DIRAC pam run in /home/milias/Work/qch/software/dirac/working_trunk/test/tutorial_Ir_16plus DIRAC serial starts by allocating 120000000 words (915 MB) of memory DIRAC serial has no limitations in place for the amount of dynamically allocated memory Note: maximum allocatable memory for serial run can be set by pam --aw ******************************************************************************* * * * O U T P U T * * from * * * * @@@@@ @@ @@@@@ @@@@ @@@@@ * * @@ @@ @@ @@ @@ @@ @@ * * @@ @@ @@ @@@@@ @@@@@@ @@ * * @@ @@ @@ @@ @@ @@ @@ @@ * * @@@@@ @@ @@ @@ @@ @@ @@@@@ * * * * * %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M ******************************************************************************* * * * ========================================================= * * Program for Atomic and Molecular * * Direct Iterative Relativistic All-electron Calculations * * ========================================================= * * * * * * Written by: * * * * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * * Radovan Bast KTH/PDC Stockholm Sweden * * Trond Saue Universite P. Sabatier, Toulouse France * * Lucas Visscher VU University Amsterdam Netherlands * * * * with contributions from: * * * * Vebjoern Bakken University of Oslo Norway * * Kenneth G. Dyall Schrodinger, Inc., Portland USA * * Sebastien Dubillard University of Strasbourg France * * Ulf Ekstroem University of Oslo Norway * * Ephraim Eliav University of Tel Aviv Israel * * Thomas Enevoldsen University of Southern Denmark Denmark * * Elke Fasshauer University of Heidelberg Germany * * Timo Fleig Universite P. Sabatier, Toulouse France * * Olav Fossgaard University of Tromsoe Norway * * Andre S. P. Gomes CNRS/Universite Lille 1 France * * Trygve Helgaker University of Oslo Norway * * Jon K. Laerdahl University of Oslo Norway * * Johan Henriksson Linkoeping University Sweden * * Miroslav Ilias Matej Bel University Slovakia * * Christoph R. Jacob Karlsruhe Institute of Technology Germany * * Stefan Knecht ETH Zuerich Switzerland * * Stanislav Komorovsky University of Tromsoe Norway * * Ossama Kullie University of Kassel Germany * * Christoffer V. Larsen University of Southern Denmark Denmark * * Yoon Sup Lee KAIST, Daejeon South Korea * * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * * Patrick Norman Linkoeping University Sweden * * Malgorzata Olejniczak University of Warsaw Poland * * Jeppe Olsen Aarhus University Denmark * * Young Choon Park KAIST, Daejeon South Korea * * Jesper K. Pedersen University of Southern Denmark Denmark * * Markus Pernpointner University of Heidelberg Germany * * Kenneth Ruud University of Tromsoe Norway * * Pawel Salek Stockholm Inst. of Technology Sweden * * Bernd Schimmelpfennig Forschungszentrum Karlsruhe Germany * * Jetze Sikkema VU University Amsterdam Netherlands * * Andreas J. Thorvaldsen University of Tromsoe Norway * * Joern Thyssen University of Southern Denmark Denmark * * Joost van Stralen VU University Amsterdam Netherlands * * Sebastien Villaume Linkoeping University Sweden * * Olivier Visser University of Groningen Netherlands * * Toke Winther University of Southern Denmark Denmark * * Shigeyoshi Yamamoto Chukyo University Japan * * * * For the complete list of contributors to the DIRAC code see our * * website http://www.diracprogram.org * * * * This is an experimental code. The authors accept no responsibility * * for the performance of the code or for the correctness of the results. * * * * The code (in whole or part) is not to be reproduced for further * * distribution without the written permission of the authors or * * their representatives. * * * * If results obtained with this code are published, an * * appropriate citation would be: * * * * DIRAC, a relativistic ab initio electronic structure program, * * Release DIRAC13 (2013), * * written by L. Visscher, H. J. Aa. Jensen, R. Bast, and T. Saue, * * with contributions from V. Bakken, K. G. Dyall, S. Dubillard, * * U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, * * O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. K. Laerdahl, Y. S. Lee, * * J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, * * O. Kullie, C. V. Larsen, H. S. Nataraj, P. Norman, G. Olejniczak, * * J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, K. Ruud, * * P. Salek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, * * J. van Stralen, S. Villaume, O. Visser, T. Winther, and S. Yamamoto * * (see http://www.diracprogram.org). * * * ******************************************************************************* Binary information ------------------ Who compiled | milias Host | login System | Linux-2.6.32-431.20.3.el6.x86_64 CMake generator | Unix Makefiles Processor | x86_64 64-bit integers | ON MPI | OFF Fortran compiler | /mnt/apps/intel/composer_xe_2013_sp1.1.106/bin/int | el64/ifort Fortran compiler version | ifort (IFORT) 14.0.1 20131008 C compiler | /mnt/apps/intel/composer_xe_2013_sp1.1.106/bin/int | el64/icc C compiler version | icc (ICC) 14.0.1 20131008 C++ compiler | /mnt/apps/intel/composer_xe_2013_sp1.1.106/bin/int | el64/icpc C++ compiler version | icpc (ICC) 14.0.1 20131008 BLAS | -Wl,--start-group;/mnt/apps/intel/composer_xe_2013 | _sp1.1.106/mkl/lib/intel64/libmkl_intel_ilp64.so;/ | mnt/apps/intel/composer_xe_2013_sp1.1.106/mkl/lib/ | intel64/libmkl_intel_thread.so;/mnt/apps/intel/com | poser_xe_2013_sp1.1.106/mkl/lib/intel64/libmkl_cor | e.so;/usr/lib64/libpthread.so;/usr/lib64/libm.so;- | openmp;-Wl,--end-group LAPACK | -Wl,--start-group;/mnt/apps/intel/composer_xe_2013 | _sp1.1.106/mkl/lib/intel64/libmkl_lapack95_ilp64.a | ;/mnt/apps/intel/composer_xe_2013_sp1.1.106/mkl/li | b/intel64/libmkl_intel_ilp64.so;-openmp;-Wl,--end- | group Static linking | OFF Last Git revision | 8b5e6902be161c99906df60dbc30c82e76b1f4de Configuration time | 2014-08-24 20:09:26.855336 Execution time and host ----------------------- Date and time (Linux) : Sun Aug 24 21:51:16 2014 Host name : comp23 Contents of the input file -------------------------- **DIRAC .TITLE atomic test calculations .WAVE FUNCTION .ANALYZE .4INDEX **INTEGRALS *READIN .UNCONTRACTED **HAMILTONIAN .X2C *AMFI .AMFICH +2 **WAVE FUNCTION .SCF .RELCCSD *SCF # Pm-like (Z=61) : ... 4f(14) 5s(0) 5p12(1) .CLOSED SHELL 28 32 .OPEN SHELL 1 1/0,2 .MAXITR 55 **ANALYZE .MULPOP *MULPOP .VECPOP 1..oo 1..oo **MOLTRA # exactly 33 correlated electrons... .ACTIVE energy -50.0 50.0 1.0 energy -50.0 50.0 1.0 **RELCC .ENERGY .TIMING .PRINT 1 # 33 correlated electrons, 5p12(1) open-shell .NELEC 6 6 11 10 !.NEL_F1 !9,8,4,4,2,2 !.NEL_F2 !8,8,5,5,2,2,1,1 *CCENER .NTOL 7 *CCSORT .USEOE *END OF Contents of the molecule file ----------------------------- INTGRL Ir atom dyall.v2z C 1 77. 1 Ir .0000000000 .0000000000 0.0 LARGE BASIS dyall.v2z FINISH ************************************************************************** *********************** atomic test calculations *********************** ************************************************************************** Jobs in this run: * Wave function * Analysis * Transformation to Molecular Spinor basis ************************************************************************** ************************** General DIRAC set-up ************************** ************************************************************************** CODATA Recommended Values of the Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999 * The speed of light : 137.0359998 * Running in two-component mode * Direct evaluation of the following two-electron integrals: - LL-integrals * Spherical transformation embedded in MO-transformation for large components * Transformation to scalar RKB basis embedded in MO-transformation for small components * Thresholds for linear dependence: Large components: 1.00D-06 Small components: 1.00D-08 * General print level : 0 ************************************************************************* ****************** Output from HERMIT input processing ****************** ************************************************************************* Default print level: 1 Nuclear model: Gaussian charge distribution. Two-electron integrals not calculated. Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated. Changes of defaults for READIN: ------------------------------- Uncontracted basis forced, irrespective of basis input file. ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- Ir atom dyall.v2z Nuclear Gaussian exponent for atom of charge 77.000 : 1.4398142103D+08 SYMADD: Requested addition of symmetry -------------------------------------- Symmetry threshold: 0.50E-05 Original Coordinates -------------------- 77 0.00000000 0.00000000 0.00000000 1 Symmetry class found: D(oo,h) Centered and Rotated -------------------- 77 0.00000000 0.00000000 0.00000000 1 The following elements were found: X Y Z Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Full group is: D(oo,h) Represented as: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Atoms and basis sets -------------------- Number of atom types: 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- Ir 1 77 243 243 L - [24s19p12d9f|24s19p12d9f] ---------------------------------------------------------------------- 243 243 L - large components ---------------------------------------------------------------------- total: 1 77 243 243 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, unpublished 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, unpublished 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates --------------------- Total number of coordinates: 3 1 Ir x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates xyz format (angstrom) ------------------------------------------- 1 Ir 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry 2 1 Ir x 1 Symmetry 3 2 Ir y 2 Symmetry 5 3 Ir z 3 Nuclear repulsion energy : 0.000000000000 GETLAB: AO-labels ----------------- * Large components: 20 1 L Ir 1 s 2 L Ir 1 px 3 L Ir 1 py 4 L Ir 1 pz 5 L Ir 1 dxx 6 L Ir 1 dxy 7 L Ir 1 dxz 8 L Ir 1 dyy 9 L Ir 1 dyz 10 L Ir 1 dzz 11 L Ir 1 fxxx 12 L Ir 1 fxxy 13 L Ir 1 fxxz 14 L Ir 1 fxyy 15 L Ir 1 fxyz 16 L Ir 1 fxzz 17 L Ir 1 fyyy 18 L Ir 1 fyyz 19 L Ir 1 fyzz 20 L Ir 1 fzzz * Small components: 0 GETLAB: SO-labels ----------------- * Large components: 20 1 L Ag Ir s 2 L Ag Ir dxx 3 L Ag Ir dyy 4 L Ag Ir dzz 5 L B3uIr px 6 L B3uIr fxxx 7 L B3uIr fxyy 8 L B3uIr fxzz 9 L B2uIr py 10 L B2uIr fxxy 11 L B2uIr fyyy 12 L B2uIr fyzz 13 L B1gIr dxy 14 L B1uIr pz 15 L B1uIr fxxz 16 L B1uIr fyyz 17 L B1uIr fzzz 18 L B2gIr dxz 19 L B3gIr dyz 20 L Au Ir fxyz * Small components: 0 Symmetry Orbitals ----------------- Number of orbitals in each symmetry: 60 46 46 12 46 12 12 9 Number of large orbitals in each symmetry: 60 46 46 12 46 12 12 9 Number of small orbitals in each symmetry: 0 0 0 0 0 0 0 0 * Large component functions Symmetry Ag ( 1) 24 functions: Ir s 12 functions: Ir dxx 12 functions: Ir dyy 12 functions: Ir dzz Symmetry B3u( 2) 19 functions: Ir px 9 functions: Ir fxxx 9 functions: Ir fxyy 9 functions: Ir fxzz Symmetry B2u( 3) 19 functions: Ir py 9 functions: Ir fxxy 9 functions: Ir fyyy 9 functions: Ir fyzz Symmetry B1g( 4) 12 functions: Ir dxy Symmetry B1u( 5) 19 functions: Ir pz 9 functions: Ir fxxz 9 functions: Ir fyyz 9 functions: Ir fzzz Symmetry B2g( 6) 12 functions: Ir dxz Symmetry B3g( 7) 12 functions: Ir dyz Symmetry Au ( 8) 9 functions: Ir fxyz *************************************************************************** *************************** Hamiltonian defined *************************** *************************************************************************** * Print level: 0 * Exact-Two-Component (X2C) Hamiltonian Reference: M. Ilias and T. Saue: "Implementation of an infinite-order two-component relativistic Hamiltonian by a simple one-step transformation." J. Chem. Phys., 126 (2007) 064102. additional reference for the new X2C module: S. Knecht and T. Saue: manuscript in preparation, Strasbourg 2010. * Running in two-component mode * Default integral flags passed to all modules - LL-integrals: 1 - LS-integrals: 0 - SS-integrals: 0 - GT-integrals: 0 * Basis set: - uncontracted large component basis set ******************************************************************************* ************************** AMFI/RELSCF input reading ************************** ******************************************************************************* =========================================================================== Set-up for AMFI/RELSCF calculations =========================================================================== * AMFI code print level: 0 * RELSCF code print level: 0 * RELSCF maximum number of iterations: 50 * AMFI mean-field summations on individual atoms are modified due to the artificial charge of the system: 2 * order of AMFI contributions to the X2C Hamiltonian: 2 --> adding spin-same orbit MFSSO2 terms. ************************************************************************** ************************** Wave function module ************************** ************************************************************************** Wave function types requested (in input order): HF RELCCSD Wave function jobs in execution order (expanded): * Hartree-Fock calculation * Run RELCCSD code =========================================================================== SCFINP: Set-up for Hartree-Fock calculation: =========================================================================== * Number of fermion irreps: 2 * Open shell SCF calculation using Average-of-Configuration * Shell specifications: Orbitals #electrons irrep 1 irrep 2 f a alpha ---------- ------- ------- ------- ------- ------- Closed shell 60 14 16 1.0000 1.0000 0.0000 Open shell no. 1 1.00 0 1 0.5000 0.0000 2.0000 ---------------------------------------------------------------------------- Total 61.00 14 17 f is the fraction occupation; a and alpha open shell coupling coefficients. * Bare nucleus screening correction used for start guess - INFO: bare nucleus correction disabled because abs(molecular charge) .gt. 10 * General print level : 0 ***** INITIAL TRIAL SCF FUNCTION ***** * Trial vectors read from file DFCOEF ***** SCF CONVERGENCE CRITERIA ***** * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 ***** CONVERGENCE CONTROL ***** * Fock matrix constructed using differential density matrix with optimal parameter. * DIIS (in MO basis) * DIIS will be activated when convergence reaches : 1.00D+20 - Maximum size of B-matrix: 10 * Damping of Fock matrix when DIIS is not activated. Weight of old matrix : 0.250 * Maximum number of SCF iterations : 55 * No quadratic convergent Hartree-Fock * Contributions from 2-electron integrals to Fock matrix: LL-integrals. ---> this is default setting from Hamiltonian input * NB!!! No e-p rotations in 2nd order optimization. ***** OUTPUT CONTROL ***** * Only electron eigenvalues written out. EHMIN: 1000.00000 EHMAX: 100.00000 EPMIN: -1.00000 EPMAX: -1000.00000 *************************************************************************** ***************************** Analysis module ***************************** *************************************************************************** Jobs in this run: * Mulliken population analysis =========================================================================== POPINP: Mulliken population analysis =========================================================================== * Gross populations * Label definitions based on SO-labels * Number of spinors analyzed: - Orbitals in fermion ircop E1g :1..oo - Orbitals in fermion ircop E1u :1..oo * Print level: 1 =========================================================================== TRAINP: Set-up for index transformation =========================================================================== * General print level : 0 * Electronic orbitals only. * Total active space. Fermion ircop:E1g No explicit orbitals specified Fermion ircop:E1u No explicit orbitals specified * Set-up for 2-index transformation * LS Integrals not included in core Fock-matrix * SS Integrals not included in core Fock-matrix * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 * Set-up for 4-index transformation * Following scheme : 6 - write half-transformed integrals (ij|rs) to disk - sorting of intermediate 1HT integrals is disabled * Screening threshold :1.00E-14 * MO integral threshold :1.00E-14 * LS Integrals not transformed. * SS Integrals not transformed. * Gaunt Integrals not transformed. * 4-index transformed integrals written to file. * Active spaces: Fermion ircop:E1g No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 Fermion ircop:E1u No explicit orbitals specified for index 1 No explicit orbitals specified for index 2 No explicit orbitals specified for index 3 No explicit orbitals specified for index 4 ******************************************************************************** *************************** Input consistency checks *************************** ******************************************************************************** ************************************************************************* ************************ End of input processing ************************ ************************************************************************* ************************************************************************* ****************** Output