DIRAC serial starts by allocating 64000000 words (488 MB) of memory out of the allowed maximum of 2147483648 words (16384 MB) Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Lucas Visscher Vrije Universiteit Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast UiT The Arctic University of Norway * * Trond Saue Universite Toulouse III France * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer University of Copenhagen Denmark * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Erik D. Hedegård Lund University Sweden * * Trygve Helgaker University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak Bhabha Atomic Research Centre India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Jógvan Magnus H. Olsen University of Southern Denmark Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema Vrije Universiteit Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen Vrije Universiteit Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC17 (2017), * * written by L. Visscher, H. J. Aa. Jensen, R. Bast, and T. Saue, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, * * Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, * * C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, * * G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, * * R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, * * A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, * * T. Winther, and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* Version information ------------------- Branch | master Commit hash | 6f411de Commit author | Radovan Bast Commit date | Fri Jul 21 12:02:52 2017 +0200 Configuration and build information ----------------------------------- Who compiled | milias Compiled on server | lxir127 Operating system | Linux-3.16.0-4-amd64 CMake version | 3.5.0 CMake generator | Unix Makefiles CMake build type | release Configuration time | 2017-07-25 16:04:15.015803 Python version | 2.7.9 Fortran compiler | /cvmfs/it.gsi.de/compiler/intel/15.0/bin/ifort Fortran compiler version | 15.0 Fortran compiler flags | -xHost -w -assume byterecl -g -traceback -DVAR_IFORT -i8 -xHost -w -assume byterecl -g -traceback -DVAR_IFORT -i8 C compiler | /cvmfs/it.gsi.de/compiler/intel/15.0/bin/icc C compiler version | 15.0 C compiler flags | -xHost -g -wd981 -wd279 -wd383 -wd1572 -wd177 -xHost -g -wd981 -wd279 -wd383 -wd1572 -wd177 C++ compiler | /cvmfs/it.gsi.de/compiler/intel/15.0/bin/icpc C++ compiler version | 15.0.3 C++ compiler flags | -xHost -Wno-unknown-pragmas -xHost -Wno-unknown-pragmas Static linking | False 64-bit integers | True MPI parallelization | False MPI launcher | unknown Math libraries | -Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_lapack95_ilp64.a;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_intel_ilp64.so;-openmp;-Wl,--end-group;-Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_intel_ilp64.so;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_intel_thread.so;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/usr/lib/x86_64-linux-gnu/libm.so;-openmp;-Wl,--end-group Builtin BLAS library | OFF Builtin LAPACK library | OFF Explicit libraries | unknown Compile definitions | MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;BUILD_GEN1INT;HAS_PELIB;MOD_QCORR;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ESR;MOD_KRCC;MOD_SRDFT Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Wed Jul 26 09:43:16 2017 Host name : lxir127 Contents of the input file -------------------------- **DIRAC .TITLE BeH,scf .WAVE F .PROPERTIES **HAMILTONIAN .X2C **INTEGRALS *READINP .UNCONTRACT **WAVE FUNCTIONS .SCF *SCF .CLOSED SHELL 4 .OPEN SHELL 1 1/2 .EVCCNV 1.0D-9 5.0D-7 .MAXITR 55 **PROPERTIES .DIPOLE *END OF Contents of the molecule file ----------------------------- INTGRL BeH STO-2G smallest basis C 2 2 X Y 4. 1 Be 0.0000000000 0.0000000000 0.0000000000 LARGE BASIS STO-2G 1. 1 H 0.0000000000 0.0000000000 1.7325000297 LARGE BASIS STO-2G FINISH ************************************************************************** ******************************** BeH,scf ******************************** ************************************************************************** Jobs in this run: * Wave function * Properties ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 Nuclear model: Gaussian charge distribution. Two-electron integrals not calculated. Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated. Changes of defaults for *READIN ------------------------------- Uncontracted basis forced, irrespective of basis input file. *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- BeH STO-2G smallest basis Nuclear Gaussian exponent for atom of charge 4.000 : 7.8788802914D+08 Nuclear Gaussian exponent for atom of charge 1.000 : 2.1248239171D+09 Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Point group: C2v * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane * Group multiplication table | E C2z Oxz Oyz -----+-------------------- E | E C2z Oxz Oyz C2z | C2z E Oyz Oxz Oxz | Oxz Oyz E C2z Oyz | Oyz Oxz C2z E * Character table | E C2z Oxz Oyz -----+-------------------- A1 | 1 1 1 1 B1 | 1 -1 1 -1 B2 | 1 -1 -1 1 A2 | 1 1 -1 -1 * Direct product table | A1 B1 B2 A2 -----+-------------------- A1 | A1 B1 B2 A2 B1 | B1 A1 A2 B2 B2 | B2 A2 A1 B1 A2 | A2 B2 B1 A1 ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A1 + A2 + B1 + B2 Spinor structure ---------------- * Fermion irrep no.: 1 La | A1 (1) A2 (2) | Sa | A2 (1) A1 (2) | Lb | B1 (3) B2 (4) | Sb | B2 (3) B1 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A1 1 B1 j B2 k A2 i QM-QM nuclear repulsion energy : 2.308802269223 Isotopic Masses --------------- Be 9.012183 H 1.007825 Total mass: 10.020008 amu Natural abundance: 99.985 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.174257 Atoms and basis sets -------------------- Number of atom types : 2 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- Be 1 4 10 10 L - [4s2p|4s2p] H 1 1 2 2 L - [2s|2s] ---------------------------------------------------------------------- 12 12 L - large components ---------------------------------------------------------------------- total: 2 5 12 12 Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 Elements References -------- ---------- H - He: W.J. Hehre, R.F. Stewart and J.A. Pople, J. Chem.Phys. 2657 (1969). Li - Ne, W.J. Hehre, R. Ditchfield, R.F. Stewart, J.A. Pople, Na - Ar, J. Chem. Phys. 52, 2769 (1970). K - Kr: *********************************************************************** Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 6 1 Be x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 4 H x 0.0000000000 5 y 0.0000000000 6 z 1.7325000297 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 2 Be 0.0000000000 0.0000000000 0.0000000000 H 0.0000000000 0.0000000000 0.9167995291 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 2 2 2 0 Symmetry A1 ( 1) 1 Be z 3 2 H z 6 Symmetry B1 ( 2) 3 Be x 1 4 H x 4 Symmetry B2 ( 3) 5 Be y 2 6 H y 5 Interatomic separations (in Angstroms): --------------------------------------- Be H Be 0.000000 H 0.916800 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: H Be 0.916800 Nuclear repulsion energy : 2.308802269223 Hartree GETLAB: AO-labels ----------------- * Large components: 5 1 L Be 1 s 2 L Be 1 px 3 L Be 1 py 4 L Be 1 pz 5 L H 1 s * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 5 1 L A1 Be s 2 L A1 Be pz 3 L A1 H s 4 L B1 Be px 5 L B2 Be py * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 8 2 2 0 Number of large orbitals in each symmetry: 8 2 2 0 Number of small orbitals in each symmetry: 0 0 0 0 * Large component functions Symmetry A1 ( 1) 4 functions: Be s 2 functions: Be pz 2 functions: H s Symmetry B1 ( 2) 2 functions: Be px Symmetry B2 ( 3) 2 functions: Be py *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** - BSS with properties ! * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set =========================================================================== Set-up for AMFI/RELSCF calculations =========================================================================== ...no reading under "*AMFI ", thus default settings * AMFI code print level: 0 * RELSCF code print level: 0 * RELSCF maximum number of iterations: 50 * All AMFI mean-field summations are on neutral individual atoms. * order of AMFI contributions to the X2C Hamiltonian: 2 --> adding spin-same orbit MFSSO2 terms. ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF Wave function jobs in execution order (expanded): * Hartree-Fock calculation =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 1 * Open shell SCF calculation using Average-of-Configuration * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 4 2 N/A 1.0000 1.0000 0.0000 Open shell no. 1 1.00 1 N/A 0.5000 0.0000 2.0000 ---------------------------------------------------------------------------- Total 5.00 3 f is the fraction occupation; a and alpha open shell coupling coefficients. * Sum of atomic potentials used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 to improve convergence (default value). The final open-shell orbital energies are recalculated with 1.0 scaling, such that all occupied orbital energies correspond to Koopmans' theorem ionization energies. ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-09 Allowed convergence:5.000D-07 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 55 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. *************************************************************************** ***************************** Property module ***************************** *************************************************************************** * Print level: 0 * Input label: **PROPE * Properties calculated for the following wave functions: 1: DHF These initial settings of center and origins might be changed later: * Operator center (a.u.): 0.0000000000 0.0000000000 0.0000000000 * Gauge origin (a.u.): 0.0000000000 0.0000000000 0.0000000000 * Dipole origin (a.u.): 0.0000000000 0.0000000000 0.0000000000 * Perform 4c->2c picture change transformation of the four-component property operators =========================================================================== Magnetic properties: =========================================================================== =========================================================================== Dipole moment =========================================================================== ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- BeH STO-2G smallest basis Nuclear Gaussian exponent for atom of charge 4.000 : 7.8788802914D+08 Nuclear Gaussian exponent for atom of charge 1.000 : 2.1248239171D+09 Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Point group: C2v * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane * Group multiplication table | E C2z Oxz Oyz -----+-------------------- E | E C2z Oxz Oyz C2z | C2z E Oyz Oxz Oxz | Oxz Oyz E C2z Oyz | Oyz Oxz C2z E * Character table | E C2z Oxz Oyz -----+-------------------- A1 | 1 1 1 1 B1 | 1 -1 1 -1 B2 | 1 -1 -1 1 A2 | 1 1 -1 -1 * Direct product table | A1 B1 B2 A2 -----+-------------------- A1 | A1 B1 B2 A2 B1 | B1 A1 A2 B2 B2 | B2 A2 A1 B1 A2 | A2 B2 B1 A1 ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A1 + A2 + B1 + B2 Spinor structure ---------------- * Fermion irrep no.: 1 La | A1 (1) A2 (2) | Sa | A2 (1) A1 (2) | Lb | B1 (3) B2 (4) | Sb | B2 (3) B1 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A1 1 B1 j B2 k A2 i QM-QM nuclear repulsion energy : 2.308802269223 Isotopic Masses --------------- Be 9.012183 H 1.007825 Total mass: 10.020008 amu Natural abundance: 99.985 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.174257 Atoms and basis sets -------------------- Number of atom types : 2 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- Be 1 4 10 10 L - [4s2p|4s2p] H 1 1 2 2 L - [2s|2s] ---------------------------------------------------------------------- 12 12 L - large components 32 32 S - small components ---------------------------------------------------------------------- total: 2 5 44 44 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 Elements References -------- ---------- H - He: W.J. Hehre, R.F. Stewart and J.A. Pople, J. Chem.Phys. 2657 (1969). Li - Ne, W.J. Hehre, R. Ditchfield, R.F. Stewart, J.A. Pople, Na - Ar, J. Chem. Phys. 52, 2769 (1970). K - Kr: *********************************************************************** Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 6 1 Be x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 4 H x 0.0000000000 5 y 0.0000000000 6 z 1.7325000297 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 2 Be 0.0000000000 0.0000000000 0.0000000000 H 0.0000000000 0.0000000000 0.9167995291 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 2 2 2 0 Symmetry A1 ( 1) 1 Be z 3 2 H z 6 Symmetry B1 ( 2) 3 Be x 1 4 H x 4 Symmetry B2 ( 3) 5 