMO...E_LUMO, symmetry 1: 17 -0.67822 18 -0.41895 19 -0.41792 20 0.67740 E_HOMO...E_LUMO, symmetry 2: 46 -0.69016 47 -0.06764 => Calculating sum of orbital energies It. 1 -57.75208444492 0.00D+00 0.00D+00 0.00D+00 0.08400000s Scr. nuclei Fri Mar 17 ########## START ITERATION NO. 2 ########## Fri Mar 17 07:58:33 2017 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.02800000s SOfock:SL 1.00D-12 0.00% 0.81% 0.00% 0.00% 0.14000002s E_HOMO...E_LUMO, symmetry 1: 17 -0.62269 18 -0.25450 19 -0.25360 20 1.20701 E_HOMO...E_LUMO, symmetry 2: 46 -0.60326 47 0.54574 >>> Total wall time: 0.23500000s, and total CPU time : 0.23600000s ########## END ITERATION NO. 2 ########## Fri Mar 17 07:58:34 2017 It. 2 -149.6128134116 9.19D+01 3.31D+00 6.47D-01 0.23600000s LL SL Fri Mar 17 ########## START ITERATION NO. 3 ########## Fri Mar 17 07:58:34 2017 3 *** Differential density matrix. DCOVLP = 0.8728 3 *** Differential density matrix. DVOVLP( 1) = 0.8394 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01600000s SOfock:SL 1.00D-12 0.00% 1.28% 0.00% 0.00% 0.11600003s E_HOMO...E_LUMO, symmetry 1: 17 -0.73632 18 -0.36174 19 -0.36075 20 1.14776 E_HOMO...E_LUMO, symmetry 2: 46 -0.70971 47 0.45212 >>> Total wall time: 0.14400000s, and total CPU time : 0.14400000s ########## END ITERATION NO. 3 ########## Fri Mar 17 07:58:34 2017 It. 3 -149.6792862929 6.65D-02 -3.19D-01 1.99D-01 DIIS 2 0.14400000s LL SL Fri Mar 17 ########## START ITERATION NO. 4 ########## Fri Mar 17 07:58:34 2017 4 *** Differential density matrix. DCOVLP = 1.0349 4 *** Differential density matrix. DVOVLP( 1) = 1.0450 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.02000004s SOfock:SL 1.00D-12 0.00% 1.80% 0.00% 0.00% 0.11600000s E_HOMO...E_LUMO, symmetry 1: 17 -0.73001 18 -0.35354 19 -0.35255 20 1.15308 E_HOMO...E_LUMO, symmetry 2: 46 -0.70222 47 0.46168 >>> Total wall time: 0.14300000s, and total CPU time : 0.14000000s ########## END ITERATION NO. 4 ########## Fri Mar 17 07:58:34 2017 It. 4 -149.6865649591 7.28D-03 9.04D-02 1.85D-02 DIIS 3 0.14000000s LL SL Fri Mar 17 ########## START ITERATION NO. 5 ########## Fri Mar 17 07:58:34 2017 5 *** Differential density matrix. DCOVLP = 0.9975 5 *** Differential density matrix. DVOVLP( 1) = 0.9976 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01999998s SOfock:SL 1.00D-12 0.00% 3.50% 0.00% 0.00% 0.11600000s E_HOMO...E_LUMO, symmetry 1: 17 -0.73113 18 -0.35381 19 -0.35283 20 1.15269 E_HOMO...E_LUMO, symmetry 2: 46 -0.70256 47 0.46169 >>> Total wall time: 0.14000000s, and total CPU time : 0.14000000s ########## END ITERATION NO. 5 ########## Fri Mar 17 07:58:34 2017 It. 5 -149.6866577183 9.28D-05 -6.91D-03 3.30D-03 DIIS 4 0.14000000s LL SL Fri Mar 17 ########## START ITERATION NO. 6 ########## Fri Mar 17 07:58:34 2017 6 *** Differential density matrix. DCOVLP = 1.0001 6 *** Differential density matrix. DVOVLP( 1) = 1.0004 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01999998s SOfock:SL 1.00D-12 0.00% 4.35% 0.00% 0.00% 0.12000000s E_HOMO...E_LUMO, symmetry 1: 17 -0.73115 18 -0.35374 19 -0.35276 20 1.15272 E_HOMO...E_LUMO, symmetry 2: 46 -0.70254 47 0.46177 >>> Total wall time: 0.14800000s, and total CPU time : 0.14400000s ########## END ITERATION NO. 6 ########## Fri Mar 17 07:58:34 2017 It. 6 -149.6866613949 3.68D-06 4.76D-04 4.30D-04 DIIS 5 0.14400000s LL SL Fri Mar 17 ########## START ITERATION NO. 7 ########## Fri Mar 17 07:58:34 2017 7 *** Differential density matrix. DCOVLP = 1.0000 7 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01600003s SOfock:SL 1.00D-12 0.00% 6.30% 0.00% 0.42% 0.11600006s E_HOMO...E_LUMO, symmetry 1: 17 -0.73117 18 -0.35375 19 -0.35277 20 1.15271 E_HOMO...E_LUMO, symmetry 2: 46 -0.70255 47 0.46177 >>> Total wall time: 0.14400000s, and total CPU time : 0.14000000s ########## END ITERATION NO. 7 ########## Fri Mar 17 07:58:34 2017 It. 7 -149.6866614512 5.64D-08 -5.08D-05 4.56D-05 DIIS 6 0.14000000s LL SL Fri Mar 17 ########## START ITERATION NO. 8 ########## Fri Mar 17 07:58:34 2017 8 *** Differential density matrix. DCOVLP = 1.0000 8 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01999998s SOfock:SL 1.00D-12 0.00% 10.83% 0.00% 0.56% 0.13600004s E_HOMO...E_LUMO, symmetry 1: 17 -0.73117 18 -0.35375 19 -0.35277 20 1.15271 E_HOMO...E_LUMO, symmetry 2: 46 -0.70255 47 0.46177 >>> Total wall time: 0.16300000s, and total CPU time : 0.16000000s ########## END ITERATION NO. 8 ########## Fri Mar 17 07:58:34 2017 It. 8 -149.6866614518 5.89D-10 4.07D-06 4.79D-06 DIIS 7 0.16000000s LL SL Fri Mar 17 ########## START ITERATION NO. 9 ########## Fri Mar 17 07:58:34 2017 9 *** Differential density matrix. DCOVLP = 1.0000 9 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01599991s SOfock:SL 1.00D-12 0.00% 14.72% 0.00% 0.92% 0.11200011s E_HOMO...E_LUMO, symmetry 1: 17 -0.73117 18 -0.35375 19 -0.35277 20 1.15271 E_HOMO...E_LUMO, symmetry 2: 46 -0.70255 47 0.46177 >>> Total wall time: 0.13700000s, and total CPU time : 0.13600000s ########## END ITERATION NO. 9 ########## Fri Mar 17 07:58:35 2017 It. 9 -149.6866614518 1.46D-11 -8.93D-07 1.61D-06 DIIS 8 0.13600000s LL SL Fri Mar 17 ########## START ITERATION NO. 10 ########## Fri Mar 17 07:58:35 2017 10 *** Differential density matrix. DCOVLP = 1.0000 10 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.01999998s SOfock:SL 1.00D-12 0.00% 17.97% 0.00% 1.38% 0.13199997s E_HOMO...E_LUMO, symmetry 1: 17 -0.73117 18 -0.35375 19 -0.35277 20 1.15271 E_HOMO...E_LUMO, symmetry 2: 46 -0.70255 47 0.46177 >>> Total wall time: 0.16000000s, and total CPU time : 0.16000000s ########## END ITERATION NO. 10 ########## Fri Mar 17 07:58:35 2017 It. 10 -149.6866614518 3.07D-12 -5.27D-07 3.93D-07 DIIS 9 0.16000000s LL SL Fri Mar 17 ########## START ITERATION NO. 11 ########## Fri Mar 17 07:58:35 2017 11 *** Differential density matrix. DCOVLP = 1.0000 11 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.01% 0.00% 0.00% 0.01999998s SOfock:SL 1.00D-12 0.00% 21.94% 0.00% 3.15% 0.12399995s >>> Total wall time: 0.15400000s, and total CPU time : 0.15200000s ########## END ITERATION NO. 11 ########## Fri Mar 17 07:58:35 2017 It. 11 -149.6866614518 -1.59D-12 -1.57D-07 1.96D-08 DIIS 9 0.15200000s LL SL Fri Mar 17 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -57.75208444492 0.00D+00 0.00D+00 0.00D+00 0.08400000s Scr. nuclei Fri Mar 17 It. 2 -149.6128134116 9.19D+01 3.31D+00 6.47D-01 0.23600000s LL SL Fri Mar 17 It. 3 -149.6792862929 6.65D-02 -3.19D-01 1.99D-01 DIIS 2 0.14400000s LL SL Fri Mar 17 It. 4 -149.6865649591 7.28D-03 9.04D-02 1.85D-02 DIIS 3 0.14000000s LL SL Fri Mar 17 It. 5 -149.6866577183 9.28D-05 -6.91D-03 3.30D-03 DIIS 4 0.14000000s LL SL Fri Mar 17 It. 6 -149.6866613949 3.68D-06 4.76D-04 4.30D-04 DIIS 5 0.14400000s LL SL Fri Mar 17 It. 7 -149.6866614512 