DIRAC pam run in /home/ilias/Dokumenty/Work/QCH/software/dirac_git/working_trunk/test/fscc_highspin DIRAC serial starts by allocating 64000000 words (488 MB) of memory out of the allowed maximum of 2147483648 words (16384 MB) Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast KTH/PDC Stockholm Sweden * * Trond Saue Universite Toulouse III France * * Lucas Visscher VU University Amsterdam Netherlands * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer UiT The Artic University of Norway * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Trygve Helgaker University of Oslo Norway * * Jon K. Laerdahl University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC14 (2014), * * written by T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. K. Laerdahl, Y. S. Lee, * * J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, * * O. Kullie, C. V. Larsen, H. S. Nataraj, P. Norman, G. Olejniczak, * * J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, * * K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, * * J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, * * and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* Binary information ------------------ Who compiled | ilias Host | miro_ilias_desktop System name | Linux System | Linux-3.13.0-36-generic CMake version | 2.8.12.2 CMake generator | Unix Makefiles Python version | 2.7.6 Processor | x86_64 64-bit integers | ON MPI | OFF Fortran compiler | /opt/intel/composer_xe_2011_sp1.9.293/bin/intel64/ | ifort Fortran compiler version | Intel 12.1 Fortran flags | -w -assume byterecl -DVAR_IFORT -g -traceback -i8 | -O0 C compiler | /usr/bin/gcc C compiler version | GNU 4.8.2 C flags | -g -O0 C++ compiler | /usr/bin/g++ C++ compiler version | GNU 4.8.2 C++ flags | -g -Wall -Wno-unknown-pragmas -Wno-sign-compare -W | overloaded-virtual -Wwrite-strings -Wno-unused -O0 | -DDEBUG Definitions | SYS_LINUX;HAVE_IEEE_ISNAN;HAVE_MKL_BLAS;HAVE_MKL_L | APACK;HAS_PCMSOLVER;MOD_XML;MOD_OPENRSP;MOD_OOF;MO | D_ESR;MOD_KRCC;MOD_LAO_REARRANGED;MOD_CAP;MOD_SRDF | T;MOD_AOOSOC;MOD_MCSCF_spinfree;MOD_UNRELEASED;MOD | _INTEREST;MOD_QCORR;MOD_ERI;MOD_DNF;PRG_DIRAC;INST | ALL_WRKMEM=64000000;INT_STAR8 BLAS | -Wl,--start-group;/opt/intel/mkl/lib/intel64/libmk | l_intel_ilp64.so;/opt/intel/mkl/lib/intel64/libmkl | _intel_thread.so;/opt/intel/mkl/lib/intel64/libmkl | _core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/ | usr/lib/x86_64-linux-gnu/libm.so;-openmp;-Wl,--end | -group LAPACK | -Wl,--start-group;/opt/intel/mkl/lib/intel64/libmk | l_lapack95_ilp64.a;/opt/intel/mkl/lib/intel64/libm | kl_intel_ilp64.so;-openmp;-Wl,--end-group Libraries | pcm;getkw;/usr/lib/x86_64-linux-gnu/libz.so;xcfun; | -Wl,--start-group;/opt/intel/mkl/lib/intel64/libmk | l_intel_ilp64.so;/opt/intel/mkl/lib/intel64/libmkl | _intel_thread.so;/opt/intel/mkl/lib/intel64/libmkl | _core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/ | usr/lib/x86_64-linux-gnu/libm.so;-openmp;-Wl,--end | -group;-Wl,--start-group;/opt/intel/mkl/lib/intel6 | 4/libmkl_lapack95_ilp64.a;/opt/intel/mkl/lib/intel | 64/libmkl_intel_ilp64.so;-openmp;-Wl,--end-group Explicit libs | none Static linking | OFF Git branch | master Last Git revision | 2f9d597 Last commit author | Andre Gomes Last commit date | Fri Jun 19 18:23:31 2015 +0200 Configuration time | 2015-06-19 17:17:31.268414 UTC Execution time and host ----------------------- Date and time (Linux) : Sat Jun 20 06:48:37 2015 Host name : miro_ilias_desktop Contents of the input file -------------------------- ! ! Calculation of molecular oxygen using the (0,2) sector of Fock space ! **DIRAC .TITLE Molecular oxygen. Ground and excited states (X, a, b). .WAVE F .ANALYZE **HAMILTONIAN .LVCORR **WAVE FUNCTIONS .SCF .RELCCSD *SCF ! O2_2- closed shell reference .CLOSED SHELL 10 8 #.EVCCNV #1.E-10 1.E-9 **ANALYZE .MULPOP *MULPOP .VECPOP all all **RELCCSD .NELEC 4 4 3 3 .FOCKSP *CCFSPC .DOIE2 .NACTH 2 2 0 0 .MAXIT 100 *END OF Contents of the molecule file ----------------------------- INTGRL Molecular oxygen at eq. distance taken from NIST. Automatic symmetry detection: will identify the Dinfh group. C 1 A 8. 2 O .0000000000 0.0000000000 0.60376 O .0000000000 0.0000000000 -0.60376 LARGE BASIS cc-pVDZ FINISH ************************************************************************** *********** Molecular oxygen. Ground and excited states (X, a, *********** ************************************************************************** Jobs in this run: * Wave function * Analysis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in four-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals - SL-integrals - SS-integrals - GT-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- Molecular oxygen at eq. distance taken from NIST. Automatic symmetry detection: will identify the Dinfh group. Coordinates are entered in Angstroms and converted to atomic units. - Conversion factor : 1 bohr = 0.52917721 A Nuclear Gaussian exponent for atom of charge 8.000 : 5.8631436655D+08 SYMADD: Requested addition of symmetry -------------------------------------- Symmetry threshold: 0.50E-05 Original Coordinates -------------------- 8 0.00000000 0.00000000 1.14094105 1 8 0.00000000 0.00000000 -1.14094105 1 Symmetry class found: D(oo,h) Centered and Rotated -------------------- 8 0.00000000 0.00000000 -1.14094105 1 8 0.00000000 0.00000000 1.14094105 1 The following elements were found: X Y Z Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Full group is: D(oo,h) Represented as: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 28.047023097920 Atoms and basis sets -------------------- Number of atom types: 1 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- O 2 8 27 15 L - [9s4p1d|3s2p1d] 68 68 S - [4s10p4d1f|4s10p4d1f] ---------------------------------------------------------------------- 54 30 L - large components 136 136 S - small components ---------------------------------------------------------------------- total: 2 16 190 166 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 Elements References -------- ---------- H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published) Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993). Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). Ga - Kr: A.K. Wilson, D.E. Woon, K.A. Peterson, T.H. Dunning, Jr., J. Chem. Phys., 110, 7667 (1999) Cartesian Coordinates --------------------- Total number of coordinates: 6 1 O 1 x 0.0000000000 2 y 0.0000000000 3 z 1.1409410506 4 O 2 x 0.0000000000 5 y 0.0000000000 6 z -1.1409410506 Cartesian coordinates xyz format (angstrom) ------------------------------------------- 2 O 0.0000000000 0.0000000000 0.6037600000 O 0.0000000000 0.0000000000 -0.6037600000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 1 1 1 0 1 1 1 0 Symmetry 1 1 O z [ 3 - 6 ]/2 Symmetry 2 2 O x [ 1 + 4 ]/2 Symmetry 3 3 O y [ 2 + 5 ]/2 Symmetry 5 4 O z [ 3 + 6 ]/2 Symmetry 6 5 O x [ 1 - 4 ]/2 Symmetry 7 6 O y [ 2 - 5 ]/2 Interatomic separations (in Angstroms): --------------------------------------- O 1 O 2 O 1 0.000000 O 2 1.207520 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: O 2 O 1 1.207520 Nuclear repulsion energy : 28.047023097920 GETLAB: AO-labels ----------------- * Large components: 20 1 L O 1 s 2 L O 2 s 3 L O 1 px 4 L O 1 py 5 L O 1 pz 6 L O 2 px 7 L O 2 py 8 L O 2 pz 9 L O 1 dxx 10 L O 1 dxy 11 L O 1 dxz 12 L O 1 dyy 13 L O 1 dyz 14 L O 1 dzz 15 L O 2 dxx 16 L O 2 dxy 17 L O 2 dxz 18 L O 2 dyy 19 L O 2 dyz 20 L O 2 dzz * Small components: 40 21 S O 1 s 22 S O 2 s 23 S O 1 px 24 S O 1 py 25 S O 1 pz 26 S O 2 px 27 S O 2 py 28 S O 2 pz 29 S O 1 dxx 30 S O 1 dxy 31 S O 1 dxz 32 S O 1 dyy 33 S O 1 dyz 34 S O 1 dzz 35 S O 2 dxx 36 S O 2 dxy 37 S O 2 dxz 38 S O 2 dyy 39 S O 2 dyz 40 S O 2 dzz 41 S O 1 fxxx 42 S O 1 fxxy 43 S O 1 fxxz 44 S O 1 fxyy 45 S O 1 fxyz 46 S O 1 fxzz 47 S O 1 fyyy 48 S O 1 fyyz 49 S O 1 fyzz 50 S O 1 fzzz 51 S O 2 fxxx 52 S O 2 fxxy 53 S O 2 fxxz 54 S O 2 fxyy 55 S O 2 fxyz 56 S O 2 fxzz 57 S O 2 fyyy 58 S O 2 fyyz 59 S O 2 fyzz 60 S O 2 fzzz GETLAB: SO-labels ----------------- * Large components: 20 1 L Ag O s 2 L Ag O pz 3 L Ag O dxx 4 L Ag O dyy 5 L Ag O dzz 6 L B3uO px 7 L B3uO dxz 8 L B2uO py 9 L B2uO dyz 10 L B1gO dxy 11 L B1uO s 12 L B1uO pz 13 L B1uO dxx 14 L B1uO dyy 15 L B1uO dzz 16 L B2gO px 17 L B2gO dxz 18 L B3gO py 19 L B3gO dyz 20 L Au O dxy * Small components: 40 21 S Ag O s 22 S Ag O pz 23 S Ag O dxx 24 S Ag O dyy 25 S Ag O dzz 26 S Ag O fxxz 27 S Ag O fyyz 28 S Ag O fzzz 29 S B3uO px 30 S B3uO dxz 31 S B3uO fxxx 32 S B3uO fxyy 33 S B3uO fxzz 34 S B2uO py 35 S B2uO dyz 36 S B2uO fxxy 37 S B2uO fyyy 38 S B2uO fyzz 39 S B1gO dxy 40 S B1gO fxyz 41 S B1uO s 42 S B1uO pz 43 S B1uO dxx 44 S B1uO dyy 45 S B1uO dzz 46 S B1uO fxxz 47 S B1uO fyyz 48 S B1uO fzzz 49 S B2gO px 50 S B2gO dxz 51 S B2gO fxxx 52 S B2gO fxyy 53 S B2gO fxzz 54 S B3gO py 55 S B3gO dyz 56 S B3gO fxxy 57 S B3gO fyyy 58 S B3gO fyzz 59 S Au O dxy 60 S Au O fxyz Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 37 20 20 6 37 20 20 6 Number of large orbitals in each symmetry: 8 3 3 1 8 3 3 1 Number of small orbitals in each symmetry: 29 17 17 5 29 17 17 5 * Large component functions Symmetry Ag ( 1) 3 functions: O s 1+2 2 functions: O pz 1-2 1 functions: O dxx 1+2 1 functions: O dyy 1+2 1 functions: O dzz 1+2 Symmetry B3u( 2) 2 functions: O px 1+2 1 functions: O dxz 1-2 Symmetry B2u( 3) 2 functions: O py 1+2 1 functions: O dyz 1-2 Symmetry B1g( 4) 1 functions: O dxy 1+2 Symmetry B1u( 5) 3 functions: O s 1-2 2 functions: O pz 1+2 1 functions: O dxx 1-2 1 functions: O dyy 1-2 1 functions: O dzz 1-2 Symmetry B2g( 6) 2 functions: O px 1-2 1 functions: O dxz 1+2 Symmetry B3g( 7) 2 functions: O py 1-2 1 functions: O dyz 1+2 Symmetry Au ( 8) 1 functions: O dxy 1-2 * Small component functions Symmetry Ag ( 1) 4 functions: O s 1+2 10 functions: O pz 1-2 4 functions: O dxx 1+2 4 functions: O dyy 1+2 4 functions: O dzz 1+2 1 functions: O fxxz1-2 1 functions: O fyyz1-2 1 functions: O fzzz1-2 Symmetry B3u( 2) 10 functions: O px 1+2 4 functions: O dxz 1-2 1 functions: O fxxx1+2 1 functions: O fxyy1+2 1 functions: O fxzz1+2 Symmetry B2u( 3) 10 functions: O py 1+2 4 functions: O dyz 1-2 1 functions: O fxxy1+2 1 functions: O fyyy1+2 1 functions: O fyzz1+2 Symmetry B1g( 4) 4 functions: O dxy 1+2 1 functions: O fxyz1-2 Symmetry B1u( 5) 4 functions: O s 1-2 10 functions: O pz 1+2 4 functions: O dxx 1-2 4 functions: O dyy 1-2 4 functions: O dzz 1-2 1 functions: O fxxz1+2 1 functions: O fyyz1+2 1 functions: O fzzz1+2 Symmetry B2g( 6) 10 functions: O px 1-2 4 functions: O dxz 1+2 1 functions: O fxxx1-2 1 functions: O fxyy1-2 1 functions: O fxzz1-2 Symmetry B3g( 7) 10 functions: O py 1-2 4 functions: O dyz 1+2 1 functions: O fxxy1-2 1 functions: O fyyy1-2 1 functions: O fyzz1-2 Symmetry Au ( 8) 4 functions: O dxy 1-2 1 functions: O fxyz1+2 *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Dirac-Coulomb Hamiltonian * SS integrals neglected: Interatomic Coulombic SS-contributions modelled by classical repulsion of small component atomic charges using tabulated charges. * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 1 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - contracted large component basis set - uncontracted small component basis set Information about the restricted kinetic balance scheme: * Default RKB projection: 1: Pre-projection in scalar basis 2: Removal of unphysical solutions (via diagonalization of free particle Hamiltonian) ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF RELCCSD Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Run RELCCSD code =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Closed shell SCF calculation with 18 electrons in 5 orbitals in Fermion irrep 1 and 4 orbitals in Fermion irrep 2 * Bare nucleus screening correction used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 50 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. SL-integrals from iteration 1 ---> this is default setting from Hamiltonian input ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. EHMIN: 1000.00000 EHMAX: 100.00000 EPMIN: -1.00000 EPMAX: -1000.00000 *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Mulliken population analysis =========================================================================== POPINP: Mulliken population analysis =========================================================================== * Gross populations * Label definitions based on SO-labels * Number of spinors analyzed: - Orbitals in fermion ircop E1g :all - Orbitals in fermion ircop E1u :all * Print level: 1 No input for integrals transformation, using defaults =========================================================================== TRAINP: Set-up for index transformation =========================================================================== * General print level : 0 * Electronic orbitals only. * Total active space. Fermion ircop:E1g No explicit orbitals specified Fermion ircop:E1u No explicit orbitals specified * Set-up for 2-index transformation * SS Integrals not included in core Fock-matrix * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 * Set-up for 4-index transformation * Following scheme : 6 - write half-transformed integrals (ij|rs) to disk - sorting of intermediate 1HT integrals is disabled * Screening threshold :1.00E-14 * MO integral threshold :1.00E-14 * SS Integrals not transformed. * Gaunt Integrals not transformed. * 4-index transformed integrals written to file. * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* Nuclear contribution to dipole moments -------------------------------------- All components zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.91E-01 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.21E+01 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.30E+00 