Be y 2 6 H y 5 Interatomic separations (in Angstroms): --------------------------------------- Be H Be 0.000000 H 0.916800 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: H Be 0.916800 Nuclear repulsion energy : 2.308802269223 Hartree Nuclear contribution to dipole moments -------------------------------------- au Debye z 1.73250003 4.40361660 1 Debye = 2.54177000 a.u. Generating Lowdin canonical matrix: ----------------------------------- L A1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.45E-01 L B1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 L B2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 S A1 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.53E-01 S B1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.80E-01 S B2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.80E-01 S A2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.54E+00 ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! * Applied SL-regrouping on AO2MO tranf.matrix in SLSORT. Output from AMFIIN ------------------ *** number of unique nuclei (from file MNF.INP): 2 *** calculate AMFI for atom type 1 with atomic charge 4 *** number of nuclei with identical atom type: 1 unique nuclei index: 1 *** file with AMFI integrals for this center: AOPROPER_MNF.4.1 ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators charge on the calculated atom: 0 Mean-field summation for electrons #: 4 ...electronic occupation of Be: [He]2s^2 **** Written to the file TOSCF for "relscf" **** charge: 4.000 nprimit: 4 2 0 0 closed sh.: 2 0 0 0 open sh.: 0 0 0 0 *** PROGRAM AT34 - ALLIANT - @V *** ----------------------------------- SYMMETRY SPECIES S P D F NUMBER OF BASIS FUNCTIONS: 4 2 NUMBER OF CLOSED SHELLS : 2 0 OPEN SHELL OCCUPATION : 0 0 ### SCF ITERATIONS ### ### NON-RELATIVISTIC APPROX. ### 1. iteration, total energy: 0.000000000000 2. iteration, total energy: -13.568539398057 3. iteration, total energy: -13.961944110456 4. iteration, total energy: -13.968297508659 5. iteration, total energy: -13.968409914691 6. iteration, total energy: -13.968465927494 7. iteration, total energy: -13.968467437346 8. iteration, total energy: -13.968467478176 9. iteration, total energy: -13.968467478581 10. iteration, total energy: -13.968467479302 11. iteration, total energy: -13.968467479312 11. iteration, total energy: -13.968467479312 ### NON-RELATIVISTIC APPROX. ### 11 -0.1396846748D+02 -0.2675398016D+02 0.1278551268D+02 -0.2092523063D+01 ### SCF ITERATIONS ### ### EV APPROX. ### 1. iteration, total energy: -13.969515126880 2. iteration, total energy: -13.969516316559 3. iteration, total energy: -13.969516318684 4. iteration, total energy: -13.969516318695 5. iteration, total energy: -13.969516318349 5. iteration, total energy: -13.969516318695 ### EV OPERATOR RESULT ### 5 -0.1396951632D+02 -0.2675646707D+02 0.1278695075D+02 -0.2092482218D+01 *** AMFIIN: ADDING nucleus 1 with charge 4 to the BSSn Hamiltonian. *** calculate AMFI for atom type 2 with atomic charge 1 *** number of nuclei with identical atom type: 1 no 2e-SO corrections for hydrogen or hydrogen-like 1e-systems. AMFI is skipped . unique nuclei index: 2 *** This (AMFI) unique nuclei is not to be calculated ! Only pass (to read input basis) through the AMFI routine. ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators skip explicit AMFI - reading AMFI integrals from file AOPROPER_MNF.xxx! ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* Nuclear Gaussian exponent for atom of charge 4.000 : 7.8788802914D+08 Nuclear Gaussian exponent for atom of charge 1.000 : 2.1248239171D+09 Nuclear contribution to dipole moments -------------------------------------- au Debye z 1.73250003 4.40361660 1 Debye = 2.54177000 a.u. Generating Lowdin canonical matrix: ----------------------------------- L A1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.45E-01 L B1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 L B2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** No. of positive energy orbitals (NESH): 12 No. of negative energy orbitals (NPSH): 0 Total no. of orbitals (NORB): 12 ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. Improved by a sum of atomic screening potentials. ########## START ITERATION NO. 1 ########## Wed Jul 26 09:43:16 2017 E_HOMO...E_LUMO, symmetry 