DIRAC serial starts by allocating 64000000 words (488 MB) of memory out of the allowed maximum of 2147483648 words (16384 MB) Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Lucas Visscher Vrije Universiteit Amsterdam Netherlands * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast UiT The Arctic University of Norway * * Trond Saue Universite Toulouse III France * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer University of Copenhagen Denmark * * Timo Fleig Universite Toulouse III France * * Olav Fossgaard UiT The Arctic University of Norway * * Andre S. P. Gomes CNRS/Universite de Lille France * * Erik D. Hedegård Lund University Sweden * * Trygve Helgaker University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob TU Braunschweig Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky UiT The Arctic University of Norway * * Ossama Kullie University of Kassel Germany * * Jon K. Laerdahl University of Oslo Norway * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Malaya Kumar Nayak Bhabha Atomic Research Centre India * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak CNRS/Universite de Lille France * * Jeppe Olsen Aarhus University Denmark * * Jógvan Magnus H. Olsen University of Southern Denmark Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Roberto Di Remigio UiT The Arctic University of Norway * * Kenneth Ruud UiT The Arctic University of Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * * Jetze Sikkema Vrije Universiteit Amsterdam Netherlands * * Andreas J. Thorvaldsen UiT The Arctic University of Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen Vrije Universiteit Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC17 (2017), * * written by L. Visscher, H. J. Aa. Jensen, R. Bast, and T. Saue, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. Henriksson, M. Ilias, * * Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, * * C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, * * G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, * * R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, J. Sikkema, * * A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, * * T. Winther, and S. Yamamoto (see http://www.diracprogram.org). * * * ******************************************************************************* Version information ------------------- Branch | master Commit hash | 6f411de Commit author | Radovan Bast Commit date | Fri Jul 21 12:02:52 2017 +0200 Configuration and build information ----------------------------------- Who compiled | milias Compiled on server | lxir127 Operating system | Linux-3.16.0-4-amd64 CMake version | 3.5.0 CMake generator | Unix Makefiles CMake build type | release Configuration time | 2017-07-25 16:04:15.015803 Python version | 2.7.9 Fortran compiler | /cvmfs/it.gsi.de/compiler/intel/15.0/bin/ifort Fortran compiler version | 15.0 Fortran compiler flags | -xHost -w -assume byterecl -g -traceback -DVAR_IFORT -i8 -xHost -w -assume byterecl -g -traceback -DVAR_IFORT -i8 C compiler | /cvmfs/it.gsi.de/compiler/intel/15.0/bin/icc C compiler version | 15.0 C compiler flags | -xHost -g -wd981 -wd279 -wd383 -wd1572 -wd177 -xHost -g -wd981 -wd279 -wd383 -wd1572 -wd177 C++ compiler | /cvmfs/it.gsi.de/compiler/intel/15.0/bin/icpc C++ compiler version | 15.0.3 C++ compiler flags | -xHost -Wno-unknown-pragmas -xHost -Wno-unknown-pragmas Static linking | False 64-bit integers | True MPI parallelization | False MPI launcher | unknown Math libraries | -Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_lapack95_ilp64.a;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_intel_ilp64.so;-openmp;-Wl,--end-group;-Wl,--start-group;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_intel_ilp64.so;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_intel_thread.so;/cvmfs/it.gsi.de/compiler/intel/15.0/composer_xe_2015.3.187/mkl/lib/intel64/libmkl_core.so;/usr/lib/x86_64-linux-gnu/libpthread.so;/usr/lib/x86_64-linux-gnu/libm.so;-openmp;-Wl,--end-group Builtin BLAS library | OFF Builtin LAPACK library | OFF Explicit libraries | unknown Compile definitions | MOD_UNRELEASED;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;BUILD_GEN1INT;HAS_PELIB;MOD_QCORR;HAS_STIELTJES;MOD_INTEREST;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ESR;MOD_KRCC;MOD_SRDFT Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED Execution time and host ----------------------- Date and time (Linux) : Wed Jul 26 15:29:17 2017 Host name : lxir127 Contents of the input file -------------------------- **DIRAC .TITLE BeH,ffpt RelCC .WAVE F .4INDEX **HAMILTONIAN .X2C .OPERATOR ZDIPLEN COMFACTOR +0.0005 **INTEGRALS *READINP .UNCONTRACT **WAVE FUNCTIONS .SCF .RELCCSD *SCF .CLOSED SHELL 4 .OPEN SHELL 1 1/2 .EVCCNV 1.0D-9 5.0D-7 # reads starting (unperturbed) MOs, DFPCMO .MAXITR 8 **MOLTRA # all 5 electrons,all virtuals .ACTIVE all **RELCC .ENERGY .PRINT 1 # all electrons active .NELEC 3 2 *CCENER .MAXIT # maximum number of iterations for (0,0) sector 60 .NTOL 10 *END OF Contents of the molecule file ----------------------------- INTGRL BeH STO-2G smallest basis C 2 2 X Y 4. 