from READIN input processing ****************** ************************************************************************* Title Cards ----------- Ir atom dyall.v2z Nuclear Gaussian exponent for atom of charge 77.000 : 1.4398142103D+08 SYMADD: Requested addition of symmetry -------------------------------------- Symmetry threshold: 0.50E-05 Original Coordinates -------------------- 77 0.00000000 0.00000000 0.00000000 1 Symmetry class found: D(oo,h) Centered and Rotated -------------------- 77 0.00000000 0.00000000 0.00000000 1 The following elements were found: X Y Z Symmetry Operations ------------------- Symmetry operations: 3 SYMGRP:Point group information ------------------------------ Full group is: D(oo,h) Represented as: D2h * The point group was generated by: Reflection in the yz-plane Reflection in the xz-plane Reflection in the xy-plane * Group multiplication table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- E | E C2z C2y C2x i Oxy Oxz Oyz C2z | C2z E C2x C2y Oxy i Oyz Oxz C2y | C2y C2x E C2z Oxz Oyz i Oxy C2x | C2x C2y C2z E Oyz Oxz Oxy i i | i Oxy Oxz Oyz E C2z C2y C2x Oxy | Oxy i Oyz Oxz C2z E C2x C2y Oxz | Oxz Oyz i Oxy C2y C2x E C2z Oyz | Oyz Oxz Oxy i C2x C2y C2z E * Character table | E C2z C2y C2x i Oxy Oxz Oyz -----+---------------------------------------- Ag | 1 1 1 1 1 1 1 1 B3u | 1 -1 -1 1 -1 1 1 -1 B2u | 1 -1 1 -1 -1 1 -1 1 B1g | 1 1 -1 -1 1 1 -1 -1 B1u | 1 1 -1 -1 -1 -1 1 1 B2g | 1 -1 1 -1 1 -1 1 -1 B3g | 1 -1 -1 1 1 -1 -1 1 Au | 1 1 1 1 -1 -1 -1 -1 * Direct product table | Ag B3u B2u B1g B1u B2g B3g Au -----+---------------------------------------- Ag | Ag B3u B2u B1g B1u B2g B3g Au B3u | B3u Ag B1g B2u B2g B1u Au B3g B2u | B2u B1g Ag B3u B3g Au B1u B2g B1g | B1g B2u B3u Ag Au B3g B2g B1u B1u | B1u B2g B3g Au Ag B3u B2u B1g B2g | B2g B1u Au B3g B3u Ag B1g B2u B3g | B3g Au B1u B2g B2u B1g Ag B3u Au | Au B3g B2g B1u B1g B2u B3u Ag ************************** *** Output from DBLGRP *** ************************** * Two fermion irreps: E1g E1u * Real group. NZ = 1 * Direct product decomposition: E1g x E1g : Ag + B1g + B2g + B3g E1u x E1g : Au + B1u + B2u + B3u E1u x E1u : Ag + B1g + B2g + B3g Spinor structure ---------------- * Fermion irrep no.: 1 * Fermion irrep no.: 2 La | Ag (1) B1g(2) | La | Au (1) B1u(2) | Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | Quaternion symmetries --------------------- Rep T(+) ----------------------------- Ag 1 B3u k B2u j B1g i B1u i B2g j B3g k Au 1 QM-QM nuclear repulsion energy : 0.000000000000 Atoms and basis sets -------------------- Number of atom types: 1 Total number of atoms: 1 label atoms charge prim cont basis ---------------------------------------------------------------------- Ir 1 77 243 243 L - [24s19p12d9f|24s19p12d9f] ---------------------------------------------------------------------- 243 243 L - large components 550 550 S - small components ---------------------------------------------------------------------- total: 1 77 793 793 Cartesian basis used. Threshold for integrals (to be written to file): 1.00D-15 References for the basis sets ----------------------------- Atom type 1 1s-3s: K.G. Dyall, unpublished 4s-7s: K.G. Dyall, J. Phys. Chem. A. (2009) 113:12638. 2p-3p: K.G. Dyall, unpublished 4p-6p: K.G. Dyall, Theor. Chem. Acc. (1998) 99:366; revision K.G. Dyall, Theor. Chem. Acc. (2006) 115:441. 7p: K.G. Dyall, Theor. Chem. Acc. (2012) 131:1172. 3d: K.G. Dyall and A.S.P. Gomes, unpublished. 4d: K.G. Dyall, Theor. Chem. Acc. (2007) 117:483. 5d: K.G. Dyall, Theor. Chem. Acc. (2004) 112:403; revision K.G. Dyall and A.S.P. Gomes, Theor. Chem. Acc. (2009) 125:97. Cartesian Coordinates --------------------- Total number of coordinates: 3 1 Ir x 0.0000000000 2 y 0.0000000000 3 z 0.0000000000 Cartesian coordinates xyz format (angstrom) ------------------------------------------- 1 Ir 0.0000000000 0.0000000000 0.0000000000 Symmetry Coordinates -------------------- Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0 Symmetry 2 1 Ir x 1 Symmetry 3 2 Ir y 2 Symmetry 5 3 Ir z 3 Nuclear repulsion energy : 0.000000000000 Nuclear contribution to dipole moments -------------------------------------- All components zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.20E-03 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 S B3u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.16E-06 S B2u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.16E-06 S B1u * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.16E-06 S Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.21E-01 L B3u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B2u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B1u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.31E-01 S Ag * Deleted: 55(Proj: 55, Lindep: 0) Smin: 0.12E-06 S B1g * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.59E-07 S B2g * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.59E-07 S B3g * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.59E-07 >>> Time used in Lwdn_a is 0.13 seconds ********************************************************************* *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** *** *** *** library version: 1.2 (August 2013) *** *** *** *** authors: - Stefan Knecht *** *** - Trond Saue *** *** contributors: - Hans Joergen Aagaard Jensen *** *** - Michal Repisky *** *** - Miroslav Ilias *** *** features: - X2C *** *** - X2C-atomic/fragment (X2C-LU) *** *** - X2C-spinfree *** *** - X2C-molecular-mean-field (X2Cmmf) *** *** *** *** Universities of *** *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** *** *** *** contact: stefan.knecht@phys.chem.ethz.ch *** ********************************************************************* *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) Output from MODHAM ------------------ * Applied strict kinetic balance ! SLSORT branch 2... Output from AMFIIN ------------------ The total nonzero charge of the system: 2 factor is : 2.00000000000000 1 .atom-nucleus charge: 77 partial charge: 2.00000000000000 Sum of all charges (real): 2.00000000000000 Total charge of the system is : 2 *** number of unique nuclei (from file MNF.INP): 1 *** calculate AMFI for atom type 1 with atomic charge 77 *** number of nuclei with identical atom type: 1 unique nuclei index: 1 *** file with AMFI integrals for this center: AOPROPER_MNF.77.1 ATOMIC NO-PAIR SO-MF CODE starts -------------------------------- Douglas-Kroll type operators charge on the calculated atom: 2 Mean-field summation for electrons #: 75 ...electronic occupation of Re: [Xe+4f^14]6s^2 5d^5 **** Written to the file TOSCF for "relscf" **** charge: 77.000 nprimit: 24 19 12 9 closed sh.: 6 4 2 1 open sh.: 0 0 5 0 *** PROGRAM AT34 - ALLIANT - @V *** ----------------------------------- SYMMETRY SPECIES S P D F NUMBER OF BASIS FUNCTIONS: 24 19 12 9 NUMBER OF CLOSED SHELLS : 6 4 2 1 OPEN SHELL OCCUPATION : 0 0 5 0 1. iteration, total energy: 0.000000000000 2. iteration, total energy: -8838.407209663746 3. iteration, total energy: -15345.019132836918 4. iteration, total energy: -15652.560706278717 5. iteration, total energy: -16493.845366528560 6. iteration, total energy: -16766.056432646594 7. iteration, total energy: -16556.778204421844 8. iteration, total energy: -16676.681606774509 9. iteration, total energy: -16725.989716436838 10. iteration, total energy: -16790.985614270659 11. iteration, total energy: -16791.082773076709 12. iteration, total energy: -16795.480147882947 13. iteration, total energy: -16804.574976843734 14. iteration, total energy: -16804.848010009347 15. iteration, total energy: -16804.852977475995 16. iteration, total energy: -16804.853483998311 17. iteration, total energy: -16804.854867254890 18. iteration, total energy: -16804.854864161163 19. iteration, total energy: -16804.854865208294 20. iteration, total energy: -16804.854865110599 21. iteration, total energy: -16804.854869698614 22. iteration, total energy: -16804.854867796330 23. iteration, total energy: -16804.854867758891 24. iteration, total energy: -16804.854867781607 25. iteration, total energy: -16804.854869685067 25. iteration, total energy: -16804.854867772305 ### NON-RELATIVISTIC APPROX. ### 25 -0.1680485487D+05 -0.3360978403D+05 0.1680492916D+05 -0.1999995579D+01 1. iteration, total energy: -17312.648135116320 2. iteration, total energy: -17808.160134361038 3. iteration, total energy: -17808.726595801607 4. iteration, total energy: -17808.866637942203 5. iteration, total energy: -17809.572280758279 6. iteration, total energy: -17809.573508855603 7. iteration, total energy: -17809.573587056773 8. iteration, total energy: -17809.573628044574 9. iteration, total energy: -17809.573952657291 10. iteration, total energy: -17809.573951489620 11. iteration, total energy: -17809.573951442817 12. iteration, total energy: -17809.573951545899 13. iteration, total energy: -17809.573952968498 14. iteration, total energy: -17809.573951719372 15. iteration, total energy: -17809.573951721250 16. iteration, total energy: -17809.573951719551 17. iteration, total energy: -17809.573952968894 17. iteration, total energy: -17809.573951720537 ### EV OPERATOR RESULT ### 17 -0.1780957395D+05 -0.3824231625D+05 0.2043274230D+05 -0.1871619369D+01 *** AMFIIN: ADDING nucleus 1 with charge 77 to the BSSn Hamiltonian. ********************************************************************* *** X2C transformation ended properly. *** *** Calculation continues in two-component mode. *** ********************************************************************* >>> Time used in mk_h2c is 1 minute 23 seconds Nuclear Gaussian exponent for atom of charge 77.000 : 1.4398142103D+08 SYMADD: Requested addition of symmetry -------------------------------------- Symmetry threshold: 0.50E-05 Original Coordinates -------------------- 77 0.00000000 0.00000000 0.00000000 1 Symmetry class found: D(oo,h) Centered and Rotated -------------------- 77 0.00000000 0.00000000 0.00000000 1 The following elements were found: X Y Z Nuclear contribution to dipole moments -------------------------------------- All components zero by symmetry Generating Lowdin canonical matrix: ----------------------------------- L Ag * Deleted: 12(Proj: 12, Lindep: 0) Smin: 0.20E-03 L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.95E-02 L B3u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B2u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L B1u * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.19E-02 L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.31E-01 Output from LINSYM ------------------ Parity MJ Functions(total) Functions(LC) Functions(SC) 1 1/2 48 48 0 1 -3/2 24 24 0 1 5/2 12 12 0 -1 1/2 56 56 0 -1 -3/2 37 37 0 -1 5/2 18 18 0 -1 -7/2 9 9 0 ********************************************************************** ************************* Orbital dimensions ************************* ********************************************************************** Irrep 1 Irrep 2 Sum No. of electronic orbitals (NESH): 84 120 204 No. of positronic orbitals (NPSH): 0 0 0 Total no. of orbitals (NORB): 84 120 204 >>> Time used in PAMSET is 1 minute 51 seconds ******************************************************************************* *********************** X2C relativistic HF calculation *********************** ******************************************************************************* *** INFO *** No trial vectors found. Using bare nucleus approximation for initial trial vectors. ########## START ITERATION NO. 1 ########## Sun Aug 24 21:51:53 2014 => Calculating sum of orbital energies It. 1 -25152.56878357 0.00D+00 0.00D+00 0.00D+00 0.88986500s Bare nuclei Sun Aug 24 ########## START ITERATION NO. 2 ########## Sun Aug 24 21:51:53 2014 * GETGAB: label "GABAO1XX" not found; calling GABGEN. SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 5.02% 19.95% 8.12% 39.98% 20.45789337s >>> Total wall time: 0.00000000s >>> Total CPU time :25.09018700s ########## END ITERATION NO. 2 ########## Sun Aug 24 21:51:53 2014 It. 2 -16254.49448524 -8.90D+03 5.86D+02 5.80D+02 25.09018700s LL Sun Aug 24 ########## START ITERATION NO. 3 ########## Sun Aug 24 21:51:55 2014 3 *** Differential density matrix. DCOVLP = 0.0271 3 *** Differential density matrix. DVOVLP( 1) = 0.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 5.01% 18.85% 6.13% 33.34% 20.12493896s >>> Total wall time: 0.00000000s >>> Total CPU time :26.55296300s ########## END ITERATION NO. 3 ########## Sun Aug 24 21:51:55 2014 It. 3 -17245.18941868 9.91D+02 -1.66D+02 2.13D+02 DIIS 2 26.55296300s LL Sun Aug 24 ########## START ITERATION NO. 4 ########## Sun Aug 24 21:51:57 2014 4 *** Differential density matrix. DCOVLP = 0.1832 4 *** Differential density matrix. DVOVLP( 1) = 0.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 16.27% 1.76% 22.20% 24.09834290s >>> Total wall time: 0.00000000s >>> Total CPU time :29.50551400s ########## END ITERATION NO. 4 ########## Sun Aug 24 21:51:57 2014 It. 4 -17669.88079511 4.25D+02 8.20D+01 8.26D+01 DIIS 3 29.50551400s LL Sun Aug 24 ########## START ITERATION NO. 5 ########## Sun Aug 24 21:52:00 2014 5 *** Differential density matrix. DCOVLP = 0.6980 5 *** Differential density matrix. DVOVLP( 1) = 0.2579 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 16.51% 1.76% 22.22% 24.36729431s >>> Total wall time: 0.00000000s >>> Total CPU time :30.91830000s ########## END ITERATION NO. 5 ########## Sun Aug 24 21:52:00 2014 It. 5 -17748.36733502 7.85D+01 -2.35D+01 1.02D+01 DIIS 4 30.91830000s LL Sun Aug 24 ########## START ITERATION NO. 6 ########## Sun Aug 24 21:52:03 2014 6 *** Differential density matrix. DCOVLP = 1.0284 6 *** Differential density matrix. DVOVLP( 1) = 0.9256 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 19.02% 1.73% 21.87% 23.86137390s >>> Total wall time: 0.00000000s >>> Total CPU time :29.00759000s ########## END ITERATION NO. 6 ########## Sun Aug 24 21:52:03 2014 It. 6 -17749.67112005 1.30D+00 2.67D+00 6.56D-01 DIIS 5 29.00759000s LL Sun Aug 24 ########## START ITERATION NO. 7 ########## Sun Aug 24 21:52:06 2014 7 *** Differential density matrix. DCOVLP = 0.9985 7 *** Differential density matrix. DVOVLP( 1) = 0.9903 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.00% 23.76% 1.73% 21.61% 23.47541809s >>> Total wall time: 0.00000000s >>> Total CPU time :30.11342200s ########## END ITERATION NO. 7 ########## Sun Aug 24 21:52:06 2014 It. 7 -17749.67788530 6.77D-03 -1.91D-01 4.83D-02 DIIS 6 30.11342200s LL Sun Aug 24 ########## START ITERATION NO. 8 ########## Sun Aug 24 21:52:09 2014 8 *** Differential density matrix. DCOVLP = 1.0002 8 *** Differential density matrix. DVOVLP( 1) = 0.9987 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.27% 28.32% 1.88% 21.87% 22.79351807s >>> Total wall time: 0.00000000s >>> Total CPU time :28.90960400s ########## END ITERATION NO. 8 ########## Sun Aug 24 21:52:09 2014 It. 8 -17749.67795160 6.63D-05 1.33D-02 4.06D-03 DIIS 7 28.90960400s LL Sun Aug 24 ########## START ITERATION NO. 9 ########## Sun Aug 24 21:52:11 2014 9 *** Differential density matrix. DCOVLP = 1.0000 9 *** Differential density matrix. DVOVLP( 1) = 0.9998 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.36% 33.15% 1.56% 19.20% 22.64456177s >>> Total wall time: 0.00000000s >>> Total CPU time :28.25870500s ########## END ITERATION NO. 9 ########## Sun Aug 24 21:52:11 2014 It. 9 -17749.67795965 8.05D-06 -7.62D-04 1.49D-03 DIIS 8 28.25870500s LL Sun Aug 24 ########## START ITERATION NO. 10 ########## Sun Aug 24 21:52:14 2014 10 *** Differential density matrix. DCOVLP = 1.0000 10 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.53% 35.66% 1.53% 18.64% 22.40457153s >>> Total wall time: 0.00000000s >>> Total CPU time :29.09457600s ########## END ITERATION NO. 10 ########## Sun Aug 24 21:52:14 2014 It. 10 -17749.67796201 2.35D-06 4.28D-04 4.61D-04 DIIS 9 29.09457600s LL Sun Aug 24 ########## START ITERATION NO. 11 ########## Sun Aug 24 21:52:17 2014 11 *** Differential density matrix. DCOVLP = 1.0000 11 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 0.88% 37.56% 1.92% 20.10% 21.96466064s >>> Total wall time: 0.00000000s >>> Total CPU time :27.28585200s ########## END ITERATION NO. 11 ########## Sun Aug 24 21:52:17 2014 It. 11 -17749.67796222 2.13D-07 -1.68D-04 4.12D-05 DIIS 9 27.28585200s LL Sun Aug 24 ########## START ITERATION NO. 12 ########## Sun Aug 24 21:52:21 2014 12 *** Differential density matrix. DCOVLP = 1.0000 12 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 1.26% 45.58% 3.47% 20.56% 20.94781494s >>> Total wall time: 0.00000000s >>> Total CPU time :26.55596300s ########## END ITERATION NO. 12 ########## Sun Aug 24 21:52:21 2014 It. 12 -17749.67796222 2.47D-10 8.44D-06 6.88D-06 DIIS 9 26.55596300s LL Sun Aug 24 ########## START ITERATION NO. 13 ########## Sun Aug 24 21:52:24 2014 13 *** Differential density matrix. DCOVLP = 1.0000 13 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 2.90% 52.08% 3.21% 18.10% 20.06893921s >>> Total wall time: 0.00000000s >>> Total CPU time :25.41213700s ########## END ITERATION NO. 13 ########## Sun Aug 24 21:52:24 2014 It. 13 -17749.67796222 -5.09D-11 -1.27D-06 5.12D-07 DIIS 9 25.41213700s LL Sun Aug 24 ########## START ITERATION NO. 14 ########## Sun Aug 24 21:52:26 2014 14 *** Differential density matrix. DCOVLP = 1.0000 14 *** Differential density matrix. DVOVLP( 1) = 1.0000 