1: 2 -0.67884 3 -0.24206 4 -0.21500 => Calculating sum of orbital energies It. 1 -7.040426570246 0.00D+00 0.00D+00 0.00D+00 0.00400000s Scr. nuclei Wed Jul 26 ########## START ITERATION NO. 2 ########## Wed Jul 26 09:43:16 2017 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.43874 3 -0.16149 4 0.16123 >>> Total wall time: 0.02369499s, and total CPU time : 0.00800000s ########## END ITERATION NO. 2 ########## Wed Jul 26 09:43:16 2017 It. 2 -14.36796695596 7.33D+00 8.87D-01 4.51D-01 0.00800000s LL Wed Jul 26 ########## START ITERATION NO. 3 ########## Wed Jul 26 09:43:16 2017 3 *** Differential density matrix. DCOVLP = 0.9461 3 *** Differential density matrix. DVOVLP( 1) = 0.6638 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00400000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50629 3 -0.17190 4 0.14117 >>> Total wall time: 0.01889610s, and total CPU time : 0.00400000s ########## END ITERATION NO. 3 ########## Wed Jul 26 09:43:16 2017 It. 3 -14.42470425143 5.67D-02 -5.59D-02 4.51D-02 DIIS 2 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 4 ########## Wed Jul 26 09:43:16 2017 4 *** Differential density matrix. DCOVLP = 0.9855 4 *** Differential density matrix. DVOVLP( 1) = 0.9254 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00399999s E_HOMO...E_LUMO, symmetry 1: 2 -0.50685 3 -0.17459 4 0.14005 >>> Total wall time: 0.02582312s, and total CPU time : 0.00400000s ########## END ITERATION NO. 4 ########## Wed Jul 26 09:43:16 2017 It. 4 -14.42665825175 1.95D-03 -7.22D-03 7.38D-03 DIIS 3 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 5 ########## Wed Jul 26 09:43:16 2017 5 *** Differential density matrix. DCOVLP = 1.0003 5 *** Differential density matrix. DVOVLP( 1) = 0.9796 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50833 3 -0.17421 4 0.13968 >>> Total wall time: 0.01622486s, and total CPU time : 0.00400000s ########## END ITERATION NO. 5 ########## Wed Jul 26 09:43:16 2017 It. 5 -14.42674374612 8.55D-05 -1.86D-03 1.38D-03 DIIS 4 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 6 ########## Wed Jul 26 09:43:16 2017 6 *** Differential density matrix. DCOVLP = 0.9996 6 *** Differential density matrix. DVOVLP( 1) = 0.9969 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.01716900s, and total CPU time : 0.00400000s ########## END ITERATION NO. 6 ########## Wed Jul 26 09:43:16 2017 It. 6 -14.42674653838 2.79D-06 -2.22D-04 1.57D-04 DIIS 5 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 7 ########## Wed Jul 26 09:43:16 2017 7 *** Differential density matrix. DCOVLP = 1.0000 7 *** Differential density matrix. DVOVLP( 1) = 0.9997 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.01759410s, and total CPU time : 0.00400000s ########## END ITERATION NO. 7 ########## Wed Jul 26 09:43:16 2017 It. 7 -14.42674657154 3.32D-08 -2.81D-05 2.53D-05 DIIS 6 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 8 ########## Wed Jul 26 09:43:16 2017 8 *** Differential density matrix. DCOVLP = 1.0000 8 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.01720309s, and total CPU time : 0.00400000s ########## END ITERATION NO. 8 ########## Wed Jul 26 09:43:16 2017 It. 8 -14.42674657230 7.57D-10 -4.42D-06 2.85D-06 DIIS 7 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 9 ########## Wed Jul 26 09:43:16 2017 9 *** Differential density matrix. DCOVLP = 1.0000 9 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.02251482s, and total CPU time : 0.00400000s ########## END ITERATION NO. 9 ########## Wed Jul 26 09:43:16 2017 It. 9 -14.42674657233 2.83D-11 8.14D-07 1.61D-06 DIIS 8 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 10 ########## Wed Jul 26 09:43:16 2017 10 *** Differential density matrix. DCOVLP = 1.0000 10 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.02205086s, and total CPU time : 0.00400000s ########## END ITERATION NO. 10 ########## Wed Jul 26 09:43:16 2017 It. 10 -14.42674657234 1.61D-11 9.69D-07 6.63D-07 DIIS 9 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 11 ########## Wed Jul 26 09:43:16 2017 11 *** Differential density matrix. DCOVLP = 1.0000 11 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.01719785s, and total CPU time : 0.00000000s ########## END ITERATION NO. 11 ########## Wed Jul 26 09:43:16 2017 It. 11 -14.42674657235 3.05D-12 -6.20D-07 5.85D-08 DIIS 9 0.00000000s LL Wed Jul 26 ########## START ITERATION NO. 12 ########## Wed Jul 26 09:43:16 2017 12 *** Differential density matrix. DCOVLP = 1.0000 12 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.00738311s, and total CPU time : 0.00400000s ########## END ITERATION NO. 12 ########## Wed Jul 26 09:43:16 2017 It. 12 -14.42674657235 -1.07D-14 -2.97D-08 8.59D-09 DIIS 5 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 13 ########## Wed Jul 26 09:43:16 2017 13 *** Differential density matrix. DCOVLP = 1.0000 13 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.72% 0.00% 0.00% 0.00400001s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.01581597s, and total CPU time : 0.00400000s ########## END ITERATION NO. 13 ########## Wed Jul 26 09:43:16 2017 It. 13 -14.42674657235 6.75D-14 -2.76D-09 3.53D-09 DAMP 25% 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 14 ########## Wed Jul 26 09:43:16 2017 14 *** Differential density matrix. DCOVLP = 1.0000 14 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 5.88% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.00686193s, and total CPU time : 0.00800000s ########## END ITERATION NO. 14 ########## Wed Jul 26 09:43:16 2017 It. 14 -14.42674657235 -2.66D-13 -1.12D-09 2.36D-09 DAMP 25% 0.00800000s LL Wed Jul 26 ########## START ITERATION NO. 15 ########## Wed Jul 26 09:43:16 2017 15 *** Differential density matrix. DCOVLP = 1.0000 15 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 4.95% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.00657392s, and total CPU time : 0.00000000s ########## END ITERATION NO. 15 ########## Wed Jul 26 09:43:16 2017 It. 15 -14.42674657235 -6.04D-14 -7.83D-10 1.52D-09 DAMP 25% 0.00000000s LL Wed Jul 26 ########## START ITERATION NO. 16 ########## Wed Jul 26 09:43:16 2017 16 *** Differential density matrix. DCOVLP = 1.0000 16 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 6.60% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50834 3 -0.17419 4 0.13970 >>> Total wall time: 0.00635099s, and total CPU time : 0.00000000s ########## END ITERATION NO. 16 ########## Wed Jul 26 09:43:16 2017 It. 16 -14.42674657235 -8.53D-14 -5.53D-10 1.01D-09 DAMP 25% 0.00000000s LL Wed Jul 26 ########## START ITERATION NO. 17 ########## Wed Jul 26 09:43:16 2017 17 *** Differential density matrix. DCOVLP = 1.0000 17 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 8.26% 1.34% 3.20% 0.00000000s >>> Total wall time: 0.01502180s, and total CPU time : 0.00400000s ########## END ITERATION NO. 17 ########## Wed Jul 26 09:43:16 2017 It. 17 -14.42674657235 1.02D-12 3.94D-10 6.88D-10 DAMP 25% 0.00400000s LL Wed Jul 26 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-09 Allowed convergence:5.000D-07 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -7.040426570246 0.00D+00 0.00D+00 0.00D+00 0.00400000s Scr. nuclei Wed Jul 26 It. 2 -14.36796695596 7.33D+00 8.87D-01 4.51D-01 0.00800000s LL Wed Jul 26 It. 3 -14.42470425143 5.67D-02 -5.59D-02 4.51D-02 DIIS 2 0.00400000s LL Wed Jul 26 It. 4 -14.42665825175 1.95D-03 -7.22D-03 7.38D-03 DIIS 3 0.00400000s LL Wed Jul 26 It. 5 -14.42674374612 8.55D-05 -1.86D-03 1.38D-03 DIIS 4 0.00400000s LL Wed Jul 26 It. 6 -14.42674653838 2.79D-06 -2.22D-04 1.57D-04 DIIS 5 0.00400000s LL Wed Jul 26 It. 7 -14.42674657154 3.32D-08 -2.81D-05 2.53D-05 DIIS 6 0.00400000s LL Wed Jul 26 It. 8 -14.42674657230 7.57D-10 -4.42D-06 2.85D-06 DIIS 7 0.00400000s LL Wed Jul 26 It. 9 -14.42674657233 2.83D-11 8.14D-07 1.61D-06 DIIS 8 0.00400000s LL Wed Jul 26 It. 10 -14.42674657234 1.61D-11 9.69D-07 6.63D-07 DIIS 9 0.00400000s LL Wed Jul 26 It. 11 -14.42674657235 3.05D-12 -6.20D-07 5.85D-08 DIIS 9 0.00000000s LL Wed Jul 26 It. 12 -14.42674657235 -1.07D-14 -2.97D-08 8.59D-09 DIIS 5 0.00400000s LL Wed Jul 26 It. 13 -14.42674657235 6.75D-14 -2.76D-09 3.53D-09 DAMP 25% 0.00400000s LL Wed Jul 26 It. 14 -14.42674657235 -2.66D-13 -1.12D-09 2.36D-09 DAMP 25% 0.00800000s LL Wed Jul 26 It. 15 -14.42674657235 -6.04D-14 -7.83D-10 1.52D-09 DAMP 25% 0.00000000s LL Wed Jul 26 It. 16 -14.42674657235 -8.53D-14 -5.53D-10 1.01D-09 DAMP 25% 0.00000000s LL Wed Jul 26 It. 17 -14.42674657235 1.02D-12 3.94D-10 6.88D-10 DAMP 25% 0.00400000s LL Wed Jul 26 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 17 iterations. * Average