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.30E+00 S B3u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.42E-01 S B2u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.42E-01 S B1u * Deleted: 5(Proj: 5, Lindep: 0) Smin: 0.81E-02 S Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.50E+00 L B3u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 L B2u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 L B1u * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.23E-01 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.19E+01 S Ag * Deleted: 5(Proj: 5, Lindep: 0) Smin: 0.27E-01 S B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.65E+00 S B2g * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.26E-01 S B3g * Deleted: 1(Proj: 1, Lindep: 0) Smin: 0.26E-01 Output from MODHAM ------------------ * Applied strict kinetic balance ! SLSORT branch 1... Output from LINSYM ------------------ Parity MJ Functions(total) Functions(LC) Functions(SC) 1 1/2 18 9 9 1 -3/2 8 4 4 1 5/2 2 1 1 -1 1/2 18 9 9 -1 -3/2 8 4 4 -1 5/2 2 1 1 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 14 14 28 No. of positronic orbitals (NPSH): 14 14 28 Total no. of orbitals (NORB): 28 28 56 >>> Time used in PAMSET is 0.20 seconds **************************************************************************** ************************* Hartree-Fock calculation ************************* **************************************************************************** *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by an estimate of the electronic screening (Slater's rules). ########## START ITERATION NO. 1 ########## Sat Jun 20 06:48:38 2015 => Calculating sum of orbital energies It. 1 -53.45325740242 0.00D+00 0.00D+00 0.00D+00 0.09224200s Scr. nuclei Sat Jun 20 ########## START ITERATION NO. 2 ########## Sat Jun 20 06:48:38 2015 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.11146700s SOfock:SL 1.00D-12 0.00% 1.15% 0.00% 0.00% 1.04444599s >>> Total wall time: 0.00000000s >>> Total CPU time : 1.30785100s ########## END ITERATION NO. 2 ########## Sat Jun 20 06:48:38 2015 It. 2 -148.5609577548 9.51D+01 5.30D+00 1.81D+00 1.30785100s LL SL Sat Jun 20 ########## START ITERATION NO. 3 ########## Sat Jun 20 06:48:39 2015 3 *** Differential density matrix. DCOVLP = 0.5579 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.11167991s SOfock:SL 1.00D-12 0.00% 1.33% 0.00% 0.00% 1.03719902s >>> Total wall time: 0.00000000s >>> Total CPU time : 1.17193300s ########## END ITERATION NO. 3 ########## Sat Jun 20 06:48:39 2015 It. 3 -149.0361697037 4.75D-01 -1.29D+00 9.63D-01 DIIS 2 1.17193300s LL SL Sat Jun 20 ########## START ITERATION NO. 4 ########## Sat Jun 20 06:48:40 2015 4 *** Differential density matrix. DCOVLP = 1.0760 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.11237907s SOfock:SL 1.00D-12 0.00% 1.44% 0.00% 0.00% 1.04193616s >>> Total wall time: 0.00000000s >>> Total CPU time : 1.17314700s ########## END ITERATION NO. 4 ########## Sat Jun 20 06:48:40 2015 It. 4 -149.1941080162 1.58D-01 4.40D-01 3.82D-02 DIIS 3 1.17314700s LL SL Sat Jun 20 ########## START ITERATION NO. 5 ########## Sat Jun 20 06:48:41 2015 5 *** Differential density matrix. DCOVLP = 0.9987 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.11167431s SOfock:SL 1.00D-12 0.00% 2.49% 0.00% 0.00% 1.04143715s >>> Total wall time: 0.00000000s >>> Total CPU time : 1.16785400s ########## END ITERATION NO. 5 ########## Sat Jun 20 06:48:41 2015 It. 5 -149.1943292538 2.21D-04 -7.05D-03 6.45D-03 DIIS 4 1.16785400s LL SL Sat Jun 20 ########## START ITERATION NO. 6 ########## Sat Jun 20 06:48:43 2015 6 *** Differential density matrix. DCOVLP = 1.0005 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.11141300s SOfock:SL 1.00D-12 0.00% 3.74% 0.00% 0.00% 1.03942823s >>> Total wall time: 0.00000000s >>> Total CPU time : 1.16533500s ########## END ITERATION NO. 6 ########## Sat Jun 20 06:48:43 2015 It. 6 -149.1943413112 1.21D-05 8.98D-04 8.54D-04 DIIS 5 1.16533500s LL SL Sat Jun 20 ########## START ITERATION NO. 7 ########## Sat Jun 20 06:48:44 2015 7 *** Differential density matrix. DCOVLP = 1.0001 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.11120272s SOfock:SL 1.00D-12 0.00% 5.93% 0.00% 0.00% 1.03747654s >>> Total wall time: 0.00000000s >>> Total CPU time : 1.16590400s ########## END ITERATION NO. 7 ########## Sat Jun 20 06:48:44 2015 It. 7 -149.1943415956 2.84D-07 6.93D-05 7.23D-05 DIIS 6 1.16590400s LL SL Sat Jun 20 ########## START ITERATION NO. 8 ########## Sat Jun 20 06:48:45 2015 8 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.11091423s SOfock:SL 1.00D-12 0.00% 9.34% 0.00% 0.00% 1.02738237s >>> Total wall time: 0.00000000s >>> Total CPU time : 1.17786800s ########## END ITERATION NO. 8 ########## Sat Jun 20 06:48:45 2015 It. 8 -149.1943415970 1.44D-09 5.70D-06 7.03D-06 DIIS 7 1.17786800s LL SL Sat Jun 20 ########## START ITERATION NO. 9 ########## Sat Jun 20 06:48:46 2015 9 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.11022663s SOfock:SL 1.00D-12 0.00% 16.54% 0.00% 0.20% 0.98488808s >>> Total wall time: 0.00000000s >>> Total CPU time : 1.16897700s ########## END ITERATION NO. 9 ########## Sat Jun 20 06:48:46 2015 It. 9 -149.1943415971 1.90D-11 8.16D-07 1.68D-06 DIIS 8 1.16897700s LL SL Sat Jun 20 ########## START ITERATION NO. 10 ########## Sat Jun 20 06:48:47 2015 10 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.11119938s SOfock:SL 1.00D-12 0.00% 18.64% 0.00% 0.42% 1.02505016s >>> Total wall time: 0.00000000s >>> Total CPU time : 1.15329700s ########## END ITERATION NO. 10 ########## Sat Jun 20 06:48:47 2015 It. 10 -149.1943415971 1.48D-12 -3.53D-07 2.76D-07 DIIS 9 1.15329700s LL SL Sat Jun 20 ########## START ITERATION NO. 11 ########## Sat Jun 20 06:48:49 2015 11 *** Differential density matrix. DCOVLP = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.04% 0.00% 0.00% 0.11135006s SOfock:SL 1.00D-12 0.00% 27.82% 0.00% 3.18% 1.01367664s >>> Total wall time: 0.00000000s >>> Total CPU time : 1.13838100s ########## END ITERATION NO. 11 ########## Sat Jun 20 06:48:49 2015 It. 11 -149.1943415971 1.14D-13 -7.31D-08 3.85D-08 DIIS 9 1.13838100s LL SL Sat Jun 20 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -53.45325740242 0.00D+00 0.00D+00 0.00D+00 0.09224200s Scr. nuclei Sat Jun 20 It. 2 -148.5609577548 9.51D+01 5.30D+00 1.81D+00 1.30785100s LL SL Sat Jun 20 It. 3 -149.0361697037 4.75D-01 -1.29D+00 9.63D-01 DIIS 2 1.17193300s LL SL Sat Jun 20 It. 4 -149.1941080162 1.58D-01 4.40D-01 3.82D-02 DIIS 3 1.17314700s LL SL Sat Jun 20 It. 5 -149.1943292538 2.21D-04 -7.05D-03 6.45D-03 DIIS 4 1.16785400s LL SL Sat Jun 20 It. 6 -149.1943413112 1.21D-05 8.98D-04 8.54D-04 DIIS 5 1.16533500s LL SL Sat Jun 20 It. 7 -149.1943415956 2.84D-07 6.93D-05 7.23D-05 DIIS 6 1.16590400s LL SL Sat Jun 20 It. 8 -149.1943415970 1.44D-09 5.70D-06 7.03D-06 DIIS 7 1.17786800s LL SL Sat Jun 20 It. 9 -149.1943415971 