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 6.46% 59.60% 2.86% 14.66% 18.82315063s >>> Total wall time: 0.00000000s >>> Total CPU time :27.62380100s ########## END ITERATION NO. 14 ########## Sun Aug 24 21:52:26 2014 It. 14 -17749.67796222 2.18D-11 7.13D-08 6.52D-08 DIIS 9 27.62380100s LL Sun Aug 24 SCF - CYCLE ----------- * Convergence on norm of error vector (gradient). Desired convergence:1.000D-07 Allowed convergence:1.000D-06 * ERGVAL - convergence in total energy * FCKVAL - convergence in maximum change in total Fock matrix * EVCVAL - convergence in error vector (gradient) -------------------------------------------------------------------------------------------------------------------------------- Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp -------------------------------------------------------------------------------------------------------------------------------- It. 1 -25152.56878357 0.00D+00 0.00D+00 0.00D+00 0.88986500s Bare nuclei Sun Aug 24 It. 2 -16254.49448524 -8.90D+03 5.86D+02 5.80D+02 25.09018700s LL Sun Aug 24 It. 3 -17245.18941868 9.91D+02 -1.66D+02 2.13D+02 DIIS 2 26.55296300s LL Sun Aug 24 It. 4 -17669.88079511 4.25D+02 8.20D+01 8.26D+01 DIIS 3 29.50551400s LL Sun Aug 24 It. 5 -17748.36733502 7.85D+01 -2.35D+01 1.02D+01 DIIS 4 30.91830000s LL Sun Aug 24 It. 6 -17749.67112005 1.30D+00 2.67D+00 6.56D-01 DIIS 5 29.00759000s LL Sun Aug 24 It. 7 -17749.67788530 6.77D-03 -1.91D-01 4.83D-02 DIIS 6 30.11342200s LL Sun Aug 24 It. 8 -17749.67795160 6.63D-05 1.33D-02 4.06D-03 DIIS 7 28.90960400s LL Sun Aug 24 It. 9 -17749.67795965 8.05D-06 -7.62D-04 1.49D-03 DIIS 8 28.25870500s LL Sun Aug 24 It. 10 -17749.67796201 2.35D-06 4.28D-04 4.61D-04 DIIS 9 29.09457600s LL Sun Aug 24 It. 11 -17749.67796222 2.13D-07 -1.68D-04 4.12D-05 DIIS 9 27.28585200s LL Sun Aug 24 It. 12 -17749.67796222 2.47D-10 8.44D-06 6.88D-06 DIIS 9 26.55596300s LL Sun Aug 24 It. 13 -17749.67796222 -5.09D-11 -1.27D-06 5.12D-07 DIIS 9 25.41213700s LL Sun Aug 24 It. 14 -17749.67796222 2.18D-11 7.13D-08 6.52D-08 DIIS 9 27.62380100s LL Sun Aug 24 -------------------------------------------------------------------------------------------------------------------------------- * Convergence after 14 iterations. * Average elapsed time per iteration: No 2-ints : 0.00000000s LL : 0.00000000s TOTAL ENERGY ------------ Electronic energy : -17749.677962219408 Other contributions to the total energy Nuclear repulsion energy : 0.000000000000 Sum of all contributions to the energy Total energy : -17749.677962219408 Eigenvalues ----------- * Block 1 in E1g: Omega = 1/2 * Closed shell, f = 1.0000 -2824.379601640 ( 2) -509.682783522 ( 2) -130.926966441 ( 2) -91.882968668 ( 2) -89.016530207 ( 2) -38.601242261 ( 2) -24.466202865 ( 2) -23.847583446 ( 2) * Virtual eigenvalues, f = 0.0000 -13.930508352 ( 2) -9.656894869 ( 2) -9.470598909 ( 2) -7.624205370 ( 2) -5.785752701 ( 2) -5.721434059 ( 2) -4.874835673 ( 2) -3.851064389 ( 2) -3.829987813 ( 2) -2.979445862 ( 2) 1.978082547 ( 2) 2.329031576 ( 2) 6.381566259 ( 2) 33.520302311 ( 2) 34.680754348 ( 2) 65.231528060 ( 2) 127.134213831 ( 2) 130.412051945 ( 2) 253.141799132 ( 2) 380.750064197 ( 2) 390.179375840 ( 2) 762.113091942 ( 2) 1060.120457689 ( 2) 1090.019168032 ( 2) 2005.308461987 ( 2) 2956.590816263 ( 2) 3065.139554880 ( 2) 4721.582621348 ( 2) 8907.820144140 ( 2) 9424.499535290 ( 2) 9996.006158125 ( 2) 19360.747189962 ( 2) 35106.091005229 ( 2) 60959.823562900 ( 2) 103360.430973332 ( 2) 173881.970140632 ( 2) 294161.513581729 ( 2) 507698.417824199 ( 2) 910951.288266664 ( 2) 1785929.334057713 ( 2) * Block 2 in E1g: Omega = 3/2 * Closed shell, f = 1.0000 -91.882968669 ( 2) -89.016530207 ( 2) -24.466202867 ( 2) -23.847583446 ( 2) * Virtual eigenvalues, f = 0.0000 -9.656894867 ( 2) -9.470598909 ( 2) -5.785752700 ( 2) -5.721434059 ( 2) -3.851064389 ( 2) -3.829987813 ( 2) 1.978082548 ( 2) 2.329031576 ( 2) 33.520302311 ( 2) 34.680754348 ( 2) 127.134213830 ( 2) 130.412051944 ( 2) 380.750064197 ( 2) 390.179375840 ( 2) 1060.120457690 ( 2) 1090.019168032 ( 2) 2956.590816263 ( 2) 3065.139554880 ( 2) 8907.820144140 ( 2) 9424.499535290 ( 2) * Block 3 in E1g: Omega = 5/2 * Closed shell, f = 1.0000 -89.016530207 ( 2) -23.847583445 ( 2) * Virtual eigenvalues, f = 0.0000 -9.470598908 ( 2) -5.721434058 ( 2) -3.829987813 ( 2) 2.329031578 ( 2) 34.680754348 ( 2) 130.412051944 ( 2) 390.179375840 ( 2) 1090.019168032 ( 2) 3065.139554880 ( 2) 9424.499535290 ( 2) * Block 1 in E1u: Omega = 1/2 * Closed shell, f = 1.0000 -487.983876490 ( 2) -428.078092755 ( 2) -121.228483319 ( 2) -107.898661634 ( 2) -34.490544431 ( 2) -31.261481865 ( 2) -15.064108174 ( 2) -14.932063488 ( 2) * Open shell #1, f = 0.5000 -13.370657395 ( 2) * Virtual eigenvalues, f = 0.0000 -11.776129423 ( 2) -7.055020770 ( 2) -7.033803499 ( 2) -6.994135822 ( 2) -6.739028507 ( 2) -4.407745245 ( 2) -4.404914131 ( 2) -4.389528230 ( 2) -4.321557908 ( 2) -2.620153056 ( 2) -2.580678978 ( 2) -2.512312135 ( 2) -2.500660935 ( 2) 1.879308367 ( 2) 3.513457457 ( 2) 8.298321076 ( 2) 8.425516563 ( 2) 39.504885352 ( 2) 39.800984932 ( 2) 40.147133483 ( 2) 45.500065864 ( 2) 121.957750312 ( 2) 123.039889185 ( 2) 159.326653496 ( 2) 177.287110833 ( 2) 348.984742140 ( 2) 352.727584028 ( 2) 502.370234564 ( 2) 552.622559425 ( 2) 1094.418183465 ( 2) 1113.584785104 ( 2) 1406.936148832 ( 2) 1541.131465820 ( 2) 3610.672374209 ( 2) 3965.305299180 ( 2) 8635.890313818 ( 2) 9557.908142106 ( 2) 19493.329664177 ( 2) 21793.765988031 ( 2) 42380.381384852 ( 2) 47902.387703223 ( 2) 91596.131823987 ( 2) 104754.348554566 ( 2) 205435.560238040 ( 2) 237783.323546263 ( 2) 516569.093950216 ( 2) 603989.834086699 ( 2) * Block 2 in E1u: Omega = 3/2 * Closed shell, f = 1.0000 -428.078092755 ( 2) -107.898661635 ( 2) -31.261481865 ( 2) -15.064108175 ( 2) -14.932063488 ( 2) * Virtual eigenvalues, f = 0.0000 -11.776129421 ( 2) -7.033803499 ( 2) -6.994135821 ( 2) -6.739028507 ( 2) -4.404914131 ( 2) -4.389528230 ( 2) -4.321557908 ( 2) -2.620153056 ( 2) -2.580678978 ( 2) -2.500660935 ( 2) 3.513457458 ( 2) 8.298321076 ( 2) 8.425516563 ( 2) 39.800984932 ( 2) 40.147133483 ( 2) 45.500065865 ( 2) 121.957750311 ( 2) 123.039889185 ( 2) 177.287110832 ( 2) 348.984742140 ( 2) 352.727584028 ( 2) 552.622559425 ( 2) 1094.418183465 ( 2) 1113.584785104 ( 2) 1541.131465820 ( 2) 3965.305299180 ( 2) 9557.908142107 ( 2) 21793.765988031 ( 2) 47902.387703222 ( 2) 104754.348554565 ( 2) 237783.323546264 ( 2) 603989.834086701 ( 2) * Block 3 in E1u: Omega = 5/2 * Closed shell, f = 1.0000 -15.064108175 ( 2) -14.932063487 ( 2) * Virtual eigenvalues, f = 0.0000 -7.033803498 ( 2) -6.994135821 ( 2) -4.404914130 ( 2) -4.389528230 ( 2) -2.620153055 ( 2) -2.580678978 ( 2) 8.298321077 ( 2) 8.425516564 ( 2) 39.800984932 ( 2) 40.147133484 ( 2) 121.957750311 ( 2) 123.039889185 ( 2) 348.984742140 ( 2) 352.727584028 ( 2) 1094.418183465 ( 2) 1113.584785104 ( 2) * Block 4 in E1u: Omega = 7/2 * Closed shell, f = 1.0000 -14.932063487 ( 2) * Virtual eigenvalues, f = 0.0000 -6.994135820 ( 2) -4.389528230 ( 2) -2.580678977 ( 2) 8.425516565 ( 2) 40.147133484 ( 2) 123.039889184 ( 2) 352.727584028 ( 2) 1113.584785105 ( 2) * Occupation in fermion symmetry E1g * Inactive orbitals 1/2 1/2 1/2 3/2 1/2 5/2 1/2 3/2 1/2 3/2 1/2 1/2 3/2 5/2 * Virtual orbitals 1/2 1/2 3/2 1/2 3/2 5/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2 3/2 1/2 1/2 3/2 5/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 1/2 3/2 3/2 1/2 5/2 1/2 1/2 3/2 3/2 1/2 5/2 1/2 1/2 3/2 3/2 1/2 5/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 * Occupation in fermion symmetry E1u * Inactive orbitals 1/2 1/2 3/2 1/2 3/2 1/2 1/2 1/2 3/2 5/2 3/2 1/2 3/2 1/2 7/2 5/2 * Active orbitals 1/2 * Virtual orbitals 1/2 3/2 1/2 1/2 3/2 5/2 1/2 3/2 5/2 7/2 1/2 3/2 1/2 1/2 3/2 5/2 1/2 3/2 5/2 7/2 1/2 3/2 1/2 3/2 5/2 1/2 3/2 5/2 7/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2 3/2 5/2 7/2 1/2 5/2 3/2 1/2 3/2 1/2 5/2 7/2 1/2 3/2 5/2 3/2 1/2 7/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 7/2 5/2 3/2 1/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2 3/2 5/2 7/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 1/2 3/2 1/2 1/2 3/2 * Occupation of subblocks E1g: 1/2 3/2 5/2 closed shells (f=1.0000): 8 4 2 open shell #1 (f=0.5000): 0 0 0 virtual shells (f=0.0000): 40 20 10 tot.num. of pos.erg shells: 48 24 12 E1u: 1/2 3/2 5/2 7/2 closed shells (f=1.0000): 8 5 2 1 open shell #1 (f=0.5000): 1 0 0 0 virtual shells (f=0.0000): 47 32 16 8 tot.num. of pos.erg shells: 56 37 18 9 * HOMO - LUMO gap: E(LUMO) : -13.93050835 au (symmetry E1g) - E(HOMO) : -13.37065739 au (symmetry E1u) ------------------------------------------ gap : -0.55985096 au * INFO: E(LUMO) - E(HOMO) small or negative. ************************************************************************** ********************** Mulliken population analysis ********************** ************************************************************************** Fermion ircop E1g ----------------- * Electronic eigenvalue no. 1: -2824.3796016397 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 2: -509.68278352238 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 3: -130.92696644063 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 4: -91.882968668657 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 5: -91.882968668254 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 6: -89.016530207385 (Occupation : f = 1.