DIRAC serial starts by allocating 120000000 words ( 915.53 MB - 0.894 GB) of memory out of the allowed maximum of 2147483648 words ( 16384.00 MB - 16.000 GB) Note: maximum allocatable memory for serial run can be set by pam --aw/--ag ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Trond Saue Universite Toulouse III France * * Lucas Visscher Vrije Universiteit Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast UiT The Arctic University of Norway * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer University of Aarhus Denmark * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Erik D. Hedegaard Lund University Sweden * * Trygve Helgaker University of Oslo Norway * * Benjamin Helmich-Paris Max Planck Institute f. Coal Res. Germany * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak Bhabha Atomic Research Centre India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Jogvan Magnus H. Olsen University of Southern Denmark Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Avijit Shee University of Michigan USA * * Jetze Sikkema Vrije Universiteit Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen Vrije Universiteit Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For more information about the DIRAC code see http://diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC18 (2018), * * written by T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, E. D. Hedegaard, T. Helgaker, * * J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, * * O. Kullie, J. K. Laerdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, * * M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, J. M. H. Olsen, * * Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, * * P. Salek, B. Schimmelpfennig, A. Shee, J. Sikkema, A. J. Thorvaldsen, * * J. Thyssen, J. van Stralen, S. Villaume, O. Visser,T. Winther, * * and S. Yamamoto (see http://diracprogram.org). * * * ******************************************************************************* Version information ------------------- Branch | miro/master-fixes Commit hash | 17fabb0 Commit author | Lucas Commit date | Fri Dec 21 07:30:32 2018 +0000 Configuration and build information ----------------------------------- Who compiled | milias Compiled on server | lxir127 Operating system | Linux-3.16.0-4-amd64 CMake version | 3.0.2 CMake generator | Unix Makefiles CMake build type | release Configuration time | 2018-12-27 12:06:39.312181 Python version | 2.7.9 Fortran compiler | /cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/bin/intel64/ifort Fortran compiler version | 17.0 Fortran compiler flags | -w -assume byterecl -g -traceback -DVAR_IFORT -i8 -w -assume byterecl -g -traceback -DVAR_IFORT -i8 C compiler | /cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/bin/intel64/icc C compiler version | 17.0 C compiler flags | -g -wd981 -wd279 -wd383 -wd1572 -wd177 -g -wd981 -wd279 -wd383 -wd1572 -wd177 C++ compiler | /cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/bin/intel64/icpc C++ compiler version | 17.0.4 C++ compiler flags | -Wno-unknown-pragmas -Wno-unknown-pragmas Static linking | False 64-bit integers | True MPI parallelization | False MPI launcher | unknown Math libraries | -Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_lapack95_ilp64.a;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_intel_ilp64.so;-openmp;-Wl,--end-group;-Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_intel_ilp64.so;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_intel_thread.so;/cvmfs/it.gsi.de/compiler/intel/17.0/compilers_and_libraries_2017.4.196/linux/mkl/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/usr/lib/x86_64-linux-gnu/libm.so;-openmp;-Wl,--end-group Builtin BLAS library | OFF Builtin LAPACK library | OFF Explicit libraries | unknown Compile definitions | MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;BUILD_GEN1INT;HAS_PELIB;MOD_QCORR;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ESR;MOD_KRCC;MOD_SRDFT Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Thu Dec 27 14:48:37 2018 Host name : lxir127 Contents of the input file -------------------------- **DIRAC .TITLE atomic test calculations .WAVE FUNCTION .ANALYZE .4INDEX **GENERAL .PCMOUT **INTEGRALS *READIN .UNCONTRACTED **HAMILTONIAN .X2C *AMFI .AMFICH +2 **WAVE FUNCTION .SCF .RELCCSD *SCF # Pm-like (Z=61) : ... 4f(14) 5s(0) 5p_average(1) .CLOSED SHELL 28 32 .OPEN SHELL 1 1/0,6 # reads MO .MAXITR 3 **ANALYZE .MULPOP *MULPOP .VECPOP 1..oo 1..oo **MOLTRA # exactly 33 correlated electrons... .ACTIVE energy -50.0 50.0 1.0 energy -50.0 50.0 1.0 **RELCC .ENERGY .TIMING .PRINT 1 # 33 correlated electrons, 5p_average(1) open-shell !.NELEC !6 6 11 10 # 1g -1g 3g -3g 5g -5g .NEL_F1 3 3 2 2 1 1 # 1u -1u 3u -3u 5u -5u 7u -7u .NEL_F2 5 4 3 3 2 2 1 1 *CCENER .NTOL 7 *CCSORT !.USEOE *END OF Contents of the molecule file ----------------------------- INTGRL Ir atom dyall.v2z C 1 77. 1 Ir .0000000000 .0000000000 0.0 LARGE BASIS dyall.v2z FINISH ************************************************************************** *********************** atomic test calculations *********************** ************************************************************************** Jobs in this run: * Wave function * Analysis * Transformation to Molecular Spinor basis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * MO-coefficients written to formatted file DFPCMO * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 Nuclear model: Gaussian charge distribution. Two-electron integrals not calculated. Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated. Changes of defaults for *READIN ------------------------------- Uncontracted basis forced, irrespective of basis input file. *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- Ir atom dyall.v2z Nuclear Gaussian exponent for atom of charge 77.000 : 1.4398142103D+08 SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 Symmetry point group found: D(oo,h) The following symmetry elements were found: X Y Z Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Full group is: D(oo,h) Represented as: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Isotopic Masses --------------- Ir 192.962917 Total mass: 192.962917 amu Natural abundance: 62.600 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000 Atoms and basis sets -------------------- Number of atom types : 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- Ir 1 77 243 243 L - [24s19p12d9f|24s19p12d9f] ---------------------------------------------------------------------- 243 243 L - large components ---------------------------------------------------------------------- total: 1 77 243 243 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 3 1 Ir x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 1 Ir 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry B3u( 2) 1 Ir x 1 Symmetry B2u( 3) 2 Ir y 2 Symmetry B1u( 5) 3 Ir z 3 This is an atomic calculation. GETLAB: AO-labels ----------------- * Large components: 20 1 L Ir 1 s 2 L Ir 1 px 3 L Ir 1 py 4 L Ir 1 pz 5 L Ir 1 dxx 6 L Ir 1 dxy 7 L Ir 1 dxz 8 L Ir 1 dyy 9 L Ir 1 dyz 10 L Ir 1 dzz 11 L Ir 1 fxxx 12 L Ir 1 fxxy 13 L Ir 1 fxxz 14 L Ir 1 fxyy 15 L Ir 1 fxyz 16 L Ir 1 fxzz 17 L Ir 1 fyyy 18 L Ir 1 fyyz 19 L Ir 1 fyzz 20 L Ir 1 fzzz * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 20 1 L Ag Ir s 2 L Ag Ir dxx 3 L Ag Ir dyy 4 L Ag Ir dzz 5 L B3uIr px 6 L B3uIr fxxx 7 L B3uIr fxyy 8 L B3uIr fxzz 9 L B2uIr py 10 L B2uIr fxxy 11 L B2uIr fyyy 12 L B2uIr fyzz 13 L B1gIr dxy 14 L B1uIr pz 15 L B1uIr fxxz 16 L B1uIr fyyz 17 L B1uIr fzzz 18 L B2gIr dxz 19 L B3gIr dyz 20 L Au Ir fxyz * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 60 46 46 12 46 12 12 9 Number of large orbitals in each symmetry: 60 46 46 12 46 12 12 9 Number of small orbitals in each symmetry: 0 0 0 0 0 0 0 0 * Large component functions Symmetry Ag ( 1) 24 functions: Ir s 12 functions: Ir dxx 12 functions: Ir dyy 12 functions: Ir dzz Symmetry B3u( 2) 19 functions: Ir px 9 functions: Ir fxxx 9 functions: Ir fxyy 9 functions: Ir fxzz Symmetry B2u( 3) 19 functions: Ir py 9 functions: Ir fxxy 9 functions: Ir fyyy 9 functions: Ir fyzz Symmetry B1g( 4) 12 functions: Ir dxy Symmetry B1u( 5) 19 functions: Ir pz 9 functions: Ir fxxz 9 functions: Ir fyyz 9 functions: Ir fzzz Symmetry B2g( 6) 12 functions: Ir dxz Symmetry B3g( 7) 12 functions: Ir dyz Symmetry Au ( 8) 9 functions: Ir fxyz *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set ******************************************************************************* ************************** AMFI/RELSCF input reading ************************** ******************************************************************************* =========================================================================== Set-up for AMFI/RELSCF calculations =========================================================================== * AMFI code print level: 0 * RELSCF code print level: 0 * RELSCF maximum number of iterations: 50 * AMFI mean-field summations on individual atoms are modified due to the artificial charge of the system: 2 * order of AMFI contributions to the X2C Hamiltonian: 2 --> adding spin-same orbit MFSSO2 terms. ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF RELCCSD Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Run RELCCSD code =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Open shell SCF calculation using Average-of-Configuration * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 60 14 16 1.0000 1.0000 0.0000 Open shell no. 1 1.00 0 3 0.1667 0.0000 1.2000 ---------------------------------------------------------------------------- Total 61.00 14 19 f is the fraction occupation; a and alpha open shell coupling coefficients. - INFO: bare nucleus correction disabled because abs(molecular charge) .gt. 10 * Sum of atomic potentials used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 to improve convergence (default value). The final open-shell orbital energies are recalculated with 1.0 scaling, such that all occupied orbital energies correspond to Koopmans' theorem ionization energies. ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 3 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. =========================================================================== **RELCC: Set-up for Coupled Cluster calculations =========================================================================== *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Mulliken population analysis =========================================================================== POPINP: Mulliken population analysis =========================================================================== * Gross populations * Label definitions based on SO-labels * Number of spinors analyzed: - Orbitals in fermion ircop E1g :1..oo - Orbitals in fermion ircop E1u :1..oo * Print level: 1 =========================================================================== TRPINP: Property integral transformation =========================================================================== * Print level: 0 *The following operators will be transformed: 1 XDIPLEN B3u T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : XDIPLEN +00+ 1.0000000000000 (real) ........................................................................... 2 YDIPLEN B2u T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : YDIPLEN +00+ 1.0000000000000 (real) ........................................................................... 3 ZDIPLEN B1u T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : ZDIPLEN +00+ 1.0000000000000 (real) ........................................................................... --------------------------------------------------------------------------- =========================================================================== TRAINP: Set-up for index transformation =========================================================================== * General print level : 0 * Electronic orbitals only. * Total active space. Fermion ircop:E1g No explicit orbitals specified Fermion ircop:E1u No explicit orbitals specified * Set-up for 2-index transformation * LS Integrals not included in core Fock-matrix * SS Integrals not included in core Fock-matrix * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 * Set-up for 4-index transformation * Following scheme : 6 - write half-transformed integrals (ij|rs) to disk - sorting of intermediate 1HT integrals is disabled * Screening threshold :1.00E-14 * MO integral threshold :1.00E-14 * LS Integrals not transformed. * SS Integrals not transformed. * Gaunt Integrals not transformed. * 4-index transformed integrals written to file. * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- Ir atom dyall.v2z Nuclear Gaussian exponent for atom of charge 77.000 : 1.4398142103D+08 SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 Symmetry point group found: D(oo,h) The following symmetry elements were found: X Y Z Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Full group is: D(oo,h) Represented as: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Isotopic Masses --------------- Ir 192.962917 Total mass: 192.962917 amu Natural abundance: 62.600 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000 Atoms and basis sets -------------------- Number of atom types : 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- Ir 1 77 243 243 L - [24s19p12d9f|24s19p12d9f] ---------------------------------------------------------------------- 243 243 L - large components 550 550 S - small components ---------------------------------------------------------------------- total: 1 77 793 793 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, Theor. Chem. Acc. (2016) 135:128 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 3 1 Ir x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 1 Ir 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry B3u( 2) 1 Ir x 1 Symmetry B2u( 3) 2 Ir y 2 Symmetry B1u( 5) 3 Ir z 3 This is an atomic calculation. Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Total time used in ONEGEN (CPU) 0.17600000s and (WALL) 0.24282408s Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.20E-03 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 S B3u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.16E-06 S B2u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.16E-06 S B1u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.16E-06 S Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.21E-01 L B3u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B2u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B1u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.31E-01 S Ag * Deleted: 55(Proj: 55, Lindep: 0) Smin: 0.12E-06 S B1g * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.59E-07 S B2g * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.59E-07 S B3g * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.59E-07 ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! * Applied SL-regrouping on AO2MO tranf.matrix in SLSORT. Output from AMFIIN ------------------ The total nonzero charge of the system: 2 factor is : 2.00000000000000 1 .atom-nucleus charge: 77 partial charge: 2.00000000000000 Sum of all charges (real): 2.00000000000000 Total charge of the system is : 2 *** number of unique nuclei (from file MNF.INP): 1 *** calculate AMFI for atom type 1 with atomic charge 77 *** number of nuclei with identical atom type: 1 unique nuclei index: 1 *** file with AMFI integrals for this center: AOPROPER_MNF.77.1 ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators charge on the calculated atom: 2 Mean-field summation for electrons #: 75 ...electronic occupation of Re: [Xe+4f^14]6s^2 5d^5 **** Written to the file TOSCF for "relscf" **** charge: 77.000 nprimit: 24 19 12 9 closed sh.: 6 4 2 1 open sh.: 0 0 5 0 *** PROGRAM AT34 - ALLIANT - @V *** ----------------------------------- SYMMETRY SPECIES S P D F NUMBER OF BASIS FUNCTIONS: 24 19 12 9 NUMBER OF CLOSED SHELLS : 6 4 2 1 OPEN SHELL OCCUPATION : 0 0 5 0 ### SCF ITERATIONS ### ### NON-RELATIVISTIC APPROX. ### 1. iteration, total energy: 0.000000000000 2. iteration, total energy: -8838.407209685240 3. iteration, total energy: -15345.019132836052 4. iteration, total energy: -15652.560706010296 5. iteration, total energy: -16493.845366449572 6. iteration, total energy: -16766.056432632500 7. iteration, total energy: -16556.778204483478 8. iteration, total energy: -16676.681606795479 9. iteration, total energy: -16725.989716431668 10. iteration, total energy: -16790.985614281759 11. iteration, total energy: -16791.082773081758 12. iteration, total energy: -16795.480147891769 13. iteration, total energy: -16804.574976844546 14. iteration, total energy: -16804.848010009406 15. iteration, total energy: -16804.852977476141 16. iteration, total energy: -16804.853483998479 17. iteration, total energy: -16804.854867254893 18. iteration, total energy: -16804.854864161181 19. iteration, total energy: -16804.854865208286 20. iteration, total energy: -16804.854865110618 21. iteration, total energy: -16804.854869698582 22. iteration, total energy: -16804.854867796243 23. iteration, total energy: -16804.854867758851 24. iteration, total energy: -16804.854867781600 25. iteration, total energy: -16804.854869685045 25. iteration, total energy: -16804.854867772265 ### NON-RELATIVISTIC APPROX. ### 25 -0.1680485487D+05 -0.3360978403D+05 0.1680492916D+05 -0.1999995579D+01 ### SCF ITERATIONS ### ### EV APPROX. ### 1. iteration, total energy: -17312.648135111158 2. iteration, total energy: -17808.160134356876 3. iteration, total energy: -17808.726595797518 4. iteration, total energy: -17808.866637938565 5. iteration, total energy: -17809.572280757126 6. iteration, total energy: -17809.573508854508 7. iteration, total energy: -17809.573587055718 8. iteration, total energy: -17809.573628043559 9. iteration, total energy: -17809.573952656159 10. iteration, total energy: -17809.573951488528 11. iteration, total energy: -17809.573951441685 12. iteration, total energy: -17809.573951544771 13. iteration, total energy: -17809.573952967465 14. iteration, total energy: -17809.573951718154 15. iteration, total energy: -17809.573951720165 16. iteration, total energy: -17809.573951718412 17. iteration, total energy: -17809.573952967687 17. iteration, total energy: -17809.573951719442 ### EV OPERATOR RESULT ### 17 -0.1780957395D+05 -0.3824231625D+05 0.2043274230D+05 -0.1871619369D+01 *** AMFIIN: ADDING nucleus 1 with charge 77 to the BSSn Hamiltonian. ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* >>> CPU time used in mk_h2c is 2.09 seconds >>> WALL time used in mk_h2c is 2.25 seconds Nuclear Gaussian exponent for atom of charge 77.000 : 1.4398142103D+08 SYMADD: Detection of molecular symmetry --------------------------------------- Symmetry test threshold: 5.00E-06 Symmetry point group found: D(oo,h) The following symmetry elements were found: X Y Z Nuclear contribution to dipole moments -------------------------------------- All dipole components are zero by symmetry Total time used in ONEGEN (CPU) 0.03200000s and (WALL) 0.04047489s Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.20E-03 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B3u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B2u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B1u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.31E-01 Output from LINSYM ------------------ Parity MJ Functions(total) Functions(LC) Functions(SC) 1 1/2 48 48 0 1 -3/2 24 24 0 1 5/2 12 12 0 -1 1/2 56 56 0 -1 -3/2 37 37 0 -1 5/2 18 18 0 -1 -7/2 9 9 0 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 84 120 204 No. of positronic orbitals (NPSH): 0 0 0 Total no. of orbitals (NORB): 84 120 204 >>> CPU time used in PAMSET is 2.34 seconds >>> WALL time used in PAMSET is 2.57 seconds Reading formatted DFPCMO file...Done. =========================================================================== * PCMOIN: Coefficients read from formatted DFPCMO and written to unformatted DFCOEF =========================================================================== ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* ########## START ITERATION NO. 1 ########## Thu Dec 27 14:48:40 2018 * REACMO: Coefficients read from file DFCOEF - Total energy: -17749.1999179556187 * Heading : atomic test calculations Thu Dec 27 14:48:40 2018 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 2.04% 19.57% 5.44% 33.16% 1.29600000s >>> CPU time used in SO Fock is 1.47 seconds >>> WALL time used in SO Fock is 1.48 seconds It. 1 -17749.19991796 1.77D+04 0.00D+00 4.96D-08 1.48800000s LL Thu Dec 27 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -17749.19991796 1.77D+04 0.00D+00 4.96D-08 1.48800000s LL Thu Dec 27 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 1 iterations. * Average elapsed time per iteration: LL : 1.49551606s TOTAL ENERGY ------------ Electronic energy : -17749.199917955175 Other contributions to the total energy Nuclear repulsion energy : 0.000000000000 Sum of all contributions to the energy Total energy : -17749.199917955175 Eigenvalues ----------- * Block 1 in E1g: Omega = 1/2 * Closed shell, f = 1.0000 -2824.417841250 ( 2) -509.714039006 ( 2) -130.956162658 ( 2) -91.909854768 ( 2) -89.046791190 ( 2) -38.630520638 ( 2) -24.487433827 ( 2) -23.878186182 ( 2) * Virtual eigenvalues, f = 0.0000 -13.942864803 ( 2) -9.628339331 ( 2) -9.508875188 ( 2) -7.629821769 ( 2) -5.783739891 ( 2) -5.728188828 ( 2) -4.876679774 ( 2) -3.850876644 ( 2) -3.831809666 ( 2) -2.979694985 ( 2) 1.971468677 ( 2) 2.308498221 ( 2) 6.362728398 ( 2) 33.498591141 ( 2) 34.653544293 ( 2) 65.205558165 ( 2) 127.107864260 ( 2) 130.382929587 ( 2) 253.113571921 ( 2) 380.723005446 ( 2) 390.148491817 ( 2) 762.082959412 ( 2) 1060.093125820 ( 2) 1089.986551850 ( 2) 2005.276355080 ( 2) 2956.561140350 ( 2) 3065.104957770 ( 2) 4721.548327990 ( 2) 8907.784412100 ( 2) 9424.461124610 ( 2) 9995.969230010 ( 2) 19360.707780700 ( 2) 35106.049822300 ( 2) 60959.781362900 ( 2) 103360.388286000 ( 2) 173881.927255000 ( 2) 294161.470628000 ( 2) 507698.374853000 ( 2) 910951.245294000 ( 2) 1785929.291090000 ( 2) * Block 2 in E1g: Omega = 3/2 * Closed shell, f = 1.0000 -91.909854768 ( 2) -89.046791189 ( 2) -24.487433827 ( 2) -23.878186182 ( 2) * Virtual eigenvalues, f = 0.0000 -9.628339332 ( 2) -9.508875189 ( 2) -5.783739891 ( 2) -5.728188829 ( 2) -3.850876644 ( 2) -3.831809666 ( 2) 1.971468675 ( 2) 2.308498221 ( 2) 33.498591140 ( 2) 34.653544292 ( 2) 127.107864260 ( 2) 130.382929588 ( 2) 380.723005447 ( 2) 390.148491817 ( 2) 1060.093125820 ( 2) 1089.986551850 ( 2) 2956.561140350 ( 2) 3065.104957770 ( 2) 8907.784412100 ( 2) 9424.461124610 ( 2) * Block 3 in E1g: Omega = 5/2 * Closed shell, f = 1.0000 -89.046791188 ( 2) -23.878186181 ( 2) * Virtual eigenvalues, f = 0.0000 -9.508875190 ( 2) -5.728188829 ( 2) -3.831809667 ( 2) 2.308498220 ( 2) 34.653544293 ( 2) 130.382929588 ( 2) 390.148491817 ( 2) 1089.986551850 ( 2) 3065.104957770 ( 2) 9424.461124610 ( 2) * Block 1 in E1u: Omega = 1/2 * Closed shell, f = 1.0000 -488.007696657 ( 2) -428.113160118 ( 2) -121.247557658 ( 2) -107.931995189 ( 2) -34.499973560 ( 2) -31.297881322 ( 2) -15.086477420 ( 2) -14.960957112 ( 2) * Open shell #1, f = 0.1667 -12.994885299 ( 2) -12.286381736 ( 2) * Virtual eigenvalues, f = 0.0000 -7.048729354 ( 2) -7.031982504 ( 2) -7.008903165 ( 2) -6.750983846 ( 2) -4.406852352 ( 2) -4.405218355 ( 2) -4.394048843 ( 2) -4.323873613 ( 2) -2.622388367 ( 2) -2.591331730 ( 2) -2.512225165 ( 2) -2.500888734 ( 2) 1.880814119 ( 2) 3.487947016 ( 2) 8.281725282 ( 2) 8.403580556 ( 2) 39.491433761 ( 2) 39.776316478 ( 2) 40.119752586 ( 2) 45.469259683 ( 2) 121.932958900 ( 2) 123.010352756 ( 2) 159.306607479 ( 2) 177.255598978 ( 2) 348.957360250 ( 2) 352.698060805 ( 2) 502.346186342 ( 2) 552.590191029 ( 2) 1094.388226760 ( 2) 1113.553931050 ( 2) 1406.908318940 ( 2) 1541.097950810 ( 2) 3610.640526120 ( 2) 3965.270090520 ( 2) 8635.854056410 ( 2) 9557.870170700 ( 2) 19493.289751400 ( 2) 21793.725302100 ( 2) 42380.339412200 ( 2) 47902.345435100 ( 2) 91596.089065600 ( 2) 104754.305710000 ( 2) 205435.517285000 ( 2) 237783.280577000 ( 2) 516569.050975000 ( 2) 603989.791110000 ( 2) * Block 2 in E1u: Omega = 3/2 * Closed shell, f = 1.0000 -428.113160118 ( 2) -107.931995187 ( 2) -31.297881322 ( 2) -15.086477420 ( 2) -14.960957108 ( 2) * Open shell #1, f = 0.1667 -12.286381738 ( 2) * Virtual eigenvalues, f = 0.0000 -7.031982505 ( 2) -7.008903164 ( 2) -6.750983847 ( 2) -4.405218356 ( 2) -4.394048843 ( 2) -4.323873613 ( 2) -2.622388368 ( 2) -2.591331729 ( 2) -2.500888735 ( 2) 3.487947015 ( 2) 8.281725281 ( 2) 8.403580557 ( 2) 39.776316478 ( 2) 40.119752587 ( 2) 45.469259682 ( 2) 121.932958900 ( 2) 123.010352757 ( 2) 177.255598979 ( 2) 348.957360250 ( 2) 352.698060806 ( 2) 552.590191030 ( 2) 1094.388226760 ( 2) 1113.553931050 ( 2) 1541.097950810 ( 2) 3965.270090520 ( 2) 9557.870170700 ( 2) 21793.725302100 ( 2) 47902.345435100 ( 2) 104754.305710000 ( 2) 237783.280577000 ( 2) 603989.791110000 ( 2) * Block 3 in E1u: Omega = 5/2 * Closed shell, f = 1.0000 -15.086477421 ( 2) -14.960957111 ( 2) * Virtual eigenvalues, f = 0.0000 -7.031982506 ( 2) -7.008903165 ( 2) -4.405218356 ( 2) -4.394048843 ( 2) -2.622388368 ( 2) -2.591331730 ( 2) 8.281725281 ( 2) 8.403580556 ( 2) 39.776316478 ( 2) 40.119752586 ( 2) 121.932958900 ( 2) 123.010352757 ( 2) 348.957360250 ( 2) 352.698060806 ( 2) 1094.388226760 ( 2) 1113.553931050 ( 2) * Block 4 in E1u: Omega = 7/2 * Closed shell, f = 1.0000 -14.960957109 ( 2) * Virtual eigenvalues, f = 0.0000 -7.008903166 ( 2) -4.394048843 ( 2) -2.591331730 ( 2) 8.403580556 ( 2) 40.119752587 ( 2) 123.010352758 ( 2) 352.698060806 ( 2) 1113.553931050 ( 2) * Occupation in fermion symmetry E1g * Inactive orbitals 1/2 1/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2 3/2 1/2 1/2 3/2 5/2 * Virtual orbitals 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 3/2 1/2 5/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2 3/2 1/2 3/2 1/2 5/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 * Occupation in fermion symmetry E1u * Inactive orbitals 1/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2 5/2 3/2 1/2 1/2 5/2 7/2 3/2 * Active orbitals 1/2 3/2 1/2 * Virtual orbitals 1/2 5/2 3/2 1/2 7/2 5/2 1/2 3/2 3/2 1/2 1/2 5/2 3/2 1/2 7/2 5/2 1/2 3/2 3/2 1/2 5/2 3/2 1/2 7/2 5/2 1/2 3/2 1/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 7/2 5/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 5/2 7/2 3/2 3/2 1/2 1/2 3/2 5/2 1/2 3/2 5/2 7/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2 3/2 5/2 7/2 1/2 1/2 3/2 5/2 3/2 1/2 7/2 5/2 3/2 1/2 1/2 3/2 1/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 3/2 1/2 1/2 1/2 3/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 * Occupation of subblocks E1g: 1/2 3/2 5/2 closed shells (f=1.0000): 8 4 2 open shell #1 (f=0.1667): 0 0 0 virtual shells (f=0.0000): 40 20 10 tot.num. of pos.erg shells: 48 24 12 E1u: 1/2 3/2 5/2 7/2 closed shells (f=1.0000): 8 5 2 1 open shell #1 (f=0.1667): 2 1 0 0 virtual shells (f=0.0000): 46 31 16 8 tot.num. of pos.erg shells: 56 37 18 9 * HOMO - LUMO gap: E(LUMO) : -13.94286480 au (symmetry E1g) - E(HOMO) : -12.28638174 au (symmetry E1u) ------------------------------------------ gap : -1.65648307 au * INFO: E(LUMO) - E(HOMO) small or negative. ************************************************************************** ********************** Mulliken population analysis ********************** ************************************************************************** Fermion ircop E1g ----------------- Fermion ircop E1g ----------------- * Electronic eigenvalue no. 1: -2824.4178412500 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 2: -509.71403900600 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 3: -130.95616265800 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 4: -91.909854767900 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 5: -91.909854767600 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 6: -89.046791190400 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 7: -89.046791189300 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 8: -89.046791187900 (Occupation : f = 1.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 9: -38.630520637900 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 10: -24.487433827400 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 11: -24.487433826700 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 12: -23.878186182400 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 13: -23.878186182100 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 14: -23.878186181500 (Occupation : f = 1.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 15: -13.942864803000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 16: -9.6283393321900 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 17: -9.6283393314900 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 18: -9.5088751902500 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 19: -9.5088751890900 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 20: -9.5088751884200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 21: -7.6298217690000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 22: -5.7837398913500 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 23: -5.7837398908300 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 24: -5.7281888291200 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 25: -5.7281888286500 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 26: -5.7281888284300 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 27: -4.8766797741100 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 28: -3.8508766443200 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 29: -3.8508766440700 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 30: -3.8318096665700 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 31: -3.8318096664200 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 32: -3.8318096662500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 33: -2.9796949846800 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 34: 1.9714686752100 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 35: 1.9714686767200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 36: 2.3084982199700 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 37: 2.3084982206600 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 38: 2.3084982213900 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 39: 6.3627283982100 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 40: 33.498591139800 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 41: 33.498591140700 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 42: 34.653544292400 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 43: 34.653544292500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 44: 34.653544292500 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 45: 65.205558165200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 46: 127.10786426000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 47: 127.10786426000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 48: 130.38292958700 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 49: 130.38292958800 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 50: 130.38292958800 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 51: 253.11357192100 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 52: 380.72300544600 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 53: 380.72300544700 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 54: 390.14849181700 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 55: 390.14849181700 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 56: 390.14849181700 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 57: 762.08295941200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 58: 1060.0931258200 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 59: 1060.0931258200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 60: 1089.9865518500 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 61: 1089.9865518500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 62: 1089.9865518500 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 63: 2005.2763550800 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 64: 2956.5611403500 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 65: 2956.5611403500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 66: 3065.1049577700 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 67: 3065.1049577700 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 68: 3065.1049577700 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 69: 4721.5483279900 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 70: 8907.7844121000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 71: 8907.7844121000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 72: 9424.4611246100 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 73: 9424.4611246100 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 74: 9424.4611246100 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 75: 9995.9692300100 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 76: 19360.707780700 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 77: 35106.049822300 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 78: 60959.781362900 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 79: 103360.38828600 