1 Be 0.0000000000 0.0000000000 0.0000000000 LARGE BASIS STO-2G 1. 1 H 0.0000000000 0.0000000000 1.7325000297 LARGE BASIS STO-2G FINISH ************************************************************************* **************************** BeH,ffpt RelCC **************************** ************************************************************************* Jobs in this run: * Wave function * Transformation to Molecular Spinor basis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 Nuclear model: Gaussian charge distribution. Two-electron integrals not calculated. Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated. Changes of defaults for *READIN ------------------------------- Uncontracted basis forced, irrespective of basis input file. *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- BeH STO-2G smallest basis Nuclear Gaussian exponent for atom of charge 4.000 : 7.8788802914D+08 Nuclear Gaussian exponent for atom of charge 1.000 : 2.1248239171D+09 Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Point group: C2v * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane * Group multiplication table | E C2z Oxz Oyz -----+-------------------- E | E C2z Oxz Oyz C2z | C2z E Oyz Oxz Oxz | Oxz Oyz E C2z Oyz | Oyz Oxz C2z E * Character table | E C2z Oxz Oyz -----+-------------------- A1 | 1 1 1 1 B1 | 1 -1 1 -1 B2 | 1 -1 -1 1 A2 | 1 1 -1 -1 * Direct product table | A1 B1 B2 A2 -----+-------------------- A1 | A1 B1 B2 A2 B1 | B1 A1 A2 B2 B2 | B2 A2 A1 B1 A2 | A2 B2 B1 A1 ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A1 + A2 + B1 + B2 Spinor structure ---------------- * Fermion irrep no.: 1 La | A1 (1) A2 (2) | Sa | A2 (1) A1 (2) | Lb | B1 (3) B2 (4) | Sb | B2 (3) B1 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A1 1 B1 j B2 k A2 i QM-QM nuclear repulsion energy : 2.308802269223 Isotopic Masses --------------- Be 9.012183 H 1.007825 Total mass: 10.020008 amu Natural abundance: 99.985 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.174257 Atoms and basis sets -------------------- Number of atom types : 2 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- Be 1 4 10 10 L - [4s2p|4s2p] H 1 1 2 2 L - [2s|2s] ---------------------------------------------------------------------- 12 12 L - large components ---------------------------------------------------------------------- total: 2 5 12 12 Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 Elements References -------- ---------- H - He: W.J. Hehre, R.F. Stewart and J.A. Pople, J. Chem.Phys. 2657 (1969). Li - Ne, W.J. Hehre, R. Ditchfield, R.F. Stewart, J.A. Pople, Na - Ar, J. Chem. Phys. 52, 2769 (1970). K - Kr: *********************************************************************** Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 6 1 Be x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 4 H x 0.0000000000 5 y 0.0000000000 6 z 1.7325000297 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 2 Be 0.0000000000 0.0000000000 0.0000000000 H 0.0000000000 0.0000000000 0.9167995291 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 2 2 2 0 Symmetry A1 ( 1) 1 Be z 3 2 H z 6 Symmetry B1 ( 2) 3 Be x 1 4 H x 4 Symmetry B2 ( 3) 5 Be y 2 6 H y 5 Interatomic separations (in Angstroms): --------------------------------------- Be H Be 0.000000 H 0.916800 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: H Be 0.916800 Nuclear repulsion energy : 2.308802269223 Hartree GETLAB: AO-labels ----------------- * Large components: 5 1 L Be 1 s 2 L Be 1 px 3 L Be 1 py 4 L Be 1 pz 5 L H 1 s * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 5 1 L A1 Be s 2 L A1 Be pz 3 L A1 H s 4 L B1 Be px 5 L B2 Be py * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 8 2 2 0 Number of large orbitals in each symmetry: 8 2 2 0 Number of small orbitals in each symmetry: 0 0 0 0 * Large component functions Symmetry A1 ( 1) 4 functions: Be s 2 functions: Be pz 2 functions: H s Symmetry B1 ( 2) 2 functions: Be px Symmetry B2 ( 3) 2 functions: Be py *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode with the following modifications: * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set - The following finite-field one-electron operators have been added: --------------------------------------------------------------------------- Operator no. 1: ZDIPLEN --------------------------------------------------------------------------- 1 ZDIPLEN A1 T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : ZDIPLEN +00+ 0.500000000E-03 (real) ........................................................................... =========================================================================== Set-up for AMFI/RELSCF calculations =========================================================================== ...no reading under "*AMFI ", thus default settings * AMFI code print level: 0 * RELSCF code print level: 0 * RELSCF maximum number of iterations: 50 * All AMFI mean-field summations are on neutral individual atoms. * order of AMFI contributions to the X2C Hamiltonian: 2 --> adding spin-same orbit MFSSO2 terms. ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF RELCCSD Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Run RELCCSD code =========================================================================== *SCF: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 1 * Open shell SCF calculation using Average-of-Configuration * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 4 2 N/A 1.0000 1.0000 0.0000 Open shell no. 1 1.00 1 N/A 0.5000 0.0000 2.0000 ---------------------------------------------------------------------------- Total 5.00 3 f is the fraction occupation; a and alpha open shell coupling coefficients. * Sum of atomic potentials used for start guess * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF * Scaling of active-active block correction to open shell Fock operator 0.500000 to improve convergence (default value). The final open-shell orbital energies are recalculated with 1.0 scaling, such that all occupied orbital energies correspond to Koopmans' theorem ionization energies. ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-09 Allowed convergence:5.000D-07 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 8 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. =========================================================================== **RELCC: Set-up for Coupled Cluster calculations =========================================================================== * General print level : 1 NEL_F1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 =========================================================================== TRPINP: Property integral transformation =========================================================================== * Print level: 0 *The following operators will be transformed: 1 XDIPLEN B1 T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : XDIPLEN +00+ 1.0000000000000 (real) ........................................................................... 2 YDIPLEN B2 T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : YDIPLEN +00+ 1.0000000000000 (real) ........................................................................... 3 ZDIPLEN A1 T+ ........................................................................... Operator type DIAGONAL : scalar operator Labels and factors : ZDIPLEN +00+ 1.0000000000000 (real) ........................................................................... --------------------------------------------------------------------------- =========================================================================== TRAINP: Set-up for index transformation =========================================================================== * General print level : 0 * Electronic orbitals only. * Total active space. Fermion ircop:E1 all * Set-up for 2-index transformation * LS Integrals not included in core Fock-matrix * SS Integrals not included in core Fock-matrix * Active spaces: Fermion ircop:E1 - Index 1: all - Index 2: all * Set-up for 4-index transformation * Following scheme : 6 - write half-transformed integrals (ij|rs) to disk - sorting of intermediate 1HT integrals is disabled * Screening threshold :1.00E-14 * MO integral threshold :1.00E-14 * LS Integrals not transformed. * SS Integrals not transformed. * Gaunt Integrals not transformed. * 4-index transformed integrals written to file. * Active spaces: Fermion ircop:E1 - Index 1: all - Index 2: all - Index 3: all - Index 4: all ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* *************************************************************************** ****************** Output from MOLECULE input processing ****************** *************************************************************************** Title Cards ----------- BeH STO-2G smallest basis Nuclear Gaussian exponent for atom of charge 4.000 : 7.8788802914D+08 Nuclear Gaussian exponent for atom of charge 1.000 : 2.1248239171D+09 Symmetry Operations ------------------- Symmetry operations: 2 SYMGRP:Point group information ------------------------------ Point group: C2v * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane * Group multiplication table | E C2z Oxz Oyz -----+-------------------- E | E C2z Oxz Oyz C2z | C2z E Oyz Oxz Oxz | Oxz Oyz E C2z Oyz | Oyz Oxz C2z E * Character table | E C2z Oxz Oyz -----+-------------------- A1 | 1 1 1 1 B1 | 1 -1 1 -1 B2 | 1 -1 -1 1 A2 | 1 1 -1 -1 * Direct product table | A1 B1 B2 A2 -----+-------------------- A1 | A1 B1 B2 A2 B1 | B1 A1 A2 B2 B2 | B2 A2 A1 B1 A2 | A2 B2 B1 A1 ************************** *** Output from DBLGRP *** ************************** * One fermion irrep: E1 * Real group. NZ = 1 * Direct product decomposition: E1 x E1 : A1 + A2 + B1 + B2 Spinor structure ---------------- * Fermion irrep no.: 1 La | A1 (1) A2 (2) | Sa | A2 (1) A1 (2) | Lb | B1 (3) B2 (4) | Sb | B2 (3) B1 (4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- A1 1 B1 j B2 k A2 i QM-QM nuclear repulsion energy : 2.308802269223 Isotopic Masses --------------- Be 9.012183 H 1.007825 Total mass: 10.020008 amu Natural abundance: 99.985 % Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.174257 Atoms and basis sets -------------------- Number of atom types : 2 Total number of atoms: 2 label atoms charge prim cont basis ---------------------------------------------------------------------- Be 1 4 10 10 L - [4s2p|4s2p] H 1 1 2 2 L - [2s|2s] ---------------------------------------------------------------------- 12 12 L - large components 32 32 S - small components ---------------------------------------------------------------------- total: 2 5 44 44 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 2 Elements References -------- ---------- H - He: W.J. Hehre, R.F. Stewart and J.A. Pople, J. Chem.Phys. 2657 (1969). Li - Ne, W.J. Hehre, R. Ditchfield, R.F. Stewart, J.A. Pople, Na - Ar, J. Chem. Phys. 52, 2769 (1970). K - Kr: *********************************************************************** Cartesian Coordinates (bohr) ---------------------------- Total number of coordinates: 6 1 Be x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 4 H x 0.0000000000 5 y 0.0000000000 6 z 1.7325000297 Cartesian coordinates in XYZ format (Angstrom) ---------------------------------------------- 2 Be 0.0000000000 0.0000000000 0.0000000000 H 0.0000000000 0.0000000000 0.9167995291 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 2 2 2 0 Symmetry A1 ( 1) 1 Be z 3 2 H z 6 Symmetry B1 ( 2) 3 Be x 1 4 H x 4 Symmetry B2 ( 3) 5 Be y 2 6 H y 5 Interatomic separations (in Angstroms): --------------------------------------- Be H Be 0.000000 H 0.916800 0.000000 Bond distances (angstroms): --------------------------- atom 1 atom 2 distance ------ ------ -------- bond distance: H Be 0.916800 Nuclear repulsion energy : 2.308802269223 Hartree Nuclear contribution to dipole moments -------------------------------------- au Debye z 1.73250003 4.40361660 1 Debye = 2.54177000 a.u. Generating Lowdin canonical matrix: ----------------------------------- L A1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.45E-01 L B1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 L B2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 S A1 * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.53E-01 S B1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.80E-01 S B2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.80E-01 S A2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.54E+00 ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! * Applied SL-regrouping on AO2MO tranf.matrix in SLSORT. Output from AMFIIN ------------------ *** number of unique nuclei (from file MNF.INP): 2 *** calculate AMFI for atom type 1 with atomic charge 4 *** number of nuclei with identical atom type: 1 unique nuclei index: 1 *** file with AMFI integrals for this center: AOPROPER_MNF.4.1 ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators charge on the calculated atom: 0 Mean-field summation for electrons #: 4 ...electronic occupation of Be: [He]2s^2 **** Written to the file TOSCF for "relscf" **** charge: 4.000 nprimit: 4 2 0 0 closed sh.: 2 0 0 0 open sh.: 0 0 0 0 *** PROGRAM AT34 - ALLIANT - @V *** ----------------------------------- SYMMETRY SPECIES S P D F NUMBER OF BASIS FUNCTIONS: 4 2 NUMBER OF CLOSED SHELLS : 2 0 OPEN SHELL OCCUPATION : 0 0 ### SCF ITERATIONS ### ### NON-RELATIVISTIC APPROX. ### 1. iteration, total energy: 0.000000000000 2. iteration, total energy: -13.568539398057 3. iteration, total energy: -13.961944110456 4. iteration, total energy: -13.968297508659 5. iteration, total energy: -13.968409914691 6. iteration, total energy: -13.968465927494 7. iteration, total energy: -13.968467437346 8. iteration, total energy: -13.968467478176 9. iteration, total energy: -13.968467478581 10. iteration, total energy: -13.968467479302 11. iteration, total energy: -13.968467479312 11. iteration, total energy: -13.968467479312 ### NON-RELATIVISTIC APPROX. ### 11 -0.1396846748D+02 -0.2675398016D+02 0.1278551268D+02 -0.2092523063D+01 ### SCF ITERATIONS ### ### EV APPROX. ### 1. iteration, total energy: -13.969515126880 2. iteration, total energy: -13.969516316559 3. iteration, total energy: -13.969516318684 4. iteration, total energy: -13.969516318695 5. iteration, total energy: -13.969516318349 5. iteration, total energy: -13.969516318695 ### EV OPERATOR RESULT ### 5 -0.1396951632D+02 -0.2675646707D+02 0.1278695075D+02 -0.2092482218D+01 *** AMFIIN: ADDING nucleus 1 with charge 4 to the BSSn Hamiltonian. *** calculate AMFI for atom type 2 with atomic charge 1 *** number of nuclei with identical atom type: 1 no 2e-SO corrections for hydrogen or hydrogen-like 1e-systems. AMFI is skipped . unique nuclei index: 2 *** This (AMFI) unique nuclei is not to be calculated ! Only pass (to read input basis) through the AMFI routine. ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators skip explicit AMFI - reading AMFI integrals from file AOPROPER_MNF.xxx! ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* Nuclear Gaussian exponent for atom of charge 4.000 : 7.8788802914D+08 Nuclear Gaussian exponent for atom of charge 1.000 : 2.1248239171D+09 Nuclear contribution to dipole moments -------------------------------------- au Debye z 1.73250003 4.40361660 1 Debye = 2.54177000 a.u. Generating Lowdin canonical matrix: ----------------------------------- L A1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.45E-01 L B1 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 L B2 * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.42E+00 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** No. of positive energy orbitals (NESH): 12 No. of negative energy orbitals (NPSH): 0 Total no. of orbitals (NORB): 12 Reading formatted DFPCMO file...Done. =========================================================================== * PCMOIN: Coefficients read from formatted DFPCMO and written to unformatted DFCOEF =========================================================================== ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* ########## START ITERATION NO. 1 ########## Wed Jul 26 15:29:17 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -14.4267465723463602 * Heading : BeH,ffpt RelCC Wed Jul 26 15:29:17 2017 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50756 3 -0.28681 4 0.13970 It. 1 -14.42585994862 1.44D+01 0.00D+00 9.42D-04 0.00800000s LL Wed Jul 26 ########## START ITERATION NO. 2 ########## Wed Jul 26 15:29:17 2017 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50769 3 -0.17476 4 0.13970 >>> Total wall time: 0.01821589s, and total CPU time : 0.00400000s ########## END ITERATION NO. 2 ########## Wed Jul 26 15:29:17 2017 It. 2 -14.42586065809 7.09D-07 5.70D-02 2.97D-04 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 3 ########## Wed Jul 26 15:29:17 2017 3 *** Differential density matrix. DCOVLP = 0.9999 3 *** Differential density matrix. DVOVLP( 1) = 0.9998 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50770 3 -0.17476 4 0.13970 >>> Total wall time: 0.01963210s, and total CPU time : 0.00400000s ########## END ITERATION NO. 3 ########## Wed Jul 26 15:29:17 2017 It. 3 -14.42586077969 1.22D-07 -3.54D-05 7.44D-05 DIIS 2 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 4 ########## Wed Jul 26 15:29:17 2017 4 *** Differential density matrix. DCOVLP = 1.0000 4 *** Differential density matrix. DVOVLP( 1) = 0.9999 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50771 3 -0.17475 4 0.13970 >>> Total wall time: 0.01784396s, and total CPU time : 0.00400000s ########## END ITERATION NO. 4 ########## Wed Jul 26 15:29:17 2017 It. 4 -14.42586078791 8.21D-09 -1.53D-05 1.52D-05 DIIS 3 0.00400000s LL Wed Jul 26 ########## START ITERATION NO. 5 ########## Wed Jul 26 15:29:17 2017 5 *** Differential density matrix. DCOVLP = 1.0000 5 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50771 3 -0.17475 4 0.13970 >>> Total wall time: 0.01731181s, and total CPU time : 0.00000000s ########## END ITERATION NO. 5 ########## Wed Jul 26 15:29:17 2017 It. 5 -14.42586078823 3.28D-10 -2.76D-06 1.64D-06 DIIS 4 0.00000000s LL Wed Jul 26 ########## START ITERATION NO. 6 ########## Wed Jul 26 15:29:17 2017 6 *** Differential density matrix. DCOVLP = 1.0000 6 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50771 3 -0.17475 4 0.13970 >>> Total wall time: 0.01813698s, and total CPU time : 0.00000000s ########## END ITERATION NO. 6 ########## Wed Jul 26 15:29:17 2017 It. 6 -14.42586078824 2.51D-12 -2.57D-07 2.03D-07 DIIS 5 0.00000000s LL Wed Jul 26 ########## START ITERATION NO. 7 ########## Wed Jul 26 15:29:17 2017 7 *** Differential density matrix. DCOVLP = 1.0000 7 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50771 3 -0.17475 4 0.13970 >>> Total wall time: 0.01768684s, and total CPU time : 0.00000000s ########## END ITERATION NO. 7 ########## Wed Jul 26 15:29:18 2017 It. 7 -14.42586078824 2.13D-14 -2.52D-08 1.05D-08 DIIS 6 0.00000000s LL Wed Jul 26 ########## START ITERATION NO. 8 ########## Wed Jul 26 15:29:18 2017 8 *** Differential density matrix. DCOVLP = 1.0000 8 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00000000s