1.90D-11 8.16D-07 1.68D-06 DIIS 8 1.16897700s LL SL Sat Jun 20 It. 10 -149.1943415971 1.48D-12 -3.53D-07 2.76D-07 DIIS 9 1.15329700s LL SL Sat Jun 20 It. 11 -149.1943415971 1.14D-13 -7.31D-08 3.85D-08 DIIS 9 1.13838100s LL SL Sat Jun 20 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 11 iterations. * Average elapsed time per iteration: No 2-ints : 0.00000000s LL SL : 0.00000000s TOTAL ENERGY ------------ Electronic energy : -177.24136644792156 Other contributions to the total energy Nuclear repulsion energy : 28.04702309791971 SS Coulombic correction : 0.00000175293894 Sum of all contributions to the energy Total energy : -149.19434159706293 WARNING from EIGCHK ------------------- 1 positron states intruding 14 -37557.69626543 0.03422212 WARNING from EIGCHK ------------------- 1 positron states intruding 14 -37557.65962535 0.07086220 Eigenvalues ----------- * Block 1 in E1g: Omega = 1/2 * Closed shell, f = 1.0000 -19.77996234001889 ( 2) -0.75523326408073 ( 2) 0.14083647982799 ( 2) 0.42228312873420 ( 2) * Virtual eigenvalues, f = 0.0000 1.92241004157990 ( 2) 1.98726183722628 ( 2) 2.15469904503231 ( 2) 4.07093988843331 ( 2) 4.56359775469423 ( 2) * Block 2 in E1g: Omega = 3/2 * Closed shell, f = 1.0000 0.42322776235833 ( 2) * Virtual eigenvalues, f = 0.0000 1.98854706177701 ( 2) 3.57162792125354 ( 2) 4.56377236834379 ( 2) * Block 3 in E1g: Omega = 5/2 * Virtual eigenvalues, f = 0.0000 3.57188758673874 ( 2) * Block 1 in E1u: Omega = 1/2 * Closed shell, f = 1.0000 -19.77938368959425 ( 2) -0.25229580856569 ( 2) 0.11557742856285 ( 2) * Virtual eigenvalues, f = 0.0000 1.24414163698992 ( 2) 1.90349219276701 ( 2) 1.90752617445043 ( 2) 2.77327092663941 ( 2) 3.28418783676396 ( 2) 5.06220134989428 ( 2) * Block 2 in E1u: Omega = 3/2 * Closed shell, f = 1.0000 0.11635458100076 ( 2) * Virtual eigenvalues, f = 0.0000 1.90857282877762 ( 2) 3.28433834910947 ( 2) 3.88690129438864 ( 2) * Block 3 in E1u: Omega = 5/2 * Virtual eigenvalues, f = 0.0000 3.88718103073188 ( 2) * Occupation in fermion symmetry E1g * Inactive orbitals 1/2 1/2 1/2 1/2 3/2 * Virtual orbitals 1/2 1/2 3/2 1/2 3/2 5/2 1/2 1/2 3/2 * Occupation in fermion symmetry E1u * Inactive orbitals 1/2 1/2 1/2 3/2 * Virtual orbitals 1/2 1/2 1/2 3/2 1/2 1/2 3/2 3/2 5/2 1/2 * Occupation of subblocks E1g: 1/2 3/2 5/2 closed shells (f=1.0000): 4 1 0 virtual shells (f=0.0000): 5 3 1 tot.num. of pos.erg shells: 9 4 1 E1u: 1/2 3/2 5/2 closed shells (f=1.0000): 3 1 0 virtual shells (f=0.0000): 6 3 1 tot.num. of pos.erg shells: 9 4 1 * HOMO - LUMO gap: E(LUMO) : 1.24414164 au (symmetry E1u) - E(HOMO) : 0.42322776 au (symmetry E1g) ------------------------------------------ gap : 0.82091387 au ************************************************************************** ********************** Mulliken population analysis ********************** ************************************************************************** Fermion ircop E1g ----------------- Fermion ircop E1g ----------------- * Positronic eigenvalue no. 1: -37636.906846753 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s B3uO _small B2uO _small B1uO _small ----------------------------------------------------------------------------------- alpha 0.3322 | 0.0009 0.0000 0.0000 0.3313 beta 0.6678 | 0.0000 0.3339 0.3339 0.0000 * Positronic eigenvalue no. 2: -37584.894743972 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.9971 | 0.0000 0.0000 0.9970 beta 0.0029 | 0.0014 0.0014 0.0000 * Positronic eigenvalue no. 3: -37566.587968306 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.4278 | 0.0000 0.0000 0.4277 beta 0.5722 | 0.2861 0.2861 0.0000 * Positronic eigenvalue no. 4: -37566.173918585 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small Au O _small ----------------------------------------------------------------------------------- alpha 0.7828 | 0.0000 0.0000 0.3914 0.3914 beta 0.2172 | 0.1085 0.1085 0.0000 0.0000 * Positronic eigenvalue no. 5: -37565.254916438 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.5045 | 0.0000 0.0000 0.5044 beta 0.4955 | 0.2477 0.2477 0.0000 * Positronic eigenvalue no. 6: -37564.769406508 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.4117 | 0.0000 0.0000 0.4117 beta 0.5883 | 0.2941 0.2941 0.0000 * Positronic eigenvalue no. 7: -37564.360794953 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small Au O _small ----------------------------------------------------------------------------------- alpha 0.0338 | 0.0000 0.0000 0.0169 0.0169 beta 0.9662 | 0.4831 0.4831 0.0000 0.0000 * Positronic eigenvalue no. 8: -37562.356257283 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small Au O _small ----------------------------------------------------------------------------------- alpha 0.5603 | 0.0000 0.0000 0.2801 0.2801 beta 0.4397 | 0.2198 0.2198 0.0000 0.0000 * Positronic eigenvalue no. 9: -37562.160391097 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.2968 | 0.0000 0.0000 0.2968 beta 0.7032 | 0.3516 0.3516 0.0000 * Positronic eigenvalue no. 10: -37561.436598586 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small Au O _small ----------------------------------------------------------------------------------- alpha 0.1086 | 0.0000 0.0000 0.0542 0.0542 beta 0.8914 | 0.4457 0.4457 0.0000 0.0000 * Positronic eigenvalue no. 11: -37559.007702219 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.9815 | 0.0000 0.0000 0.9815 beta 0.0185 | 0.0093 0.0093 0.0000 * Positronic eigenvalue no. 12: -37558.019927387 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.3349 | 0.0000 0.0000 0.3349 beta 0.6651 | 0.3325 0.3325 0.0000 * Positronic eigenvalue no. 13: -37558.015900196 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small Au O _small ----------------------------------------------------------------------------------- alpha 0.6279 | 0.0000 0.0000 0.3140 0.3140 beta 0.3721 | 0.1860 0.1860 0.0000 0.0000 * Positronic eigenvalue no. 14: -37557.696265426 (Occupation : f = 0.0000) ========================================================================================== * Gross populations greater than 0.00010 Gross Total | B3uO _small B2uO _small B1uO _small -------------------------------------------------------------------- alpha 0.1780 | 0.0000 0.0000 0.1780 beta 0.8220 | 0.4110 0.4110 0.0000 * Electronic eigenvalue no. 1: -19.779962340019 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s B3uO _small B2uO _small B1uO _small ----------------------------------------------------------------------------------- alpha 0.9995 | 0.9993 0.0000 0.0000 0.0003 beta 0.0005 | 0.0000 0.0003 0.0003 0.0000 * Electronic eigenvalue no. 2: -0.7552332640807 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz -------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.8807 0.1123 -0.0108 -0.0108 0.0286 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 3: 0.1408364798280 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz -------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.1432 0.8505 0.0045 0.0045 -0.0027 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 4: 0.4222831287342 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2gO px L B2gO dxz L B3gO py L B3gO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.4993 0.0007 0.4993 0.0007 * Electronic eigenvalue no. 5: 0.4232277623583 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2gO px L B2gO dxz L B3gO py L B3gO dyz ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.4993 0.0007 0.4993 0.0007 * Electronic eigenvalue no. 6: 1.9224100415799 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz -------------------------------------------------------------------------------------------------- alpha 0.9998 | 0.0202 0.9331 0.0108 0.0108 0.0249 beta 0.0002 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 7: 1.9872618372263 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O pz L B2gO px L B3gO py -------------------------------------------------------------------- alpha 0.0002 | 0.0001 0.0000 0.0000 beta 0.9998 | 0.0000 0.4998 0.4998 * Electronic eigenvalue no. 8: 1.9885470617770 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2gO px L B3gO py ----------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 beta 0.9999 | 0.4999 0.4999 * Electronic eigenvalue no. 9: 2.1546990450323 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz -------------------------------------------------------------------------------------------------- alpha 0.9999 | 0.9020 0.0314 0.0093 0.0093 0.0480 beta 0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 10: 3.5716279212535 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O dxx L Ag O dyy L B1gO dxy -------------------------------------------------------------------- alpha 0.9999 | 0.2500 0.2500 0.4999 beta 0.0001 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 11: 3.5718875867387 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O dxx L Ag O dyy L B1gO dxy -------------------------------------------------------------------- alpha 0.9999 | 0.2500 0.2500 0.4999 beta 0.0001 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 12: 4.0709398884333 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz -------------------------------------------------------------------------------------------------- alpha 0.9999 | 0.0537 0.0725 0.1316 0.1316 0.6105 beta 0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 13: 4.5635977546942 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2gO px L B2gO dxz L B3gO py L B3gO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.0007 0.4992 0.0007 0.4992 * Electronic eigenvalue no. 14: 4.5637723683438 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B2gO px L B2gO dxz L B3gO py L B3gO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.0007 0.4992 0.0007 0.4992 ** Total gross population of fermion ircop E1g ** Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz L B2gO px L B2gO dxz -------------------------------------------------------------------------------------------------------------------------------- total 10.00000 | 4.04630 1.92549 -0.01263 -0.01263 0.05164 1.99701 0.00286 Gross | L B3gO py L B3gO dyz B3uO _small B2uO _small B1uO _small ----------------------------------------------------------------------------------- total | 1.99701 0.00286 0.00063 0.00063 0.00078 Fermion ircop E1u ----------------- Fermion ircop E1u ----------------- * Positronic eigenvalue no. 1: -37637.852097587 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s Ag O _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.3441 | 0.0009 0.3433 0.0000 0.0000 beta 0.6559 | 0.0000 0.0000 0.3279 0.3279 * Positronic eigenvalue no. 2: -37585.084372091 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.9962 | 0.9962 0.0000 0.0000 beta 0.0038 | 0.0000 0.0018 0.0018 * Positronic eigenvalue no. 3: -37567.492299623 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.5412 | 0.5411 0.0000 0.0000 beta 0.4588 | 0.0000 0.2294 0.2294 * Positronic eigenvalue no. 4: -37567.033628378 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.3849 | 0.3848 0.0000 0.0000 beta 0.6151 | 0.0000 0.3076 0.3076 * Positronic eigenvalue no. 5: -37566.026546632 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B1gO _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.8103 | 0.4052 0.4052 0.0000 0.0000 beta 0.1897 | 0.0000 0.0000 0.0948 0.0948 * Positronic eigenvalue no. 6: -37564.276044934 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.4914 | 0.4914 0.0000 0.0000 beta 0.5086 | 0.0000 0.2543 0.2543 * Positronic eigenvalue no. 7: -37564.270694162 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B1gO _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.0110 | 0.0055 0.0055 0.0000 0.0000 beta 0.9890 | 0.0000 0.0000 0.4945 0.4945 * Positronic eigenvalue no. 8: -37562.070032702 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.5712 | 0.5712 0.0000 0.0000 beta 0.4288 | 0.0000 0.2143 0.2143 * Positronic eigenvalue no. 9: -37561.783492412 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B1gO _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.1777 | 0.0888 0.0888 0.0000 0.0000 beta 0.8223 | 0.0000 0.0000 0.4112 0.4112 * Positronic eigenvalue no. 10: -37561.344200335 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B1gO _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.8090 | 0.4045 0.4045 0.0000 0.0000 beta 0.1910 | 0.0000 0.0000 0.0954 0.0954 * Positronic eigenvalue no. 11: -37558.803122912 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.8868 | 0.8868 0.0000 0.0000 beta 0.1132 | 0.0000 0.0566 0.0566 * Positronic eigenvalue no. 12: -37558.738168881 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.8429 | 0.8429 0.0000 0.0000 beta 0.1571 | 0.0000 0.0785 0.0785 * Positronic eigenvalue no. 13: -37557.747323971 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B1gO _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- alpha 0.8816 | 0.4408 0.4408 0.0000 0.0000 beta 0.1184 | 0.0000 0.0000 0.0592 0.0592 * Positronic eigenvalue no. 14: -37557.659625345 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------- alpha 0.3323 | 0.3323 0.0000 0.0000 beta 0.6677 | 0.0000 0.3338 0.3338 * Electronic eigenvalue no. 1: -19.779383689594 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s L B1uO pz Ag O _small B2gO _small B3gO _small -------------------------------------------------------------------------------------------------- alpha 0.9995 | 0.9990 0.0002 0.0003 0.0000 0.0000 beta 0.0005 | 0.0000 0.0000 0.0000 0.0003 0.0003 * Electronic eigenvalue no. 2: -0.2522958085657 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz -------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.8122 0.1855 0.0059 0.0059 -0.0095 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 3: 0.1155774285629 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.4976 