5.64D-08 -5.08D-05 4.56D-05 DIIS 6 0.14000000s LL SL Fri Mar 17 It. 8 -149.6866614518 5.89D-10 4.07D-06 4.79D-06 DIIS 7 0.16000000s LL SL Fri Mar 17 It. 9 -149.6866614518 1.46D-11 -8.93D-07 1.61D-06 DIIS 8 0.13600000s LL SL Fri Mar 17 It. 10 -149.6866614518 3.07D-12 -5.27D-07 3.93D-07 DIIS 9 0.16000000s LL SL Fri Mar 17 It. 11 -149.6866614518 -1.59D-12 -1.57D-07 1.96D-08 DIIS 9 0.15200000s LL SL Fri Mar 17 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 11 iterations. * Average elapsed time per iteration: No 2-ints : 0.08500000s LL SL : 0.15680000s TOTAL ENERGY ------------ Electronic energy : -177.73368630270363 Other contributions to the total energy Nuclear repulsion energy : 28.04702309791971 SS Coulombic correction : 0.00000175293894 Sum of all contributions to the energy Total energy : -149.68666145184500 Eigenvalues ----------- * Block 1 in E1g: Omega = 1/2 * Closed shell, f = 1.0000 -20.75334306093877 ( 2) -1.65708743093394 ( 2) -0.73117151154164 ( 2) * Open shell #1, f = 0.5000 -0.35374792558563 ( 2) * Virtual eigenvalues, f = 0.0000 1.15270501326829 ( 2) 1.21603130057242 ( 2) 1.32688986719655 ( 2) 3.17794506084184 ( 2) 3.67775140951349 ( 2) * Block 2 in E1g: Omega = 3/2 * Open shell #1, f = 0.5000 -0.35276854505456 ( 2) * Virtual eigenvalues, f = 0.0000 1.21707527196553 ( 2) 2.68233023721084 ( 2) 3.67790464852781 ( 2) * Block 3 in E1g: Omega = 5/2 * Virtual eigenvalues, f = 0.0000 2.68256468378968 ( 2) * Block 1 in E1u: Omega = 1/2 * Closed shell, f = 1.0000 -20.75240519642793 ( 2) -1.10159800776749 ( 2) -0.70335197572729 ( 2) * Virtual eigenvalues, f = 0.0000 0.46177030962893 ( 2) 1.07745828751569 ( 2) 1.10830122374524 ( 2) 1.97196340467907 ( 2) 2.40137945253865 ( 2) 4.19040530200559 ( 2) * Block 2 in E1u: Omega = 3/2 * Closed shell, f = 1.0000 -0.70254740656381 ( 2) * Virtual eigenvalues, f = 0.0000 1.10942084991572 ( 2) 2.40151604185123 ( 2) 3.00775858463970 ( 2) * Block 3 in E1u: Omega = 5/2 * Virtual eigenvalues, f = 0.0000 3.00801066782151 ( 2) * Occupation in fermion symmetry E1g * Inactive orbitals 1/2 1/2 1/2 * Active orbitals 1/2 3/2 * Virtual orbitals 1/2 1/2 3/2 1/2 3/2 5/2 1/2 1/2 3/2 * Occupation in fermion symmetry E1u * Inactive orbitals 1/2 1/2 1/2 3/2 * Virtual orbitals 1/2 1/2 1/2 3/2 1/2 1/2 3/2 3/2 5/2 1/2 * Occupation of subblocks E1g: 1/2 3/2 5/2 closed shells (f=1.0000): 3 0 0 open shell #1 (f=0.5000): 1 1 0 virtual shells (f=0.0000): 5 3 1 tot.num. of pos.erg shells: 9 4 1 E1u: 1/2 3/2 5/2 closed shells (f=1.0000): 3 1 0 open shell #1 (f=0.5000): 0 0 0 virtual shells (f=0.0000): 6 3 1 tot.num. of pos.erg shells: 9 4 1 * HOMO - LUMO gap: E(LUMO) : 0.46177031 au (symmetry E1u) - E(HOMO) : -0.35276855 au (symmetry E1g) ------------------------------------------ gap : 0.81453885 au ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Fri Mar 17 07:58:35 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -149.686661451846589 * Heading :Moelcular oxygen. Ground state. Fri Mar 17 07:58:35 2017 Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. * Orbital ranges for 4-index transformation: * Fermion ircop E1g Index 1 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 2 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 3 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 4 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 * Fermion ircop E1u Index 1 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 2 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 3 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 4 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 * Core orbital ranges for 2-index transformation: * Fermion ircop E1g Index 1 1 orbitals 1 * Fermion ircop E1u Index 1 1 orbitals 1 PAMTRA: CMO read from DFCOEF... ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ********************************************************************** **************** Transformation of property integrals **************** ********************************************************************** Transformation started at : Fri Mar 17 07:58:35 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -149.686661451846589 * Heading :Moelcular oxygen. Ground state. Fri Mar 17 07:58:35 2017 Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. * Fermion ircop E1g Index 1 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 2 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 * Fermion ircop E1u Index 1 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 2 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Fri Mar 17 07:58:35 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -149.686661451846589 * Heading :Moelcular oxygen. Ground state. Fri Mar 17 07:58:35 2017 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.02800000s SOfock:SL 1.00D-12 0.00% 4.93% 0.00% 0.00% 0.16000009s * REAFCK: Fock matrix read from file DFFCK1 * Heading :Moelcular oxygen. Ground state. Fri Mar 17 07:58:33 2017 Core energy (includes nuclear repulsion) : -102.5308836754 - Electronic part : -130.5779085263 - One-electron terms : -141.8148889213 - Two-electron terms : 11.2369803950 MOLFDIR file MRCONEE is written - Integral class 1 : (LL|??) - Beginning task 1 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 2 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 3 of 3 after 0. seconds and 0. CPU-seconds - Integral class 2 : (SS|??) - Beginning task 4 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 5 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 6 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 7 of 8 after 0. seconds and 0. CPU-seconds - Beginning task 8 of 8 after 0. seconds and 0. CPU-seconds Node 0 finished first half transformation 2541133 HT integrals written ( 76.86%, 0.04 GB) >>> Time used in 2HT_all is 1.75 seconds - Binary file MDCINT was written. * Screening statistics: (LL|LL)ints : 0.00% (SS|LL)ints : 0.00% Total : 0.00% ------ Timing report (in CPU seconds) of module integral transformation Time in First halftransformation 1.260 seconds Time in Second halftransformation 1.752 seconds Total wall time used in PAMTRA : 00:00:03 Total CPU time used in PAMTRA (master only) : 00:00:03 Transformation ended at : Fri Mar 17 07:58:38 2017 ---< Process 1 of 1----< Relativistic Coupled Cluster program RELCCSD Written by : Lucas Visscher NASA Ames Research Center (1994) Rijks Universiteit Groningen (1995) Odense Universitet (1996-1997) VU University Amsterdam (1998-present) This module is documented in - Initial implementation : L. Visscher, T.J. Lee and K.G. Dyall, J. Chem. Phys. 105 (1996) 8769. - Fock Space (FSCC): L. Visscher, E. Eliav and U. Kaldor, J. Chem. Phys. 115 (2002) 9720. - Intermediate Hamiltonian E. Eliav, M. J. Vilkas, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 