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 7: -89.016530206817 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 8: -89.016530206808 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 9: -38.601242261274 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 10: -24.466202866743 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 11: -24.466202865209 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 12: -23.847583446009 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 13: -23.847583445576 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 14: -23.847583445164 (Occupation : f = 1.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 15: -13.930508351750 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 16: -9.6568948685149 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 17: -9.6568948665494 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 18: -9.4705989091947 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 19: -9.4705989087275 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 20: -9.4705989077234 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 21: -7.6242053701482 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 22: -5.7857527010188 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 23: -5.7857527003647 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 24: -5.7214340590746 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 25: -5.7214340588325 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 26: -5.7214340582682 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 27: -4.8748356727084 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 28: -3.8510643893201 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 29: -3.8510643890946 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 30: -3.8299878129355 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 31: -3.8299878128489 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 32: -3.8299878126359 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 33: -2.9794458618357 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 34: 1.9780825474172 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 35: 1.9780825483175 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 36: 2.3290315758000 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 37: 2.3290315764696 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 38: 2.3290315776278 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 39: 6.3815662589176 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 40: 33.520302310657 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 41: 33.520302311089 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 42: 34.680754347870 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 43: 34.680754348108 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 44: 34.680754348478 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 45: 65.231528060239 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 46: 127.13421383016 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 47: 127.13421383099 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 48: 130.41205194409 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 49: 130.41205194447 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 50: 130.41205194465 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 51: 253.14179913184 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 52: 380.75006419665 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 53: 380.75006419685 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 54: 390.17937584021 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 55: 390.17937584025 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 56: 390.17937584042 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 57: 762.11309194160 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 58: 1060.1204576895 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 59: 1060.1204576895 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 60: 1090.0191680317 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 61: 1090.0191680318 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 62: 1090.0191680319 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 63: 2005.3084619872 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 64: 2956.5908162628 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 65: 2956.5908162630 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 66: 3065.1395548800 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 67: 3065.1395548800 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 68: 3065.1395548802 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 69: 4721.5826213479 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 70: 8907.8201441400 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.4000 | 0.0667 0.0667 0.2667 0.0000 0.0000 beta 0.6000 | 0.0000 0.0000 0.0000 0.3000 0.3000 * Electronic eigenvalue no. 71: 8907.8201441400 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.8000 | 0.2000 0.2000 0.4000 0.0000 0.0000 beta 0.2000 | 0.0000 0.0000 0.0000 0.1000 0.1000 * Electronic eigenvalue no. 72: 9424.4995352896 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.2000 | 0.0500 0.0500 0.1000 0.0000 0.0000 beta 0.8000 | 0.0000 0.0000 0.0000 0.4000 0.4000 * Electronic eigenvalue no. 73: 9424.4995352897 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------- alpha 0.6000 | 0.1000 0.1000 0.4000 0.0000 0.0000 beta 0.4000 | 0.0000 0.0000 0.0000 0.2000 0.2000 * Electronic eigenvalue no. 74: 9424.4995352899 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir dxx L Ag Ir dyy L B1gIr dxy -------------------------------------------------------------------- alpha 1.0000 | 0.2500 0.2500 0.5000 beta 0.0000 | 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 75: 9996.0061581249 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 76: 19360.747189962 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 77: 35106.091005229 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 78: 60959.823562900 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 79: 103360.43097333 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 80: 173881.97014063 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 81: 294161.51358173 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 82: 507698.41782420 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 83: 910951.28826666 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 * Electronic eigenvalue no. 84: 1785929.3340577 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L Ag Ir s -------------------------------------- alpha 1.0000 | 1.0000 beta 0.0000 | 0.0000 ** Total gross population of fermion ircop E1g ** Gross Total | L Ag Ir s L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B1gIr dxy L B2gIr dxz L B3gIr dyz -------------------------------------------------------------------------------------------------------------------------------- total 28.00000 | 8.00000 2.66667 2.66667 2.66667 4.00000 4.00000 4.00000 Fermion ircop E1u ----------------- * Electronic eigenvalue no. 1: -487.98387648977 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 2: -428.07809275477 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 3: -428.07809275458 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 4: -121.22848331934 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 5: -107.89866163473 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 6: -107.89866163404 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 7: -34.490544431203 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 8: -31.261481864929 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 9: -31.261481864672 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 10: -15.064108175330 (Occupation : f = 1.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 11: -15.064108174510 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 12: -15.064108174063 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 13: -14.932063488006 (Occupation : f = 1.