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 80: 173881.92725500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 81: 294161.47062800 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 82: 507698.37485300 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 83: 910951.24529400 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 84: 1785929.2910900 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 ** Total gross population of fermion ircop E1g ** Gross Total | L Ag Ir s L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------------------------------------- total 28.00000 | 8.00000 2.66667 2.66667 2.66667 4.00000 4.00000 4.00000 Fermion ircop E1u ----------------- Fermion ircop E1u ----------------- * Electronic eigenvalue no. 1: -488.00769665700 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 2: -428.11316011800 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 3: -428.11316011800 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 4: -121.24755765800 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 5: -107.93199518900 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 6: -107.93199518700 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 7: -34.499973560300 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 8: -31.297881322000 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 9: -31.297881321600 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 10: -15.086477421000 (Occupation : f = 1.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 11: -15.086477420400 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 12: -15.086477420100 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 13: -14.960957112100 (Occupation : f = 1.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 14: -14.960957110500 (Occupation : f = 1.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 15: -14.960957108900 (Occupation : f = 1.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 16: -14.960957108000 (Occupation : f = 1.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 17: -12.994885299300 (Occupation : f = 0.1667) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 18: -12.286381737600 (Occupation : f = 0.1667) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 19: -12.286381736100 (Occupation : f = 0.1667) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 20: -7.0487293537300 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 21: -7.0319825055000 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 22: -7.0319825046500 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 23: -7.0319825040600 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 24: -7.0089031655500 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 25: -7.0089031652300 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 26: -7.0089031646000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 27: -7.0089031643300 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 28: -6.7509838467400 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 29: -6.7509838459400 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 30: -4.4068523522000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 31: -4.4052183559700 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 32: -4.4052183556300 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 33: -4.4052183554200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 34: -4.3940488430900 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 35: -4.3940488429500 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 36: -4.3940488427200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 37: -4.3940488426000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 38: -4.3238736132400 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 39: -4.3238736130100 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 40: -2.6223883682500 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 41: -2.6223883676200 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 42: -2.6223883671800 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 43: -2.5913317303300 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 44: -2.5913317301300 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 45: -2.5913317296700 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 46: -2.5913317294100 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 47: -2.5122251645800 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 48: -2.5008887345000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 49: -2.5008887344900 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 50: 1.8808141188700 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 51: 3.4879470151700 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 52: 3.4879470163400 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 53: 8.2817252805100 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 54: 8.2817252814200 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 55: 8.2817252821500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 56: 8.4035805557600 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 57: 8.4035805559000 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 58: 8.4035805564600 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 59: 8.4035805569900 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 60: 39.491433760900 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 61: 39.776316477600 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 62: 39.776316478000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 63: 39.776316478300 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 64: 40.119752586300 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 65: 40.119752586500 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 66: 40.119752586800 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 67: 40.119752586900 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 68: 45.469259682400 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 69: 45.469259682500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 70: 121.93295890000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 71: 121.93295890000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 72: 121.93295890000 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 73: 123.01035275600 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 74: 123.01035275700 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 75: 123.01035275700 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 76: 123.01035275800 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 77: 159.30660747900 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 78: 177.25559897800 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 79: 177.25559897900 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 80: 348.95736025000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 81: 348.95736025000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 82: 348.95736025000 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 83: 352.69806080500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 84: 352.69806080600 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 85: 352.69806080600 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 86: 352.69806080600 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 87: 502.34618634200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 88: 552.59019102900 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 89: 552.59019103000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 90: 1094.3882267600 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 91: 1094.3882267600 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 92: 1094.3882267600 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 93: 1113.5539310500 (Occupation : f = 0.0000) m_j= -7/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 94: 1113.5539310500 (Occupation : f = 0.0000) m_j= 5/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 95: 1113.5539310500 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 96: 1113.5539310500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 97: 1406.9083189400 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 98: 1541.0979508100 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 99: 1541.0979508100 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 100: 