122 (2005) 224113. - Parallelization : M. Pernpointner and L. Visscher, J. Comp. Chem. 24 (2003) 754. Today is : 17 Mar 17 The time is : 07:58:38 Initializing word-addressable I/O : the FORTRAN-interface is used with 16 KB records 1g -1g 3g -3g 5g -5g 7g -7g 9g -9g 11g-11g 13g-13g 15g-15g 1u -1u 3u -3u 5u -5u 7u -7u 9u -9u 11u-11u 13u-13u 15u-15u 0g 2g -2g 4g -4g 6g -6g 8g -8g 10g-10g 12g-12g 14g-14g 16g 0u 2u -2u 4u -4u 6u -6u 8u -8u 10u-10u 12u-12u 14u-14u 16u =========================================================================== **RELCC: Set-up for Coupled Cluster calculations =========================================================================== * General print level : 0 Total memory available : 16384 MB INFO: No old restart file(s) found! Configuration in highest pointgroup Eg Eg Eu Eu Spinor class : occupied 4 2 3 3 Spinor class : virtual 9 11 10 10 Configuration in abelian subgroup 1g -1g 3g -3g 5g -5g 1u -1u Spinor class : occupied 3 2 0 1 0 0 2 2 Spinor class : virtual 5 6 4 3 1 1 6 6 Configuration in abelian subgroup 3u -3u 5u -5u Spinor class : occupied 1 1 0 0 Spinor class : virtual 3 3 1 1 Number of electrons : 12 Total charge of the system : 0 Number of virtual spinors : 40 Complex arithmetic mode : F Do integral sorting : T Do energy calculation : T Do gradient calculation : F Do response calculation : F Debug information : F Timing information : F Print level : 0 Memory limit (MWord) : 2048 Interface used : DIRAC6 Memory for reading and sorting integrals : 287589 8-byte words Core used for calculating amplitudes : 96398 8-byte words Core used for in core evaluation of triples : 83960 8-byte words Memory used for active modules : 287589 8-byte words Expanding and sorting integrals to unique types : Type OOOO : 518 integrals Type VOOO : 3250 integrals Type VVOO : 4844 integrals Type VOVO : 21288 integrals Type VOVV : 32206 integrals Type VVVV : 49316 integrals Start sorting of integral classes at 17 Mar 17 07:58:38 Sorting of first 4 classes done at 17 Mar 17 07:58:38 Need 1 passes to sort VOVV integrals Pass 1 ended at 17 Mar 17 07:58:38 VOVV sorting done at 17 Mar 17 07:58:38 Need 1 passes to sort VVVV integrals Pass 1 ended at 17 Mar 17 07:58:38 VVVV sorting done at 17 Mar 17 07:58:38 Reading Coulomb integrals : File date : 17 Mar 17 File time : 07:58:38 # of integrals 303440 Finished sorting of integrals Checking the orbital energies, the program computes the diagonal elements of the reconstructed Fock matrix. Differences with the reference orbital energies are given if above a treshold or if iprnt > 1 Spinor Abelian Rep. Energy Recalc. Energy O 1 1 1g -1.6570874320 -1.6026227675 O 2 2 1g -0.7311715129 -0.6968486168 O 3 3 1g -0.3537479256 -0.5294028318 O 1 4 -1g -1.6570874320 -1.7115520943 O 2 5 -1g -0.7311715129 -0.7654944063 O 1 6 -3g -0.3527685451 -0.5282602301 O 1 7 1u -1.1015980077 -1.0110489060 O 2 8 1u -0.7033519739 -0.8203415342 O 1 9 -1u -1.1015980077 -1.1921471095 O 2 10 -1u -0.7033519739 -0.5863624172 O 1 11 3u -0.7025474048 -0.5856813683 O 1 12 -3u -0.7025474048 -0.8194134449 V 1 13 1g 1.1527050098 1.1629639436 V 2 14 1g 1.2160312989 1.1696960570 V 3 15 1g 1.3268898652 1.3450872194 V 4 16 1g 3.1779450597 3.2097236995 V 5 17 1g 3.6777514077 3.6420763026 V 1 18 -1g -0.3537479256 0.1101198522 V 2 19 -1g 1.1527050098 1.1424460829 V 3 20 -1g 1.2160312989 1.2623665441 V 4 21 -1g 