0.0024 0.4976 0.0024 * Electronic eigenvalue no. 4: 0.1163545810008 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.4976 0.0024 0.4976 0.0024 * Electronic eigenvalue no. 5: 1.2441416369899 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz -------------------------------------------------------------------------------------------------- alpha 1.0000 | 0.0133 0.9945 -0.0027 -0.0027 -0.0024 beta 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 6: 1.9034921927670 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz L B1uO s L B1uO pz L B1uO dxx -------------------------------------------------------------------------------------------------------------------------------- alpha 0.9249 | 0.0000 0.0000 0.0000 0.0000 -0.1223 1.0180 0.0057 beta 0.0751 | 0.0374 0.0001 0.0374 0.0001 0.0000 0.0000 0.0000 Gross | L B1uO dyy L B1uO dzz -------------------------------------- alpha | 0.0057 0.0177 beta | 0.0000 0.0000 * Electronic eigenvalue no. 7: 1.9075261744504 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz L B1uO s L B1uO pz L B1uO dxx -------------------------------------------------------------------------------------------------------------------------------- alpha 0.0751 | 0.0000 0.0000 0.0000 0.0000 -0.0099 0.0825 0.0005 beta 0.9249 | 0.4608 0.0016 0.4608 0.0016 0.0000 0.0000 0.0000 Gross | L B1uO dyy L B1uO dzz -------------------------------------- alpha | 0.0005 0.0015 beta | 0.0000 0.0000 * Electronic eigenvalue no. 8: 1.9085728287776 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.4982 0.0017 0.4982 0.0017 * Electronic eigenvalue no. 9: 2.7732709266394 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz -------------------------------------------------------------------------------------------------- alpha 0.9999 | 1.2527 -0.2505 -0.0005 -0.0005 -0.0013 beta 0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 10: 3.2841878367640 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.0041 0.4958 0.0041 0.4958 * Electronic eigenvalue no. 11: 3.2843383491095 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz ----------------------------------------------------------------------------------- alpha 0.0001 | 0.0000 0.0000 0.0000 0.0000 beta 0.9999 | 0.0041 0.4958 0.0041 0.4958 * Electronic eigenvalue no. 12: 3.8869012943886 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO dxx L B1uO dyy L Au O dxy -------------------------------------------------------------------- alpha 0.9999 | 0.2500 0.2500 0.4999 beta 0.0001 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 13: 3.8871810307319 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO dxx L B1uO dyy L Au O dxy -------------------------------------------------------------------- alpha 0.9999 | 0.2500 0.2500 0.4999 beta 0.0001 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 14: 5.0622013498943 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz Ag O _small ----------------------------------------------------------------------------------------------------------------- alpha 0.9999 | 0.0540 -0.0304 0.1702 0.1702 0.6358 0.0001 beta 0.0001 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ** Total gross population of fermion ircop E1u ** Gross Total | L B3uO px L B3uO dxz L B2uO py L B2uO dyz L B1uO s L B1uO pz L B1uO dxx -------------------------------------------------------------------------------------------------------------------------------- total 8.00000 | 1.99028 0.00961 1.99028 0.00961 3.62231 0.37157 0.01173 Gross | L B1uO dyy L B1uO dzz Ag O _small B2gO _small B3gO _small ----------------------------------------------------------------------------------- total | 0.01173 -0.01906 0.00071 0.00058 0.00058 *** Total gross population *** Gross Total | L Ag O s L Ag O pz L Ag O dxx L Ag O dyy L Ag O dzz L B3uO px L B3uO dxz -------------------------------------------------------------------------------------------------------------------------------- total 18.00000 | 4.04630 1.92549 -0.01263 -0.01263 0.05164 1.99028 0.00961 Gross | L B2uO py L B2uO dyz L B1uO s L B1uO pz L B1uO dxx L B1uO dyy L B1uO dzz L B2gO px -------------------------------------------------------------------------------------------------------------------------------- total | 1.99028 0.00961 3.62231 0.37157 0.01173 0.01173 -0.01906 1.99701 Gross | L B2gO dxz L B3gO py L B3gO dyz Ag O _small B3uO _small B2uO _small B1uO _small B2gO _small -------------------------------------------------------------------------------------------------------------------------------- total | 0.00286 1.99701 0.00286 0.00071 0.00063 0.00063 0.00078 0.00058 Gross | B3gO _small ----------------------- total | 0.00058 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Sat Jun 20 06:48:50 2015 * REACMO: Coefficients read from file DFCOEF - Total energy: -149.194341597062817 * Heading :Molecular oxygen. Ground and excited states (X, a,Sat Jun 20 06:48:49 2015 Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -10.00 < Eps. < 20.00 with a mininum gap of 1.0000 au. * Orbital ranges for 4-index transformation: * Fermion ircop E1g Index 1 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 2 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 3 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 4 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 * Fermion ircop E1u Index 1 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 2 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 3 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 Index 4 13 orbitals 2 3 4 5 6 7 8 9 10 11 12 13 14 * Core orbital ranges for 2-index transformation: * Fermion ircop E1g Index 1 1 orbitals 1 * Fermion ircop E1u Index 1 1 orbitals 1 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Sat Jun 20 06:48:50 2015 * REACMO: Coefficients read from file DFCOEF - Total energy: -149.194341597062817 * Heading :Molecular oxygen. Ground and excited states (X, a,Sat Jun 20 06:48:49 2015 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.11222649s SOfock:SL 1.00D-12 0.00% 4.89% 0.00% 0.00% 1.03975105s * REAFCK: Fock matrix read from file /tmp/ilias/DIRAC_fsccsd_IE2_O2_5618/DFFCK1 * Heading :Molecular oxygen. Ground and excited states (X, a,Sat Jun 20 06:48:38 2015 Core energy (includes nuclear repulsion) : -102.5301259885 - Electronic part : -130.5771508393 - One-electron terms : -141.8120073858 - Two-electron terms : 11.2348565465 MOLFDIR file MRCONEE is written - Integral class 1 : (LL|??) - Beginning task 1 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 2 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 3 of 3 after 0. seconds and 1. CPU-seconds - Integral class 2 : (SS|??) - Beginning task 4 of 8 after 0. seconds and 1. CPU-seconds - Beginning task 5 of 8 after 0. seconds and 1. CPU-seconds - Beginning task 6 of 8 after 0. seconds and 1. CPU-seconds - Beginning task 7 of 8 after 0. seconds and 2. CPU-seconds - Beginning task 8 of 8 