3610.6405261200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 101: 3965.2700905200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 102: 3965.2700905200 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 103: 8635.8540564100 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 104: 9557.8701707000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 105: 9557.8701707000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 106: 19493.289751400 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 107: 21793.725302100 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 108: 21793.725302100 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 109: 42380.339412200 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 110: 47902.345435100 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 111: 47902.345435100 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 112: 91596.089065600 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 113: 104754.30571000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 114: 104754.30571000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 115: 205435.51728500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 116: 237783.28057700 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 117: 237783.28057700 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 118: 516569.05097500 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 119: 603989.79111000 (Occupation : f = 0.0000) m_j= -3/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 120: 603989.79111000 (Occupation : f = 0.0000) m_j= 1/2 ============================================================================================ * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 ** Total gross population of fermion ircop E1u ** Gross Total | L B3uIr px L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr py L B2uIr fxxy L B2uIr fyyy -------------------------------------------------------------------------------------------------------------------------------- total 33.00000 | 6.33333 0.80000 1.60000 1.60000 6.33333 1.60000 0.80000 Gross | L B2uIr fyzz L B1uIr pz L B1uIr fxxz L B1uIr fyyz L B1uIr fzzz L Au Ir fxyz -------------------------------------------------------------------------------------------------- total | 1.60000 6.33333 1.60000 1.60000 0.80000 2.00000 *** Total gross population *** Gross Total | L Ag Ir s L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B3uIr px L B3uIr fxxx L B3uIr fxyy -------------------------------------------------------------------------------------------------------------------------------- total 61.00000 | 8.00000 2.66667 2.66667 2.66667 6.33333 0.80000 1.60000 Gross | L B3uIr fxzz L B2uIr py L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1gIr dxy L B1uIr pz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- total | 1.60000 6.33333 1.60000 0.80000 1.60000 4.00000 6.33333 1.60000 Gross | L B1uIr fyyz L B1uIr fzzz L B2gIr dxz L B3gIr dyz L Au Ir fxyz ----------------------------------------------------------------------------------- total | 1.60000 0.80000 4.00000 4.00000 2.00000 =========================================================================== * PCMOUT: Coefficients read from unformatted DFCOEF and written to formatted DFPCMO =========================================================================== ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Thu Dec 27 14:48:42 2018 * REACMO: Coefficients read from file DFCOEF - Total energy: -17749.1999179556187 * Heading : atomic test calculations Thu Dec 27 14:48:40 2018 Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. * Orbital ranges for 4-index transformation: * Fermion ircop E1g Index 1 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 2 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 3 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 4 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 * Fermion ircop E1u Index 1 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 2 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 3 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 4 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 * Core orbital ranges for 2-index transformation: * Fermion ircop E1g Index 1 8 orbitals 1 2 3 4 5 6 7 8 * Fermion ircop E1u Index 1 6 orbitals 1 2 3 4 5 6 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ********************************************************************** **************** Transformation of property integrals **************** ********************************************************************** Transformation started at : Thu Dec 27 14:48:42 2018 * REACMO: Coefficients read from file DFCOEF - Total energy: -17749.1999179556187 * Heading : atomic test calculations Thu Dec 27 14:48:40 2018 Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. * Fermion ircop E1g Index 1 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 2 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 * Fermion ircop E1u Index 1 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 2 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Thu Dec 27 14:48:42 2018 * REACMO: Coefficients read from file DFCOEF - Total energy: -17749.1999179556187 * Heading : atomic test calculations Thu Dec 27 14:48:40 2018 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 17.06% 26.86% 1.12% 17.61% 0.98000002s >>> CPU time used in SO Fock is 0.98 seconds >>> WALL time used in SO Fock is 0.99 seconds * REAFCK: Fock matrix read from file /tmp/milias/DIRAC_Z61.x2c.2Paver.scf_cc33e_2P12.2fs_Ir.dyall * Heading : atomic test calculations Thu Dec 27 14:48:40 2018 Core energy (includes nuclear repulsion) : -16075.1252814196 - Electronic part : -16075.1252814196 - One-electron terms : -18680.9048773897 - Two-electron terms : 2605.7795959701 MOLFDIR file MRCONEE is written - Integral class 1 : (LL|??) - Beginning task 1 of 11 after 0. seconds and 0. CPU-seconds - Beginning task 2 of 11 after 0. seconds and 0. CPU-seconds - Beginning task 3 of 11 after 0. seconds and 0. CPU-seconds - Beginning task 4 of 11 after 0. seconds and 0. CPU-seconds - Beginning task 5 of 11 after 1. seconds and 1. CPU-seconds - Beginning task 6 of 11 after 1. seconds and 1. CPU-seconds - Beginning task 7 of 11 after 2. seconds and 2. CPU-seconds - Beginning task 8 of 11 after 2. seconds and 2. CPU-seconds - Beginning task 9 of 11 after 4. seconds and 4. CPU-seconds - Beginning task 10 of 11 after 6. seconds and 6. CPU-seconds - Beginning task 11 of 11 after 8. seconds and 8. CPU-seconds - Integral class 2 : (SS|??) Node 0 finished first half transformation 97749399 HT integrals written ( 67.04%, 2.18 GB) >>> CPU time used in 2HT_all is 30.73 seconds - Binary file MDCINT was written. * Screening statistics: (LL|LL)ints : 0.00% Total : 0.00% ------ Timing report (in CPU seconds) of module integral transformation Time in First halftransformation 11.376 seconds Time in Second halftransformation 30.728 seconds Total wall time used in PAMTRA : 00:00:44 Total CPU time used in PAMTRA (master only) : 00:00:43 Transformation ended at : Thu Dec 27 14:49:26 2018 ---< Process 1 of 1----< Relativistic Coupled Cluster program RELCCSD Written by : Lucas Visscher NASA Ames Research Center (1994) Rijks Universiteit Groningen (1995) Odense Universitet (1996-1997) VU University Amsterdam (1998-present) This module is documented in - Initial implementation : L. Visscher, T.J. Lee and K.G. Dyall, J. Chem. Phys. 105 (1996) 8769. - Fock Space (FSCC): L. Visscher, E. Eliav and U. Kaldor, J. Chem. Phys. 115 (2002) 9720. - Intermediate Hamiltonian E. Eliav, M. J. Vilkas, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 122 (2005) 224113. - Parallelization : M. Pernpointner and L. Visscher, J. Comp. Chem. 24 (2003) 754. - MP2 expectation values : J.N.P. van Stralen, L. Visscher, C.V. Larsen and H.J.Aa. Jensen," Chem. Phys. 311 (2005) 81. - CC expectation values : A. Shee, L. Visscher, and T. Saue, J. Chem. Phys. 145 (2016) 184107. - EOM-IP/EA/EE energies : A. Shee, T. Saue, L. Visscher, and A.S.P. Gomes, J. Chem. Phys. 149 (2018) 174113. Today is : 27 Dec 18 The time is : 14:49:26 Initializing word-addressable I/O : the FORTRAN-interface is used with 16 KB records =========================================================================== **RELCC: Set-up for Coupled Cluster calculations =========================================================================== * General