1.3268898652 1.3086925150 V 5 22 -1g 3.1779450597 3.1461664222 V 6 23 -1g 3.6777514077 3.7134265164 V 1 24 3g -0.3527685451 0.1108707231 V 2 25 3g 1.2170752702 1.2634629803 V 3 26 3g 2.6823302355 2.6290152493 V 4 27 3g 3.6779046467 3.7135703632 V 1 28 -3g 1.2170752702 1.1706875636 V 2 29 -3g 2.6823302355 2.7356452251 V 3 30 -3g 3.6779046467 3.6422389338 V 1 31 5g 2.6825646820 2.7358753957 V 1 32 -5g 2.6825646820 2.6292539719 V 1 33 1u 0.4617703071 0.4940929594 V 2 34 1u 1.0774582850 1.0914940342 V 3 35 1u 1.1083012219 1.0600387017 V 4 36 1u 1.9719634030 1.9962035508 V 5 37 1u 2.4013794519 2.3642652886 V 6 38 1u 4.1904053005 4.2116608189 V 1 39 -1u 0.4617703071 0.4294476599 V 2 40 -1u 1.0774582850 1.0634225408 V 3 41 -1u 1.1083012219 1.1565637457 V 4 42 -1u 1.9719634030 1.9477232586 V 5 43 -1u 2.4013794519 2.4384936165 V 6 44 -1u 4.1904053005 4.1691497852 V 1 45 3u 1.1094208481 1.1577663866 V 2 46 3u 2.4015160412 2.4386360076 V 3 47 3u 3.0077585825 2.9405750319 V 1 48 -3u 1.1094208481 1.0610753132 V 2 49 -3u 2.4015160412 2.3643960761 V 3 50 -3u 3.0077585825 3.0749421373 V 1 51 5u 3.0080106657 3.0751898979 V 1 52 -5u 3.0080106657 2.9408314377 The original energies (left column) are used in perturbation expressions. Use the perturbative values (MP2, CCSD[T]/(T)/-T) with care, especially in open shell calculations because the orbitals need not always be semi-canonical as was assumed in the derivation of the expressions. The missing terms may be important ! Nuclear repulsion + core energy : -102.530883675428086 Zero order electronic energy : -10.849175726965399 First order electronic energy : -36.338085231420159 Electronic energy : -47.187260958385558 SCF energy : -149.718144633813637 Energy calculations MP2 module active : T CCSD module active : T CCSD(T) module active : T MP2 results SCF energy : -149.718144633813637 MP2 correlation energy : -0.424102147268336 Total MP2 energy : -150.142246781081980 T1 diagnostic : 0.022122333531644 CCSD options : Maximum number of iterations : 30 Maximum size of DIIS space : 8 Convergence criterium : 0.1E-11 CCSD results SCF energy : -149.718144633813637 CCSD correlation energy : -0.366958682629369 Total CCSD energy : -150.085103316442996 T1 diagnostic : 0.021430696846036 Convergence : 0.000000000000442 Number or iterations used : 23 Perturbative treatment of triple excitations SCF energy : -149.718144633813637 CCSD correlation energy : -0.366958682629369 4th order triples correction : -0.011020714567940 5th order triples (T) correction : -0.000360137864405 5th order triples -T correction : -0.000105961974867 Total CCSD+T energy : -150.096124031010930 Total CCSD(T) energy : -150.096484168875321 Total CCSD-T energy : -150.096229992985798 -------------------------------------------------------------------------------- Today is : 17 Mar 17 The time is : 07:58:39 Status of the calculations Integral sort # 1 : Completed, restartable Integral sort # 2 : Completed, restartable Fock matrix build : Completed, restartable MP2 energy calculation : Completed, restartable CCSD energy calculation : Completed, restartable CCSD(T) energy calculation : Completed, restartable CCSD(T) energy calculation : Completed, restartable Overview of calculated energies @ SCF energy : -149.718144633813637 @ MP2 correlation energy : -0.424102147268336 @ CCSD correlation energy : -0.366958682629369 @ 4th order triples