after 0. seconds and 2. CPU-seconds Node 0 finished first half transformation 2538747 HT integrals written ( 76.79%, 0.06 GB) <<< Starting 2HT on node 0 >>> Finished 2HT on node 0 >>> Time used in 2HT_all is 1.91 seconds - Binary file MDCINT was written. * Screening statistics: (LL|LL)ints : 0.00% (SS|LL)ints : 0.00% Total : 0.00% ------ Timing report (in CPU seconds) of module integral transformation Time in First halftransformation 3.975 seconds Time in Second halftransformation 1.906 seconds Total wall time used in PAMTRA : 00:00:00 Total CPU time used in PAMTRA (master only) : 00:00:07 Transformation ended at : Sat Jun 20 06:49:03 2015 ---< Process 1 of 1----< Relativistic Coupled Cluster program RELCCSD Written by : Lucas Visscher NASA Ames Research Center (1994) Rijks Universiteit Groningen (1995) Odense Universitet (1996-1997) VU University Amsterdam (1998-present) This module is documented in - Initial implementation : L. Visscher, T.J. Lee and K.G. Dyall, J. Chem. Phys. 105 (1996) 8769. - Fock Space (FSCC): L. Visscher, E. Eliav and U. Kaldor, J. Chem. Phys. 115 (2002) 9720. - Intermediate Hamiltonian E. Eliav, M. J. Vilkas, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 122 (2005) 224113. - Parallelization : M. Pernpointner and L. Visscher, J. Comp. Chem. 24 (2003) 754. Today is : 20 Jun 15 The time is : 06:49:03 Initializing word-addressable I/O : the FORTRAN-interface is used with 16 KB records EHMIN: 1000.00000 EHMAX: 100.00000 EPMIN: -1.00000 EPMAX: -1000.00000 Total memory available : 16384 MB INFO: No old restart file(s) found! Configuration in highest pointgroup Eg Eg Eu Eu Spinor class : occupied 4 4 3 3 Spinor class : virtual 9 9 10 10 Configuration in abelian subgroup 1g -1g 3g -3g 5g -5g 1u -1u Spinor class : occupied 3 3 1 1 0 0 2 2 Spinor class : virtual 5 5 3 3 1 1 6 6 Configuration in abelian subgroup 3u -3u 5u -5u Spinor class : occupied 1 1 0 0 Spinor class : virtual 3 3 1 1 Number of electrons : 14 Total charge of the system : -2 Number of virtual spinors : 38 Complex arithmetic mode : F Do integral sorting : F Do energy calculation : F Do gradient calculation : F Do response calculation : F Debug information : F Timing information : F Print level : 0 Memory limit (MWord) : 2048 Interface used : DIRAC6 Memory for reading and sorting integrals : 432784 8-byte words Memory for reading and sorting integrals : 5052684 8-byte words Core used for Fock space CCSD energies : 2147341255 8-byte words Memory used for active modules : 2147341255 8-byte words Fock space CCSD Energy calculations Module written by Ephraim Eliav & Luuk Visscher, July 1999 List of inactive and active spinors (Fock space) Configuration in highest pointgroup Eg Eg Eu Eu Spinor class : inactive occupied 2 2 3 3 Spinor class : active occupied 2 2 0 0 Spinor class : active virtual 0 0 0 0 Spinor class : inactive virtual 9 9 10 10 Configuration in abelian subgroup 1g -1g 3g -3g 5g -5g 1u -1u Spinor class : inactive occupied 2 2 0 0 0 0 2 2 Spinor class : active occupied 1 1 1 1 0 0 0 0 Spinor class : active virtual 0 0 0 0 0 0 0 0 Spinor class : inactive virtual 5 5 3 3 1 1 6 6 Configuration in abelian subgroup 3u -3u 5u -5u Spinor class : inactive occupied 1 1 0 0 Spinor class : active occupied 0 0 0 0 Spinor class : active virtual 0 0 0 0 Spinor class : inactive virtual 3 3 1 1 Expanding and sorting integrals to unique types : Type OOOO : 927 integrals Type VOOO : 5318 integrals Type VVOO : 7277 integrals Type VOVO : 31436 integrals Type VOVV : 43332 integrals Type VVVV : 60233 integrals Start sorting of integral classes at 20 Jun 1506:49:03 Sorting of first 4 classes done at 20 Jun 1506:49:13 Need 1 passes to sort VOVV integrals Pass 1 ended at 20 Jun 1506:49:23 VOVV sorting done at 20 Jun 1506:49:23 Need 1 passes to sort VVVV integrals Pass 1 ended at 20 Jun 1506:49:34 VVVV sorting done at 20 Jun 1506:49:34 Reading Coulomb integrals : File date : 20 Jun 15 File time : 06:49:34 # of integrals 303432 Finished sorting of integrals Checking the orbital energies, the program computes the diagonal elements of the reconstructed Fock matrix. Differences with the reference orbital energies are given if above a treshold or if iprnt > 1 Spinor Abelian Rep. Energy Recalc. Energy The diagonal elements of the recomputed Fock matrix (right column) are used in perturbation expressions. Use the perturbative values (MP2, CCSD[T]/(T)/-T) with care, especially in open shell calculations because the orbitals need not always be semi-canonical as was assumed in the derivation of the expressions. The missing terms may be important ! Nuclear repulsion + core energy : -102.530125988465429 Zero order electronic energy : 0.421500809303248 First order electronic energy : -47.085716417900287 Electronic energy : -46.664215608597040 SCF energy : -149.194341597062476 Fock space CCSD options : Maximum number of iterations : 100 Maximum size of DIIS space : 8 Convergence criterium : 0.1E-11 INFO: Initializing amplitudes to MP2 ones! Solving equations for sector 00 ...maximum number of iterations for this sector:100 CCSD results SCF energy : -149.194341597062476 CCSD correlation energy : -0.361048657806894 Total CCSD energy : -149.555390254869366 T1 diagnostic : 0.005655009535662 Convergence : 0.000000000000703 Number or iterations used : 18 INFO: converged (unconverged if .UNCONVERGED used) amplitudes available for restart Solving equations for sector 10 ...maximum number of iterations for this sector:100 CCSD results T1 diagnostic : 0.005655009535663 Convergence : 0.000000000000705 Number or iterations used : 19 ( 1 au = 27.2113834378 eV / 219474.631280634 cm-1) Energy eigenvalues in atomic units Level Rel eigenvalue Abs eigenvalue Total Energy Degeneracy 1 0.0000000000 -0.474617437052 -150.030007691922 ( 2 * ) 2 0.0007428442 -0.473874592853 -150.029264847722 ( 2 * ) Total average: -150.0296362698 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 1g| -1g| 3g| -3g| 5g| -5g| 7g| -7g| 1 0.000000000 0.000000 0| 0| 1| 1| 0| 0| 0| 0| 2 0.020213818 163.035457 1| 1| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 9g| -9g| 11g|-11g| 13g|-13g| 15g|-15g| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 0.020213818 163.035457 0| 0| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 1u| -1u| 3u| -3u| 5u| -5u| 7u| -7u| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 0.020213818 163.035457 0| 0| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 9u| -9u| 11u|-11u| 13u|-13u| 15u|-15u| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 0.020213818 163.035457 0| 0| 0| 0| 0| 0| 0| 0| Analysis of eigenvectors of the effective Hamiltonian First line : Energy, Eigenvalue other lines : Coefficients of contributing determinants (above a treshold of .1E+00) Irrep 1g State 1 -150.02926485 -0.47387459 1.00000 | 1g # 1 ( 0.422) | Irrep -1g State 1 -150.02926485 -0.47387459 1.00000 | -1g # 1 ( 0.422) | Irrep 3g State 1 -150.03000769 -0.47461744 1.00000 | 3g # 1 ( 0.423) | Irrep -3g State 1 -150.03000769 -0.47461744 1.00000 | -3g # 1 ( 0.423) | INFO: converged (unconverged if .UNCONVERGED used) amplitudes available for restart Solving equations for sector 20 ...maximum number of iterations for this sector:100 CCSD results T1 diagnostic : 0.005655009535663 Convergence : 0.000000000000156 Number or iterations used : 19 ( 1 au = 27.2113834378 eV / 219474.631280634 cm-1) Energy eigenvalues in atomic units Level Rel eigenvalue Abs eigenvalue Total Energy Degeneracy 1 0.0000000000 -0.537388228735 -150.092778483604 ( 1 * ) 2 0.0000095260 -0.537378702736 -150.092768957605 ( 2 * ) 3 0.0439994510 -0.493388777751 -150.048779032620 ( 2 * ) 4 0.0766817851 -0.460706443624 -150.016096698493 ( 1 * ) Total average: -150.0653285271 Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 0g| 2g| -2g| 4g| -4g| 6g| -6g| 8g| 1 0.000000000 0.000000 1| 0| 0| 0| 0| 0| 0| 0| 2 0.000259216 2.090715 0| 1| 1| 0| 0| 0| 0| 0| 3 1.197285932 9656.763281 0| 0| 0| 1| 1| 0| 0| 0| 4 2.086617457 16829.706513 1| 0| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) -8g| 10g|-10g| 12g|-12g| 14g|-14g| 16g| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 0.000259216 2.090715 0| 0| 0| 0| 0| 0| 0| 0| 3 1.197285932 9656.763281 0| 0| 0| 0| 0| 0| 0| 0| 4 2.086617457 16829.706513 0| 0| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) 0u| 2u| -2u| 4u| -4u| 6u| -6u| 8u| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 0.000259216 2.090715 0| 0| 0| 0| 0| 0| 0| 0| 3 1.197285932 9656.763281 0| 0| 0| 0| 0| 0| 0| 0| 4 2.086617457 16829.706513 0| 0| 0| 0| 0| 0| 0| 0| Relative real eigenvalues in other units; Symmetry Classification in the Abelian subgroup Level eigenvalue (eV) Eigenvalue (cm-1) -8u| 10u|-10u| 12u|-12u| 14u|-14u| 16u| 1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0| 2 0.000259216 2.090715 0| 0| 0| 0| 0| 0| 0| 0| 3 1.197285932 9656.763281 0| 0| 0| 0| 0| 0| 0| 0| 4 2.086617457 16829.706513 0| 0| 0| 0| 0| 0| 0| 0| Analysis of eigenvectors of the effective Hamiltonian First line : Energy, Eigenvalue other lines : Coefficients of contributing determinants (above a treshold of .1E+00) Irrep 0g State 1 -150.09277848 -0.53738823 0.69917 | -1g # 1 ( 0.422), 1g # 1 ( 0.422) | 0.71495 | -3g # 1 ( 0.423), 3g # 1 ( 0.423) | Irrep 0g State 2 -150.01609670 -0.46070644 0.71488 | -1g # 1 ( 0.422), 1g # 1 ( 0.422) | -0.69925 | -3g # 1 ( 0.423), 3g # 1 ( 0.423) | Irrep 2g State 1 -150.09276896 -0.53737870 1.00000 | 3g # 1 ( 0.423), -1g # 1 ( 0.422) | Irrep -2g State 1 -150.09276896 -0.53737870 1.00000 | -3g # 1 ( 0.423), 1g # 1 ( 0.422) | Irrep 4g State 1 -150.04877903 -0.49338878 1.00000 | 3g # 1 ( 0.423), 1g # 1 ( 0.422) | Irrep -4g State 1 -150.04877903 -0.49338878 1.00000 | -3g # 1 ( 0.423), -1g # 1 ( 0.422) | INFO: converged (unconverged if .UNCONVERGED used) amplitudes available for restart -------------------------------------------------------------------------------- Today is : 20 Jun 15 The time is : 06:49:37 Status of the calculations Integral sort # 1 : Completed, restartable Integral sort # 2 : Completed, restartable Fock matrix build : Completed, restartable MP2 energy calculation : Completed, restartable CCSD energy calculation : On menu but not yet called CCSD(T) energy calculation : On menu but not yet called CCSD(T) energy calculation : Never asked for Overview of calculated energies @ SCF energy : -149.194341597062476 @ MP2 correlation energy : 0.000000000000000 @ CCSD correlation energy : -0.361048657806897 @ 4th order triples correction : 0.000000000000000 @ 5th order triples (T) correction : 0.000000000000000 @ 5th order triples -T correction : 0.000000000000000 @ Total MP2 energy : -149.194341597062476 @ Total CCSD energy : -149.555390254869366 @ Total CCSD+T energy : -149.555390254869366 @ Total CCSD(T) energy : -149.555390254869366 @ Total CCSD-T energy : -149.555390254869366 -------------------------------------------------------------------------------- ------ Timing report (in CPU seconds) of module RELCCSD Time in - T1 equations 0.470 seconds Time in --- T1EQNS T*[HOV - F]*T 0.000 seconds Time in --- T1EQNS HOV*T2(A,C,I,K 0.017 seconds Time in --- T1EQNS HV*T / T*HO 0.000 seconds Time in --- T1EQNS VOOO*TAU 0.031 seconds Time in --- T1EQNS VOVV contribution 0.187 seconds Time in --- T1EQNS VOVO * T(C,K) 0.116 seconds Time in - T2 equations 1.903 seconds Time in -- GOINTM 0.037 seconds Time in -- GVINTM 0.305 seconds Time in -- AINTM 0.061 seconds Time in -- HINTM 0.538 seconds Time in --- HINTM: VOVV*T 0.280 seconds Time in --- HINTM: VVOO contribution 0.048 seconds Time in -- T2 EQNS 0.456 seconds Time in --- T2EQNS: TAU*AINTM contract 0.017 seconds Time in --- T2EQNS: VOVV*T1 0.178 seconds Time in --- T2EQNS: HINTM*T2 0.109 seconds Time in -- BINTM 0.506 seconds Time in - adding partial T1/T2 amplitu 0.000 seconds Time in - DIIS extrapolation 0.079 seconds Time in - synchronizing T1 & T2 amplit 0.000 seconds Timing of main modules : Wallclock (s) CPU on master (s) Before CC driver : ************ 19.69 Initialization : 0.00 0.23 Integral sorting : 0.00 0.00 Energy calculation : 0.00 0.00 First order properties : 0.00 0.00 Second order properties : 0.00 0.00 Fock space energies : 0.00 33.41 Untimed parts : 128.00 0.00 Total time in CC driver : 128. 33.65 Statistics for the word-addressable I/O Number of write calls 8637. Number of read calls 8637. Megabytes written 5.363 Megabytes read 118.381 Seconds spent in reads 0.000 Seconds spent in writes 0.000 average I/O speed for write (Mb/s) 0.000 average I/O speed for read (Mb/s) 0.000 CPU time (seconds) used in RELCCSD: 33.6494 CPU time (seconds) used before RELCCSD: 19.6882 CPU time (seconds) used in total sofar: 53.3376 --- Normal end of RELCCSD Run --- ################################################################################ ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Sat Jun 20 06:49:37 2015 Host name : miro_ilias_desktop Dynamical Memory Usage Summary Mean allocation size (Mb) : 22.74 Largest 10 allocations 488.28 Mb at subroutine pamtra_+0x126 for WORK in PAMTRA 488.28 Mb at subroutine pamana_+0x81 for WORK in PAMANA 488.28 Mb at subroutine psiscf_+0xbe for WORK in PSISCF 488.28 Mb at subroutine pamset_+0x3fd for WORK in PAMSET - 2 488.28 Mb at subroutine gmotra_+0x240 for WORK in GMOTRA 488.28 Mb at subroutine pamset_+0x90 for WORK in PAMSET - 1 488.28 Mb at subroutine MAIN__+0x9d7 for test allocation of work array in DIRAC mai 36.97 Mb at subroutine ccseti_+0x673 for ibuf 36.97 Mb at subroutine ccseti_+0x673 for ibuf 2.31 Mb at subroutine ccseti_+0x6c3 for ibuf Peak memory usage (Mb) : 488.00 reached at subroutine : butobs_no_work_+0xa3 for variable : buf in butobs MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 51, stime: 1, minflt: 10067, majflt: 75, nvcsw: 578, nivcsw: 4547, maxrss: 789872 >>>> Total WALL time used in DIRAC: 60s