elapsed time per iteration: No 2-ints : 0.01046109s LL : 0.01602353s TOTAL ENERGY ------------ Electronic energy : -16.735548841570228 Other contributions to the total energy Nuclear repulsion energy : 2.308802269222841 Sum of all contributions to the energy Total energy : -14.426746572347387 Eigenvalues ----------- * Fermion symmetry E1 * Closed shell, f = 1.0000 -4.45380400409135 ( 2) -0.50833768927319 ( 2) * Open shell #1, f = 0.5000 -0.17418728109347 ( 2) * Virtual eigenvalues, f = 0.0000 0.13969874511389 ( 2) 0.13970968780560 ( 2) 0.40360630682201 ( 2) 0.84713173560205 ( 2) 0.85148529888448 ( 2) 0.85154107770823 ( 2) 1.17603015353047 ( 2) 2.08825271138835 ( 2) 11.48152385033353 ( 2) * HOMO - LUMO gap: E(LUMO) : 0.13969875 au (symmetry E1 ) - E(HOMO) : -0.17418728 au (symmetry E1 ) ------------------------------------------ gap : 0.31388603 au ******************************************************************* ************************* Property module ************************* ******************************************************************* This is output from the Dirac property module: HF & DFT first order properties Trond Saue First-order ESR properties Hans Joergen Aa. Jensen et al. MP2 first order properties: J. N. P. van Stralen, L. Visscher, C. V. Larsen and H. J. Aa Jensen, Chem. Phys. 311 (2005) 81. KR-RPA second-order properties Hans Joergen Aa. Jensen and Trond Saue KR-QR third order properties Patrick Norman and Hans Joergen Aa. Jensen Molecular gradient Joern Thyssen Additional contributions from: Thomas Enevoldsen, Miroslav Ilias (London orbitals) ******************************************************* ********** Properties for DHF wave function ********** ******************************************************* ************************************************************************** *************************** Expectation values *************************** ************************************************************************** s0 t0 ---------------------------------------------------------------------------- Dipole length: X : 0.00000000E+00 a.u. T F Dipole length: Y : 0.00000000E+00 a.u. T F Dipole length: Z : -1.773247454749 a.u. F F ---------------------------------------------------------------------------- s0 = T : Expectation value zero by point group symmetry. t0 = T : Expectation value zero by time reversal symmetry. ---------------------------------------------------------------------------- * Dipole moment: Electronic Nuclear Total contribution contribution contribution ---------------------------------------------------------------------------- x 0.00000000 Debye 0.00000000 Debye 0.00000000 Debye y 0.00000000 Debye 0.00000000 Debye 0.00000000 Debye z -4.50718718 Debye 4.40361660 Debye -0.10357058 Debye ---------------------------------------------------------------------------- x 0.00000000 a.u. 0.00000000 a.u. 0.00000000 a.u. y 0.00000000 a.u. 0.00000000 a.u. 0.00000000 a.u. z -1.77324745 a.u. 1.73250003 a.u. -0.04074743 a.u. ---------------------------------------------------------------------------- 1 a.u = 2.54177000 Debye ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Wed Jul 26 09:43:16 2017 Host name : lxir127 Dynamical Memory Usage Summary for Master Mean allocation size (Mb) : 92.41 Largest 10 allocations 488.28 Mb at subroutine pamprp_+0x2d2 for WORK in PAMPRP_1 488.28 Mb at subroutine psiscf_+0xa9 for WORK in PSISCF 488.28 Mb at subroutine pamset_+0x1b3d for WORK in PAMSET - 2 488.28 Mb at subroutine gmotra_+0x3ee4 for WORK in GMOTRA - part 2 488.28 Mb at subroutine gmotra_+0x6045 for WORK in GMOTRA 488.28 Mb at subroutine pamset_+0xa8 for WORK in PAMSET - 1 488.28 Mb at subroutine MAIN__+0x295 for test allocation of work array in DIRAC mai 0.76 Mb at subroutine paminp_+0x8a for PAMINP WORK array 0.03 Mb at subroutine xpldef_+0x23c for INTADR in XPLDEF 0.03 Mb at subroutine xpldef_+0x21d for INTREP in XPLDEF Peak memory usage (Mb) : 488.00 reached at subroutine : butobs_no_work_+0x8f for variable : buf in butobs MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 0, stime: 0, minflt: 6305, majflt: 93, nvcsw: 667, nivcsw: 41, maxrss: 40772 >>>> Total WALL time used in DIRAC: 0s DIRAC pam run in /u/milias/Work/qch/software/dirac/trunk/test/ffpt_dipmom_polariz_relcc