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 14: -14.932063487908 (Occupation : f = 1.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 15: -14.932063487492 (Occupation : f = 1.0000) m_j= -7/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 16: -14.932063487023 (Occupation : f = 1.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 17: -13.370657394604 (Occupation : f = 0.5000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 18: -11.776129422659 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 19: -11.776129420703 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 20: -7.0550207701096 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 21: -7.0338034992368 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 22: -7.0338034987703 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 23: -7.0338034978413 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 24: -6.9941358216975 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 25: -6.9941358214569 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 26: -6.9941358207721 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 27: -6.9941358200935 (Occupation : f = 0.0000) m_j= -7/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 28: -6.7390285074149 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 29: -6.7390285065435 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 30: -4.4077452450557 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 31: -4.4049141308527 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 32: -4.4049141306879 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 33: -4.4049141303358 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 34: -4.3895282304712 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 35: -4.3895282303960 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 36: -4.3895282301325 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 37: -4.3895282298769 (Occupation : f = 0.0000) m_j= -7/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 38: -4.3215579084273 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 39: -4.3215579081648 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 40: -2.6201530559375 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 41: -2.6201530556065 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 42: -2.6201530549224 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 43: -2.5806789784724 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 44: -2.5806789782883 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 45: -2.5806789777755 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 46: -2.5806789772706 (Occupation : f = 0.0000) m_j= -7/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 47: -2.5123121354054 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 48: -2.5006609348097 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 49: -2.5006609347544 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 50: 1.8793083668319 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 51: 3.5134574567729 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 52: 3.5134574581036 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 53: 8.2983210758105 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 54: 8.2983210761965 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 55: 8.2983210770385 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 56: 8.4255165630541 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 57: 8.4255165632416 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 58: 8.4255165640199 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 59: 8.4255165646436 (Occupation : f = 0.0000) m_j= -7/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 60: 39.504885352236 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 61: 39.800984931873 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 62: 39.800984931899 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 63: 39.800984931991 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 64: 40.147133483209 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 65: 40.147133483216 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 66: 40.147133483528 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 67: 40.147133483626 (Occupation : f = 0.0000) m_j= -7/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 68: 45.500065864385 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 69: 45.500065864667 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 70: 121.95775031073 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 71: 121.95775031126 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 72: 121.95775031159 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 73: 123.03988918442 (Occupation : f = 0.0000) m_j= -7/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 74: 123.03988918474 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 75: 123.03988918489 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 76: 123.03988918499 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 77: 159.32665349566 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 78: 177.28711083234 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 79: 177.28711083265 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 80: 348.98474213964 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 81: 348.98474213977 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 82: 348.98474213988 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 83: 352.72758402836 (Occupation : f = 0.0000) m_j= -7/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 84: 352.72758402841 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 85: 352.72758402843 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 86: 352.72758402846 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 87: 502.37023456375 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 88: 552.62255942531 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 89: 552.62255942532 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no. 90: 1094.4181834650 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.4286 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1286 beta 0.5714 | 0.0429 0.0143 0.2286 0.0143 0.0429 0.2286 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1286 0.1714 beta | 0.0000 0.0000 * Electronic eigenvalue no. 91: 1094.4181834651 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.7143 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1786 beta 0.2857 | 0.0214 0.0071 0.1143 0.0071 0.0214 0.1143 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.1786 0.3571 beta | 0.0000 0.0000 * Electronic eigenvalue no. 92: 1094.4181834653 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.1429 | 0.0000 0.0000 0.0000 0.0000 0.0357 0.0357 0.0714 beta 0.8571 | 0.1071 0.3214 0.3214 0.1071 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 93: 1113.5847851042 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.5714 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1714 beta 0.4286 | 0.0321 0.0107 0.1714 0.0107 0.0321 0.1714 0.0000 Gross | L B1uIr fyyz L B1uIr fzzz -------------------------------------- alpha | 0.1714 0.2286 beta | 0.0000 0.0000 * Electronic eigenvalue no. 94: 1113.5847851043 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.2857 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0714 beta 0.7143 | 0.0536 0.0179 0.2857 0.0179 0.0536 0.2857 0.0000 Gross | L B1uIr fyyz L Au Ir fxyz -------------------------------------- alpha | 0.0714 0.1429 beta | 0.0000 0.0000 * Electronic eigenvalue no. 95: 1113.5847851044 (Occupation : f = 0.0000) m_j= 5/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy L B1uIr fxxz L B1uIr fyyz L Au Ir fxyz -------------------------------------------------------------------------------------------------------------------------------- alpha 0.8571 | 0.0000 0.0000 0.0000 0.0000 0.2143 0.2143 0.4286 beta 0.1429 | 0.0179 0.0536 0.0536 0.0179 0.0000 0.0000 0.0000 * Electronic eigenvalue no. 96: 1113.5847851046 (Occupation : f = 0.0000) m_j= -7/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr fxxx L B3uIr fxyy L B2uIr fxxy L B2uIr fyyy ----------------------------------------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 0.0000 0.0000 beta 1.0000 | 0.1250 0.3750 0.3750 0.1250 * Electronic eigenvalue no. 97: 1406.9361488323 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no. 98: 1541.1314658198 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no. 99: 1541.1314658200 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no.100: 3610.6723742087 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no.101: 