print level : 1 NEL_F1: 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 Total memory available : 16384.00 MB 16.000 GB INFO: No old restart file(s) found! Configuration in highest pointgroup Eg Eg Eu Eu Spinor class : occupied 6 6 11 10 Spinor class : virtual 30 30 52 53 Configuration in abelian subgroup 1g -1g 3g -3g 5g -5g 1u -1u Spinor class : occupied 3 3 2 2 1 1 5 4 Spinor class : virtual 15 15 10 10 5 5 21 22 Configuration in abelian subgroup 3u -3u 5u -5u 7u -7u Spinor class : occupied 3 3 2 2 1 1 Spinor class : virtual 16 16 10 10 5 5 Number of electrons : 33 Total charge of the system : 16 Number of virtual spinors : 165 Complex arithmetic mode : F Do integral sorting : T Do energy calculation : T Do gradient calculation : F Do response calculation : F Debug information : F Timing information : T Print level : 1 Memory limit (MWord) : 2048 Interface used : DIRAC6 Leave after calculating the total memory demand : F Memory for reading and sorting integrals : 27971043 8-byte words Core used for calculating amplitudes : 8012858 8-byte words Core used for in core evaluation of triples : 8541176 8-byte words Memory used for active modules : 27971043 8-byte words Predicted RelCC memory demand: 213.40 MB Predicted RelCC memory demand: 0.208 GB Expanding and sorting integrals to unique types : Type OOOO : 16986 integrals Type VOOO : 173781 integrals Type VVOO : 431664 integrals Type VOVO : 1781415 integrals Type VOVV : 4423754 integrals Type VVVV : 10987112 integrals Start sorting of integral classes at 27 Dec 18 14:49:26 Sorting of first 4 classes done at 27 Dec 18 14:49:34 Need 1 passes to sort VOVV integrals Pass 1 ended at 27 Dec 18 14:49:43 VOVV sorting done at 27 Dec 18 14:49:43 Need 1 passes to sort VVVV integrals Pass 1 ended at 27 Dec 18 14:49:54 VVVV sorting done at 27 Dec 18 14:49:54 Reading Coulomb integrals : File date : 27 Dec 18 File time : 14:49:54 # of integrals 45329972 Finished sorting of integrals Checking the orbital energies, the program computes the diagonal elements of the reconstructed Fock matrix. Differences with the reference orbital energies are given if above a treshold or if iprnt > 1 Spinor Abelian Rep. Energy Recalc. Energy O 1 1 1g -38.6305206379 -38.5874582347 O 2 2 1g -24.4874338267 -24.4648625082 O 3 3 1g -23.8781861824 -23.8383691365 O 1 4 -1g -38.6305206379 -38.5973545587 O 2 5 -1g -24.4874338267 -24.4524337906 O 3 6 -1g -23.8781861824 -23.8407325761 O 1 7 3g -24.4874338274 -24.4772912259 O 2 8 3g -23.8781861821 -23.8360056968 O 1 9 -3g -24.4874338274 -24.4400050732 O 2 10 -3g -23.8781861821 -23.8430960157 O 1 11 5g -23.8781861815 -23.8336422570 O 1 12 -5g -23.8781861815 -23.8454594551 O 1 13 1u -34.4999735603 -34.5189385524 O 2 14 1u -31.2978813220 -31.2514478931 O 3 15 1u -15.0864774201 -15.0602234528 O 4 16 1u -14.9609571121 -14.9233967344 O 5 17 1u -12.9948852993 -13.3680460122 O 1 18 -1u -34.4999735603 -34.4441052476 O 2 19 -1u -31.2978813220 -31.2553964979 O 3 20 -1u -15.0864774201 -15.0540495372 O 4 21 -1u -14.9609571121 -14.9250746893 O 1 22 3u -31.2978813216 -31.2474992882 O 2 23 3u -15.0864774204 -15.0663973684 O 3 24 3u -14.9609571080 -14.9217187790 O 1 25 -3u -31.2978813216 -31.2593451026 O 2 26 -3u -15.0864774204 -15.0478756216 O 3 27 -3u -14.9609571080 -14.9267526438 O 1 28 5u -15.0864774210 -15.0725712840 O 2 29 5u -14.9609571105 -14.9200408242 O 1 30 -5u -15.0864774210 -15.0417017062 O 2 31 -5u -14.9609571105 -14.9284305988 O 1 32 7u -14.9609571089 -14.9183628689 O 1 33 -7u -14.9609571089 -14.9301085534 V 1 34 1g -13.9428648030 -13.8902186364 V 2 35 1g -9.6283393315 -9.6859931526 V 3 36 1g -9.5088751884 -9.4656462196 V 4 37 1g -7.6298217690 -7.6194209233 V 5 38 1g -5.7837398908 -5.7897628164 V 6 39 1g -5.7281888284 -5.7201717462 V 7 40 1g -4.8766797741 -4.8734004645 V 8 41 1g -3.8508766441 -3.8519528325 V 9 42 1g -3.8318096662 -3.8296149479 V 10 43 1g -2.9796949847 -2.9792627875 V 11 44 1g 1.9714686767 1.9729948433 V 12 45 1g 2.3084982214 2.3339643877 V 13 46 1g 6.3627283982 6.3917908552 V 14 47 1g 33.4985911407 33.5248506080 V 15 48 1g 34.6535442925 34.6902311505 V 1 49 -1g -13.9428648030 -13.9659571737 V 2 50 -1g -9.6283393315 -9.6246642750 V 3 51 -1g -9.5088751884 -9.4726380281 V 4 52 -1g -7.6298217690 -7.6273223831 V 5 53 -1g -5.7837398908 -5.7805650389 V 6 54 -1g -5.7281888284 -5.7215559791 V 7 55 -1g -4.8766797741 -4.8756486738 V 8 56 -1g -3.8508766441 -3.8497837577 V 9 57 -1g -3.8318096662 -3.8299714857 V 10 58 -1g -2.9796949847 -2.9795364246 V 11 59 -1g 1.9714686767 1.9896988481 V 12 60 -1g 2.3084982214 2.3309421840 V 13 61 -1g 6.3627283982 6.3805197044 V 14 62 -1g 33.4985911407 33.5325647342 V 15 63 -1g 34.6535442925 34.6886477108 V 1 64 3g -9.6283393322 -9.7473220319 V 2 65 3g -9.5088751891 -9.4586544112 V 3 66 3g -5.7837398913 -5.7989605941 V 4 67 3g -5.7281888286 -5.7187875133 V 5 68 3g -3.8508766443 -3.8541219074 V 6 69 3g -3.8318096664 -3.8292584101 V 7 70 3g 1.9714686752 1.9562908380 V 8 71 3g 2.3084982207 2.3369865914 V 9 72 3g 33.4985911398 33.5171364820 V 10 73 3g 34.6535442924 34.6918145902 V 1 74 -3g -9.6283393322 -9.5633353960 V 2 75 -3g -9.5088751891 -9.4796298367 V 3 76 -3g -5.7837398913 -5.7713672612 V 4 77 -3g -5.7281888286 -5.7229402121 V 5 78 -3g -3.8508766443 -3.8476146828 V 6 79 -3g -3.8318096664 -3.8303280235 V 7 80 -3g 1.9714686752 2.0064028531 V 8 81 -3g 2.3084982207 2.3279199801 V 9 82 -3g 33.4985911398 33.5402788599 V 10 83 -3g 34.6535442924 34.6870642711 V 1 84 5g -9.5088751903 -9.4516626028 V 2 85 5g -5.7281888291 -5.7174032804 V 3 86 5g -3.8318096666 -3.8289018723 V 4 87 5g 2.3084982200 2.3400087951 V 5 88 5g 34.6535442925 34.6933980299 V 1 89 -5g -9.5088751903 -9.4866216453 V 2 90 -5g -5.7281888291 -5.7243244450 V 3 91 -5g -3.8318096666 -3.8306845613 V 4 92 -5g 2.3084982200 2.3248977764 V 5 93 -5g 34.6535442925 34.6854808314 V 1 94 1u -12.2863817361 -11.7611838844 V 2 95 1u -7.0487293537 -7.0764375144 V 3 96 1u -7.0319825041 -7.0381832539 V 4 97 1u -7.0089031646 -6.9918858353 V 5 98 1u -6.7509838459 -6.7395347595 V 6 99 1u -4.4068523522 -4.4117074644 V 7 100 1u -4.4052183554 -4.4059509912 V 8 101 1u -4.3940488427 -4.3886817191 V 9 102 1u -4.3238736130 -4.3213222399 V 10 103 1u -2.6223883672 -2.6219439256 V 11 104 1u -2.5913317297 -2.5785679772 V 12 105 1u -2.5122251646 -2.5127818034 V 13 106 1u -2.5008887345 -2.5006253359 V 14 107 1u 1.8808141189 1.8451880090 V 15 108 1u 3.4879470163 3.5192957020 V 16 109 1u 8.2817252821 8.3003725507 V 17 110 1u 8.4035805565 8.4312887924 V 18 111 1u 39.4914337609 39.4887053497 V 19 112 1u 39.7763164783 39.8084864535 V 20 113 1u 40.1197525863 40.1565876099 V 21 114 1u 45.4692596825 45.5107554656 V 1 115 -1u -12.9948852993 -12.4106986899 V 2 116 -1u -12.2863817361 -11.7811795450 V 3 117 -1u -7.0487293537 -7.0320490255 V 4 118 -1u -7.0319825041 -7.0275293921 V 5 119 -1u -7.0089031646 -6.9941327871 V 6 120 -1u -6.7509838459 -6.7422626969 V 7 121 -1u -4.4068523522 -4.4033834883 V 8 122 -1u -4.4052183554 -4.4029477073 V 9 123 -1u -4.3940488427 -4.3893645675 V 10 124 -1u -4.3238736130 -4.3219104433 V 11 125 -1u -2.6223883672 -2.6158159908 V 12 126 -1u -2.5913317297 -2.5800877083 V 13 127 -1u -2.5122251646 -2.5117822845 V 14 128 -1u -2.5008887345 -2.5006817893 V 15 129 -1u 1.8808141189 1.9202239365 V 16 130 -1u 3.4879470163 3.5140887544 V 17 131 -1u 8.2817252821 8.3056837001 V 18 132 -1u 8.4035805565 8.4297000982 V 19 133 -1u 39.4914337609 39.5390111976 V 20 134 -1u 39.7763164783 39.8109991071 V 21 135 -1u 40.1197525863 40.1558131821 V 22 136 -1u 45.4692596825 45.5076620246 V 1 137 3u -12.2863817376 -11.7411882244 V 2 138 3u -7.0319825047 -7.0488371158 V 3 139 3u -7.0089031643 -6.9896388834 V 4 140 3u -6.7509838467 -6.7368068222 V 5 141 3u -4.4052183556 -4.4089542751 V 6 142 3u -4.3940488426 -4.3879988707 V 7 143 3u -4.3238736132 -4.3207340366 V 8 144 3u -2.6223883676 -2.6280718605 V 9 145 3u -2.5913317294 -2.5770482460 V 10 146 3u -2.5008887345 -2.5005688825 V 11 147 3u 3.4879470152 3.5245026493 V 12 148 3u 8.2817252814 8.2950614012 V 13 149 3u 8.4035805570 8.4328774867 V 14 150 3u 39.7763164780 39.8059737998 V 15 151 3u 40.1197525869 40.1573620379 V 16 152 3u 45.4692596824 45.5138489068 V 1 153 -3u -12.2863817376 -11.8011752053 V 2 154 -3u -7.0319825047 -7.0168755303 V 3 155 -3u -7.0089031643 -6.9963797389 V 4 156 -3u -6.7509838467 -6.7449906343 V 5 157 -3u -4.4052183556 -4.3999444234 V 6 158 -3u -4.3940488426 -4.3900474159 V 7 159 -3u -4.3238736132 -4.3224986466 V 8 160 -3u -2.6223883676 -2.6096880560 V 9 161 -3u -2.5913317294 -2.5816074393 V 10 162 -3u -2.5008887345 -2.5007382427 V 11 163 -3u 3.4879470152 3.5088818069 V 12 164 -3u 8.2817252814 8.3109948494 V 13 165 -3u 8.4035805570 8.4281114040 V 14 166 -3u 39.7763164780 39.8135117607 V 15 167 -3u 40.1197525869 40.1550387543 V 16 168 -3u 45.4692596824 45.5045685834 V 1 169 5u -7.0319825055 -7.0594909779 V 2 170 5u -7.0089031652 -6.9873919317 V 3 171 5u -4.4052183560 -4.4119575591 V 4 172 5u -4.3940488430 -4.3873160223 V 5 173 5u -2.6223883683 -2.6341997955 V 6 174 5u -2.5913317301 -2.5755285150 V 7 175 5u 8.2817252805 8.2897502516 V 8 176 5u 8.4035805559 8.4344661808 V 9 177 5u 39.7763164776 39.8034611462 V 10 178 5u 40.1197525865 40.1581364657 V 1 179 -5u -7.0319825055 -7.0062216684 V 2 180 -5u -7.0089031652 -6.9986266908 V 3 181 -5u -4.4052183560 -4.3969411394 V 4 182 -5u -4.3940488430 -4.3907302643 V 5 183 -5u -2.6223883683 -2.6035601211 V 6 184 -5u -2.5913317301 -2.5831271705 V 7 185 -5u 8.2817252805 8.3163059989 V 8 186 -5u 8.4035805559 8.4265227097 V 9 187 -5u 39.7763164776 39.8160244142 V 10 188 -5u 40.1197525865 40.1542643265 V 1 189 7u -7.0089031655 -6.9851449798 V 2 190 7u -4.3940488431 -4.3866331739 V 3 191 7u -2.5913317303 -2.5740087839 V 4 192 7u 8.4035805558 8.4360548751 V 5 193 7u 40.1197525868 40.1589108937 V 1 194 -7u -7.0089031655 -7.0008736425 V 2 195 -7u -4.3940488431 -4.3914131127 V 3 196 -7u -2.5913317303 -2.5846469015 V 4 197 -7u 8.4035805558 8.4249340156 V 5 198 -7u 40.1197525868 40.1534898987 The diagonal elements of the recomputed Fock matrix (right column) are used in perturbation expressions. Use the perturbative values (MP2, CCSD[T]/(T)/-T) with care, especially in open shell calculations because the orbitals need not always be semi-canonical as was assumed in the derivation of the expressions. The missing terms may be important ! Nuclear repulsion + core energy : -16075.125281419572275 Zero order electronic energy : -735.138193784556847 First order electronic energy : -939.414255404631263 Electronic energy : -1674.552449189188110 SCF energy : -17749.677730608760612 Energy calculations MP2 module active : T CCSD module active : T CCSD(T) module active : T MP2 results SCF energy : -17749.677730608760612 MP2 correlation energy : -0.917691305065619 Total MP2 energy : -17750.595421913825703 T1 diagnostic : 0.002225986308656 CCSD options : Maximum number of iterations : 30 Maximum size of DIIS space : 8 Convergence criterium : 0.1E-06 NIT ENERGY RMS T1-DIAGN 0 -0.917670898095644 1.000000000000000 0.00223 1 -0.776891684085265 0.000064778887966 0.00399 2 -0.809497061384360 0.000026555267952 0.00377 3 -0.811451342826340 0.000017193912823 0.00409 4 -0.810540729923498 0.000006430960468 0.00398 5 -0.811222667048402 0.000003416367749 0.00396 6 -0.811201134137652 0.000002282448129 0.00394 7 -0.811200039828713 0.000003042780784 0.00394 8 -0.811214259589872 0.000001822977398 0.00395 9 -0.811251014844070 0.000001392018128 0.00395 10 -0.811204329699362 0.000000929242177 0.00395 11 -0.811229973056444 0.000000082207415 0.00396 CCSD results SCF energy : -17749.677730608760612 CCSD correlation energy : -0.811229973056444 Total CCSD energy : -17750.488960581817082 T1 diagnostic : 0.003955149209835 Convergence : 0.000000082207415 Number or iterations used : 11 Performance of BLAS GEMM in the largest contractions Contraction type Performance VVVV+VOVV (in B: includes I/O) 16.55 Gflop/s VOVO (in H: only XGEMM) 33.34 Gflop/s VOVO (in T2EQN: includes sort) 21.70 Gflop/s Perturbative treatment of triple excitations SCF energy : -17749.677730608760612 CCSD correlation energy : -0.811229973056444 4th order triples correction : -0.009372625950479 5th order triples (T) correction : 0.000535703629568 5th order triples -T correction : 0.000776937631004 Total CCSD+T energy : -17750.498333207768155 Total CCSD(T) energy : -17750.497797504140181 Total CCSD-T energy : -17750.497556270136556 -------------------------------------------------------------------------------- Today is : 27 Dec 18 The time is : 14:50:07 Status of the calculations Integral sort # 1 : Completed, restartable Integral sort # 2 : Completed, restartable Fock matrix build : Completed, restartable MP2 energy calculation : Completed, restartable CCSD energy calculation : Completed, restartable CCSD(T) energy calculation : Completed, restartable CCSD(T) energy calculation : Completed, restartable Overview of calculated energies @ SCF energy : -17749.677730608760612 @ MP2 correlation energy : -0.917691305065619 @ CCSD correlation energy : -0.811229973056444 @ 4th order triples correction : -0.009372625950479 @ 5th order triples (T) correction : 0.000535703629568 @ 5th order triples -T correction : 0.000776937631004 @ Total MP2 energy : -17750.595421913825703 @ Total CCSD energy : -17750.488960581817082 @ Total CCSD+T energy : -17750.498333207768155 @ Total CCSD(T) energy : -17750.497797504140181 @ Total CCSD-T energy : -17750.497556270136556 -------------------------------------------------------------------------------- ------ Timing report (in CPU seconds) of module RELCCSD Time in Sorting of integrals 28.048 seconds Time in CCSD equations 4.484 seconds Time in - T1 equations 0.688 seconds Time in --- T1EQNS T*[HOV - F]*T 0.004 seconds Time in --- T1EQNS HOV*T2(A,C,I,K 0.008 seconds Time in --- T1EQNS VOOO*TAU 0.076 seconds Time in --- T1EQNS VOVV contribution 0.332 seconds Time in --- T1EQNS VOVO * T(C,K) 0.068 seconds Time in -- GOINTM 0.016 seconds Time in -- GVINTM 0.148 seconds Time in -- AINTM 0.044 seconds Time in -- HINTM 1.292 seconds Time in --- HINTM: VOVV*T 0.356 seconds Time in --- HINTM: VVOO contribution 0.440 seconds Time in -- T2 EQNS 2.020 seconds Time in --- T2EQNS: TAU*AINTM contract 0.024 seconds Time in --- T2EQNS: VOVV*T1 0.304 seconds Time in --- T2EQNS: HINTM*T2 0.676 seconds Time in -- BINTM 0.752 seconds Time in - adding partial T1/T2 amplitu 0.004 seconds Time in - DIIS extrapolation 0.184 seconds Time in CCSD(T) evaluation 8.264 seconds Time in -- T3CORR: Integral resorting 0.056 seconds Time in -- T3CORR: VOVV contraction 4.356 seconds Time in -- T3CORR: energy calculation 3.820 seconds Timing of main modules : Wallclock (s) CPU on master (s) Before CC driver : ************ 47.46 Initialization : 0.04 0.04 Integral sorting : 28.03 28.05 Energy calculation : 12.79 12.79 First order properties : 0.00 0.00 Second order properties : 0.00 0.00 Fock space energies : 0.00 0.00 EOMCC energies : 0.00 0.00 Untimed parts : 0.00 0.00 Total time in CC driver : 41. 40.88 Statistics for the word-addressable I/O Number of write calls 2295. Number of read calls 2329. Megabytes written 124.018 Megabytes read 2025.011 Seconds spent in reads 0.948 Seconds spent in writes 0.959 average I/O speed for write (Mb/s) 130.784 average I/O speed for read (Mb/s) 2112.542 CPU time (seconds) used in RELCCSD: 40.8800 CPU time (seconds) used before RELCCSD: 47.4600 CPU time (seconds) used in total sofar: 88.3400 --- Normal end of RELCCSD Run --- ################################################################################ ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Thu Dec 27 14:50:07 2018 Host name : lxir127 Dynamical Memory Usage Summary for Master Mean allocation size (Mb) : 45.73 Largest 10 allocations 915.53 Mb at subroutine pamtra_+0x16b for WORK in PAMTRA 915.53 Mb at subroutine pamana_+0x97 for WORK in PAMANA 915.53 Mb at subroutine psiscf_+0xa9 for WORK in PSISCF 915.53 Mb at subroutine pamset_+0x189f for WORK in PAMSET - 2 915.53 Mb at subroutine gmotra_+0x3c74 for WORK in GMOTRA - part 2 915.53 Mb at subroutine gmotra_+0x5b52 for WORK in GMOTRA 915.53 Mb at subroutine pamset_+0x97 for WORK in PAMSET - 1 915.53 Mb at subroutine MAIN__+0x2b1 for test allocation of work array in DIRAC mai 83.84 Mb at subroutine ccseti_+0xa26 for vta 83.84 Mb at subroutine ccseti_+0x9fd for vt Peak memory usage: 915.98 MB Peak memory usage: 0.895 GB reached at subroutine : butobs_no_work_+0x8f for variable : buf in butobs MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 72, stime: 15, minflt: 349326, majflt: 105, nvcsw: 388, nivcsw: 343, maxrss: 885788 >>>> Total WALL time used in DIRAC: 1min30s DIRAC pam run in /tmp/milias-dirac-software/trunk-devel/test/tutorial_Ir_16plus