correction : -0.011020714567940 @ 5th order triples (T) correction : -0.000360137864405 @ 5th order triples -T correction : -0.000105961974867 @ Total MP2 energy : -150.142246781081980 @ Total CCSD energy : -150.085103316442996 @ Total CCSD+T energy : -150.096124031010930 @ Total CCSD(T) energy : -150.096484168875321 @ Total CCSD-T energy : -150.096229992985798 -------------------------------------------------------------------------------- ------ Timing report (in CPU seconds) of module RELCCSD Time in Sorting of integrals 0.196 seconds Time in CCSD equations 0.124 seconds Time in - T1 equations 0.016 seconds Time in --- T1EQNS VOOO*TAU 0.008 seconds Time in - T2 equations 0.100 seconds Time in -- GVINTM 0.008 seconds Time in -- AINTM 0.008 seconds Time in -- HINTM 0.032 seconds Time in --- HINTM: VOVV*T 0.008 seconds Time in --- HINTM: VVOO contribution 0.004 seconds Time in -- T2 EQNS 0.036 seconds Time in --- T2EQNS: VOVV*T1 0.004 seconds Time in --- T2EQNS: HINTM*T2 0.012 seconds Time in -- BINTM 0.016 seconds Time in - DIIS extrapolation 0.008 seconds Time in CCSD(T) evaluation 0.020 seconds Time in -- T3CORR: VOVV contraction 0.012 seconds Time in -- T3CORR: energy calculation 0.008 seconds Timing of main modules : Wallclock (s) CPU on master (s) Before CC driver : 518.80 5.07 Initialization : 0.10 0.10 Integral sorting : 0.20 0.20 Energy calculation : 0.21 0.21 First order properties : 0.00 0.00 Second order properties : 0.00 0.00 Fock space energies : 0.00 0.00 Untimed parts : 0.00 0.00 Total time in CC driver : 1. 0.50 Statistics for the word-addressable I/O Number of write calls 3577. Number of read calls 3599. Megabytes written 3.471 Megabytes read 70.155 Seconds spent in reads 0.018 Seconds spent in writes 0.018 average I/O speed for write (Mb/s) 192.840 average I/O speed for read (Mb/s) 3897.506 CPU time (seconds) used in RELCCSD: 0.5040 CPU time (seconds) used before RELCCSD: 5.0720 CPU time (seconds) used in total sofar: 5.5760 --- Normal end of RELCCSD Run --- ################################################################################ ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Fri Mar 17 07:58:39 2017 Host name : dirac >>>> Node 0, utime: 5, stime: 0, minflt: 3647, majflt: 0, nvcsw: 10, nivcsw: 187, maxrss: 528772 >>>> Total WALL time used in DIRAC: 6s Dynamical Memory Usage Summary for Master Mean allocation size (Mb) : 20.69 Largest 10 allocations 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMTRA 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PSISCF 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMSET - 2 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in GMOTRA 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for WORK in PAMSET - 1 488.28 Mb at subroutine __allocator_track_if_MOD_allocator_registe for test allocation of work array in DIRAC mai 1.16 Mb at subroutine __allocator_track_if_MOD_allocator_registe for ibuf 1.16 Mb at subroutine __allocator_track_if_MOD_allocator_registe for ibuf 0.76 Mb at subroutine __allocator_track_if_MOD_allocator_registe for PAMINP WORK array 0.39 Mb at subroutine __allocator_track_if_MOD_allocator_registe for vta Peak memory usage (Mb) : 488.00 reached at subroutine : __allocator_track_if_MOD_allocator_registe for variable : buf in butobs MEMGET high-water mark: 0.00 MB *****************************************************