E_HOMO...E_LUMO, symmetry 1: 2 -0.50771 3 -0.17475 4 0.13970 >>> Total wall time: 0.01721001s, and total CPU time : 0.00400000s ########## END ITERATION NO. 8 ########## Wed Jul 26 15:29:18 2017 It. 8 -14.42586078824 1.42D-14 -1.84D-09 3.50D-09 DAMP 25% 0.00400000s LL Wed Jul 26 ** Exit SCF because maximum number of iterations reached. SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-09 Allowed convergence:5.000D-07 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -14.42585994862 1.44D+01 0.00D+00 9.42D-04 0.00800000s LL Wed Jul 26 It. 2 -14.42586065809 7.09D-07 5.70D-02 2.97D-04 0.00400000s LL Wed Jul 26 It. 3 -14.42586077969 1.22D-07 -3.54D-05 7.44D-05 DIIS 2 0.00400000s LL Wed Jul 26 It. 4 -14.42586078791 8.21D-09 -1.53D-05 1.52D-05 DIIS 3 0.00400000s LL Wed Jul 26 It. 5 -14.42586078823 3.28D-10 -2.76D-06 1.64D-06 DIIS 4 0.00000000s LL Wed Jul 26 It. 6 -14.42586078824 2.51D-12 -2.57D-07 2.03D-07 DIIS 5 0.00000000s LL Wed Jul 26 It. 7 -14.42586078824 2.13D-14 -2.52D-08 1.05D-08 DIIS 6 0.00000000s LL Wed Jul 26 It. 8 -14.42586078824 1.42D-14 -1.84D-09 3.50D-09 DAMP 25% 0.00400000s LL Wed Jul 26 -------------------------------------------------------------------------------------------------------------------------------- * Desired convergence limit not reached after 8 iterations but the current convergence is acceptable. * Average elapsed time per iteration: LL : 0.01944458s TOTAL ENERGY ------------ Electronic energy : -16.734663057458071 Other contributions to the total energy Nuclear repulsion energy : 2.308802269222841 Sum of all contributions to the energy Total energy : -14.425860788235230 Eigenvalues ----------- * Fermion symmetry E1 * Closed shell, f = 1.0000 -4.45374524668000 ( 2) -0.50771190631035 ( 2) * Open shell #1, f = 0.5000 -0.17475080251348 ( 2) * Virtual eigenvalues, f = 0.0000 0.13969870287054 ( 2) 0.13970964524478 ( 2) 0.40378086746518 ( 2) 0.84749318214389 ( 2) 0.85149757459949 ( 2) 0.85155333574855 ( 2) 1.17596246457657 ( 2) 2.08876542084794 ( 2) 11.48157783245077 ( 2) * HOMO - LUMO gap: E(LUMO) : 0.13969870 au (symmetry E1 ) - E(HOMO) : -0.17475080 au (symmetry E1 ) ------------------------------------------ gap : 0.31444951 au ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Wed Jul 26 15:29:18 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -14.4258607882352301 * Heading : BeH,ffpt RelCC Wed Jul 26 15:29:18 2017 * Orbital ranges for 4-index transformation: * Fermion ircop E1 Index 1 12 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 Index 2 12 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 Index 3 12 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 Index 4 12 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 * Core orbital ranges for 2-index transformation: * Fermion ircop E1 No orbitals for index 1 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ********************************************************************** **************** Transformation of property integrals **************** ********************************************************************** Transformation started at : Wed Jul 26 15:29:18 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -14.4258607882352301 * Heading : BeH,ffpt RelCC Wed Jul 26 15:29:18 2017 * Fermion ircop E1 Index 1 12 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 Index 2 12 orbitals 1 2 3 4 5 6 7 8 9 10 11 12 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Wed Jul 26 15:29:18 2017 * REACMO: Coefficients read from file DFCOEF - Total energy: -14.4258607882352301 * Heading : BeH,ffpt RelCC Wed Jul 26 15:29:18 2017 * REAFCK: Fock matrix read from file /u/milias/DIRAC_scratch_directory/milias/DIRAC_BeH.x2c_scf_r * Heading : BeH,ffpt RelCC Wed Jul 26 15:29:17 2017 Core energy (includes nuclear repulsion) : 2.3088022692 - Electronic part : 0.0000000000 - One-electron terms : 0.0000000000 - Two-electron terms : 0.0000000000 MOLFDIR file MRCONEE is written - Integral class 1 : (LL|??) - Beginning task 1 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 2 of 3 after 0. seconds and 0. CPU-seconds - Beginning task 3 of 3 after 0. seconds and 0. CPU-seconds - Integral class 2 : (SS|??) Node 0 finished first half transformation 9276 HT integrals written ( 82.59%, 0.00 GB) >>> Time used in 2HT_all is 0.11 seconds - Binary file MDCINT was written. * Screening statistics: (LL|LL)ints : 0.00% Total : 0.00% ------ Timing report (in CPU seconds) of module integral transformation Time in First halftransformation 0.268 seconds Time in Second halftransformation 0.108 seconds Total wall time used in PAMTRA : 00:00:04 Total CPU time used in PAMTRA (master only) : 00:00:01 Transformation ended at : Wed Jul 26 15:29:21 2017 ---< Process 1 of 1----< Relativistic Coupled Cluster program RELCCSD Written by : Lucas Visscher NASA Ames Research Center (1994) Rijks Universiteit Groningen (1995) Odense Universitet (1996-1997) VU University Amsterdam (1998-present) This module is documented in - Initial implementation : L. Visscher, T.J. Lee and K.G. Dyall, J. Chem. Phys. 105 (1996) 8769. - Fock Space (FSCC): L. Visscher, E. Eliav and U. Kaldor, J. Chem. Phys. 115 (2002) 9720. - Intermediate Hamiltonian E. Eliav, M. J. Vilkas, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 122 (2005) 224113. - Parallelization : M. Pernpointner and L. Visscher, J. Comp. Chem. 24 (2003) 754. Today is : 26 Jul 17 The time is : 15:29:21 Initializing word-addressable I/O : the FORTRAN-interface is used with 16 KB records 1E 2E a b =========================================================================== **RELCC: Set-up for Coupled Cluster calculations =========================================================================== * General print level : 1 NEL_F1: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total memory available : 16384 MB INFO: No old restart file(s) found! Configuration in highest pointgroup E E Spinor class : occupied 3 2 Spinor class : virtual 9 10 Configuration in abelian subgroup 1E 2E Spinor class : occupied 3 2 Spinor class : virtual 9 10 Number of electrons : 5 Total charge of the system : 0 Number of virtual spinors : 19 Complex arithmetic mode : F Do integral sorting : T Do energy calculation : T Do gradient calculation : F Do response calculation : F Debug information : F Timing information : F Print level : 1 Memory limit (MWord) : 2048 Interface used : DIRAC6 Memory for reading and sorting integrals : 105539 8-byte words Core used for calculating amplitudes : 24377 8-byte words Core used for in core evaluation of triples : 21218 8-byte words Memory used for active modules : 105539 8-byte words Expanding and sorting integrals to unique types : Type OOOO : 52 integrals Type VOOO : 476 integrals Type VVOO : 864 integrals Type VOVO : 4513 integrals Type VOVV : 8127 integrals Type VVVV : 14661 integrals Start sorting of integral classes at 26 Jul 17 15:29:21 Sorting of first 4 classes done at 26 Jul 17 15:29:21 Need 1 passes to sort VOVV integrals Pass 1 ended at 26 Jul 17 15:29:21 VOVV sorting done at 26 Jul 17 15:29:21 Need 1 passes to sort VVVV integrals Pass 1 ended at 26 Jul 17 15:29:21 VVVV sorting done at 26 Jul 17 15:29:21 Reading Coulomb integrals : File date : 26 Jul 17 File time : 15:29:21 # of integrals 45652 Finished sorting of integrals Checking the orbital energies, the program computes the diagonal elements of the reconstructed Fock matrix. Differences with the reference orbital energies are given if above a treshold or if iprnt > 1 Spinor Abelian Rep. Energy Recalc. Energy O 1 1 1E -4.4537452467 -4.4615864223 O 2 2 1E -0.5077119063 -0.5151783001 O 3 3 1E -0.1747508025 -0.2867100784 O 1 4 2E -4.4537452467 -4.4459040702 O 2 5 2E -0.5077119063 -0.5002455118 V 1 6 1E 0.1396987029 0.1637136340 V 2 7 1E 0.1397096452 0.1637242446 V 3 8 1E 0.4037808675 0.3894499751 V 4 9 1E 0.8474931821 0.8246206290 V 5 10 1E 0.8514975746 0.8608055622 V 6 11 1E 0.8515533357 0.8608634327 V 7 12 1E 1.1759624646 1.1510971870 V 8 13 1E 2.0887654208 2.0830260897 V 9 14 1E 11.4815778325 11.4757244492 V 1 15 2E -0.1747508025 0.1611270252 V 2 16 2E 0.1396987029 0.1156837720 V 3 17 2E 0.1397096452 0.1156950461 V 4 18 2E 0.4037808675 0.4181117601 V 5 19 2E 0.8474931821 0.8703657357 V 6 20 2E 0.8514975746 0.8421895876 V 7 21 2E 0.8515533357 0.8422432393 V 8 22 2E 1.1759624646 1.2008277427 V 9 23 2E 2.0887654208 2.0945047529 V 10 24 2E 11.4815778325 11.4874312165 The diagonal elements of the recomputed Fock matrix (right column) are used in perturbation expressions. Use the perturbative values (MP2, CCSD[T]/(T)/-T) with care, especially in open shell calculations because the orbitals need not always be semi-canonical as was assumed in the derivation of the expressions. The missing terms may be important ! Nuclear repulsion + core energy : 2.308802269222841 Zero order electronic energy : -10.209624382802190 First order electronic energy : -6.525038674655870 Electronic energy : -16.734663057458061 SCF energy : -14.425860788235219 Energy calculations MP2 module active : T CCSD module active : T CCSD(T) module active : T MP2 results SCF energy : -14.425860788235219 MP2 correlation energy : -0.027290282211942 Total MP2 energy : -14.453151070447161 T1 diagnostic : 0.002702946597610 CCSD options : Maximum number of iterations : 60 Maximum size of DIIS space : 8 Convergence criterium : 0.1E-09 NIT ENERGY RMS T1-DIAGN 0 -0.027292229332735 1.000000000000000 0.00270 1 -0.032888322194389 0.029600864153067 0.00605 2 -0.035766185493541 0.014741757178037 0.01245 3 -0.035986613678321 0.006662632128063 0.01768 4 -0.036082456093195 0.000567882197076 0.01857 5 -0.036070572832582 0.000306809306524 0.01864 6 -0.036074928753945 0.000075253386740 0.01868 7 -0.036074485741772 0.000001871459942 0.01868 8 -0.036074458656112 0.000002822379775 0.01868 9 -0.036074479281790 0.000000145906725 0.01868 10 -0.036074486556573 0.000000139814792 0.01868 11 -0.036074482697037 0.000000039941498 0.01868 12 -0.036074482092691 0.000000021745557 0.01868 13 -0.036074482462345 0.000000017148818 0.01868 14 -0.036074482394820 0.000000007003506 0.01868 15 -0.036074482294239 0.000000001568924 0.01868 16 -0.036074482302879 0.000000000652400 0.01868 17 -0.036074482323355 0.000000000244183 0.01868 18 -0.036074482323356 0.000000000068381 0.01868 CCSD results SCF energy : -14.425860788235219 CCSD correlation energy : -0.036074482323356 Total CCSD energy : -14.461935270558575 T1 diagnostic : 0.018678235689899 Convergence : 0.000000000068381 Number or iterations used : 18 Perturbative treatment of triple excitations SCF energy : -14.425860788235219 CCSD correlation energy : -0.036074482323356 4th order triples correction : -0.000250868556597 5th order triples (T) correction : -0.000007295186970 5th order triples -T correction : -0.000015195801234 Total CCSD+T energy : -14.462186139115172 Total CCSD(T) energy : -14.462193434302142 Total CCSD-T energy : -14.462201334916406 -------------------------------------------------------------------------------- Today is : 26 Jul 17 The time is : 15:29:21 Status of the calculations Integral sort # 1 : Completed, restartable Integral sort # 2 : Completed, restartable Fock matrix build : Completed, restartable MP2 energy calculation : Completed, restartable CCSD energy calculation : Completed, restartable CCSD(T) energy calculation : Completed, restartable CCSD(T) energy calculation : Completed, restartable Overview of calculated energies @ SCF energy : -14.425860788235219 @ MP2 correlation energy : -0.027290282211942 @ CCSD correlation energy : -0.036074482323356 @ 4th order triples correction : -0.000250868556597 @ 5th order triples (T) correction : -0.000007295186970 @ 5th order triples -T correction : -0.000015195801234 @ Total MP2 energy : -14.453151070447161 @ Total CCSD energy : -14.461935270558575 @ Total CCSD+T energy : -14.462186139115172 @ Total CCSD(T) energy : -14.462193434302142 @ Total CCSD-T energy : -14.462201334916406 -------------------------------------------------------------------------------- ------ Timing report (in CPU seconds) of module RELCCSD Time in Sorting of integrals 0.084 seconds Time in CCSD equations 0.040 seconds Time in - T1 equations 0.008 seconds Time in --- T1EQNS VOVV contribution 0.008 seconds Time in - T2 equations 0.024 seconds Time in -- GOINTM 0.004 seconds Time in -- GVINTM 0.004 seconds Time in -- AINTM 0.004 seconds Time in -- HINTM 0.004 seconds Time in -- T2 EQNS 0.008 seconds Time in --- T2EQNS: HINTM*T2 0.004 seconds Time in - DIIS extrapolation 0.004 seconds Timing of main modules : Wallclock (s) CPU on master (s) Before CC driver : ************ 0.83 Initialization : 0.08 0.08 Integral sorting : 0.11 0.08 Energy calculation : 0.12 0.10 First order properties : 0.00 0.00 Second order properties : 0.00 0.00 Fock space energies : 0.00 0.00 Untimed parts : 0.00 0.00 Total time in CC driver : 0. 0.26 Statistics for the word-addressable I/O Number of write calls 1013. Number of read calls 1025. Megabytes written 0.302 Megabytes read 6.244 Seconds spent in reads 0.011 Seconds spent in writes 0.011 average I/O speed for write (Mb/s) 26.869 average I/O speed for read (Mb/s) 548.742 CPU time (seconds) used in RELCCSD: 0.2640 CPU time (seconds) used before RELCCSD: 0.8280 CPU time (seconds) used in total sofar: 1.0920 --- Normal end of RELCCSD Run --- ################################################################################ ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Wed Jul 26 15:29:21 2017 Host name : lxir127 Dynamical Memory Usage Summary for Master Mean allocation size (Mb) : 22.51 Largest 10 allocations 488.28 Mb at subroutine pamtra_+0x17b for WORK in PAMTRA 488.28 Mb at subroutine psiscf_+0xa9 for WORK in PSISCF 488.28 Mb at subroutine pamset_+0x1b3d for WORK in PAMSET - 2 488.28 Mb at subroutine gmotra_+0x3ee4 for WORK in GMOTRA - part 2 488.28 Mb at subroutine gmotra_+0x6045 for WORK in GMOTRA 488.28 Mb at subroutine pamset_+0xa8 for WORK in PAMSET - 1 488.28 Mb at subroutine MAIN__+0x295 for test allocation of work array in DIRAC mai 0.76 Mb at subroutine paminp_+0x8a for PAMINP WORK array 0.49 Mb at subroutine ccseti_+0x717 for ibuf 0.49 Mb at subroutine ccseti_+0x717 for ibuf Peak memory usage (Mb) : 488.00 reached at subroutine : trdr6t_+0x6b0 for variable : node_for_buffer MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 0, stime: 0, minflt: 93156, majflt: 96, nvcsw: 13515, nivcsw: 385, maxrss: 45188 >>>> Total WALL time used in DIRAC: 4s DIRAC pam run in /u/milias/Work/qch/software/dirac/trunk/test/ffpt_dipmom_polariz_relcc