3965.3052991798 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no.102: 3965.3052991800 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no.103: 8635.8903138180 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no.104: 9557.9081421064 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no.105: 9557.9081421068 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no.106: 19493.329664177 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no.107: 21793.765988031 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no.108: 21793.765988031 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no.109: 42380.381384852 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no.110: 47902.387703222 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no.111: 47902.387703223 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no.112: 91596.131823987 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no.113: 104754.34855457 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no.114: 104754.34855457 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no.115: 205435.56023804 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no.116: 237783.32354626 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no.117: 237783.32354626 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 * Electronic eigenvalue no.118: 516569.09395022 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.3333 | 0.0000 0.0000 0.3333 beta 0.6667 | 0.3333 0.3333 0.0000 * Electronic eigenvalue no.119: 603989.83408670 (Occupation : f = 0.0000) m_j= 1/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py L B1uIr pz -------------------------------------------------------------------- alpha 0.6667 | 0.0000 0.0000 0.6667 beta 0.3333 | 0.1667 0.1667 0.0000 * Electronic eigenvalue no.120: 603989.83408670 (Occupation : f = 0.0000) m_j= -3/2 ========================================================================================== * Gross populations greater than 0.00010 Gross Total | L B3uIr px L B2uIr py ----------------------------------------------------- alpha 0.0000 | 0.0000 0.0000 beta 1.0000 | 0.5000 0.5000 ** Total gross population of fermion ircop E1u ** Gross Total | L B3uIr px L B3uIr fxxx L B3uIr fxyy L B3uIr fxzz L B2uIr py L B2uIr fxxy L B2uIr fyyy -------------------------------------------------------------------------------------------------------------------------------- total 33.00000 | 6.33333 0.80000 1.60000 1.60000 6.33333 1.60000 0.80000 Gross | L B2uIr fyzz L B1uIr pz L B1uIr fxxz L B1uIr fyyz L B1uIr fzzz L Au Ir fxyz -------------------------------------------------------------------------------------------------- total | 1.60000 6.33333 1.60000 1.60000 0.80000 2.00000 *** Total gross population *** Gross Total | L Ag Ir s L Ag Ir dxx L Ag Ir dyy L Ag Ir dzz L B3uIr px L B3uIr fxxx L B3uIr fxyy -------------------------------------------------------------------------------------------------------------------------------- total 61.00000 | 8.00000 2.66667 2.66667 2.66667 6.33333 0.80000 1.60000 Gross | L B3uIr fxzz L B2uIr py L B2uIr fxxy L B2uIr fyyy L B2uIr fyzz L B1gIr dxy L B1uIr pz L B1uIr fxxz -------------------------------------------------------------------------------------------------------------------------------- total | 1.60000 6.33333 1.60000 0.80000 1.60000 4.00000 6.33333 1.60000 Gross | L B1uIr fyyz L B1uIr fzzz L B2gIr dxz L B3gIr dyz L Au Ir fxyz ----------------------------------------------------------------------------------- total | 1.60000 0.80000 4.00000 4.00000 2.00000 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ************************************************************************ **************** Transformation of 2-electron integrals **************** ************************************************************************ Transformation started at : Sun Aug 24 21:52:29 2014 * REACMO: Coefficients read from file DFCOEF - Total energy: -17749.6779622193862 * Heading : atomic test calculations Sun Aug 24 21:52:26 2014 Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. Energy selection of active orbitals : -50.00 < Eps. < 50.00 with a mininum gap of 1.0000 au. * Orbital ranges for 4-index transformation: * Fermion ircop E1g Index 1 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 2 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 3 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Index 4 36 orbitals 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 * Fermion ircop E1u Index 1 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 2 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 3 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Index 4 63 orbitals 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 * Core orbital ranges for 2-index transformation: * Fermion ircop E1g Index 1 8 orbitals 1 2 3 4 5 6 7 8 * Fermion ircop E1u Index 1 6 orbitals 1 2 3 4 5 6 ************************************************************************** **************** Transformation to Molecular Spinor Basis **************** ************************************************************************** Written by Luuk Visscher, Jon Laerdahl & Trond Saue Odense, 1997 ******************************************************************** **************** Transformation of core Fock matrix **************** ******************************************************************** Transformation started at : Sun Aug 24 21:52:29 2014 * REACMO: Coefficients read from file DFCOEF - Total energy: -17749.6779622193862 * Heading : atomic test calculations Sun Aug 24 21:52:26 2014 SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time SOfock:LL 1.00D-12 15.88% 28.01% 1.04% 17.56% 17.26138306s * REAFCK: Fock matrix read from file /home/milias/my_scratch/milias/DIRAC_Z61.x2c.2P12.scf_cc33e_ * Heading : atomic test calculations Sun Aug 24 21:51:52 2014 Core energy (includes nuclear repulsion) : -16075.1229511979 - Electronic part : -16075.1229511979 - One-electron terms : -18680.8812254982 - Two-electron terms : 2605.7582743003 MOLFDIR file MRCONEE is written - Integral class 1 : (LL|??) - Beginning task 1 of 11 after 0. seconds and 0. CPU-seconds - Beginning task 2 of 11 after 0. seconds and 2. CPU-seconds - Beginning task 3 of 11 after 0. seconds and 3. CPU-seconds - Beginning task 4 of 11 after 0. seconds and 8. CPU-seconds - Beginning task 5 of 11 after 0. seconds and 15. CPU-seconds - Beginning task 6 of 11 after 0. seconds and 22. CPU-seconds - Beginning task 7 of 11 after 0. seconds and 36. CPU-seconds - Beginning task 8 of 11 after 0. seconds and 54. CPU-seconds - Beginning task 9 of 11 after 0. seconds and 78. CPU-seconds - Beginning task 10 of 11 after 0. seconds and 111. CPU-seconds - Beginning task 11 of 11 after 0. seconds and 153. CPU-seconds - Integral class 2 : (SS|??) Node 0 finished first half transformation 97596730 HT integrals written ( 66.94%, 2.18 GB) <<< Starting 2HT on node 0 >>> Finished 2HT on node 0 >>> Time used in 2HT_all is 13 minutes 56 seconds - Binary file MDCINT was written. * Screening statistics: (LL|LL)ints : 0.00% Total : 0.00% ------ Timing report (in CPU seconds) of module integral transformation Time in First halftransformation 203.902 seconds Time in Second halftransformation 836.342 seconds Total wall time used in PAMTRA : 00:02:08 Total CPU time used in PAMTRA (master only) : 00:17:42 Transformation ended at : Sun Aug 24 21:54:33 2014 ---< Process 1 of 1----< Relativistic Coupled Cluster program RELCCSD Written by : Lucas Visscher NASA Ames Research Center (1994) Rijks Universiteit Groningen (1995) Odense Universitet (1996-1997) VU University Amsterdam (1998-present) This module is documented in - Initial implementation : L. Visscher, T.J. Lee and K.G. Dyall, J. Chem. Phys. 105 (1996) 8769. - Fock Space (FSCC): L. Visscher, E. Eliav and U. Kaldor, J. Chem. Phys. 115 (2002) 9720. - Intermediate Hamiltonian E. Eliav, M. J. Vilkas, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 122 (2005) 224113. - Parallelization : M. Pernpointner and L. Visscher, J. Comp. Chem. 24 (2003) 754. Today is : 24 Aug 14 The time is : 21:54:33 Initializing word-addressable I/O : the FORTRAN-interface is used with 16 KB records EHMIN: 1000.00000 EHMAX: 100.00000 EPMIN: -1.00000 EPMAX: -1000.00000 Total memory available has not been determined Configuration in highest pointgroup Eg Eg Eu Eu Spinor class : occupied 6 6 11 10 Spinor class : virtual 30 30 52 53 Configuration in abelian subgroup 1g -1g 3g -3g 5g -5g 1u -1u Spinor class : occupied 3 3 2 2 1 1 5 4 Spinor class : virtual 15 15 10 10 5 5 21 22 Configuration in abelian subgroup 3u -3u 5u -5u 7u -7u Spinor class : occupied 3 3 2 2 1 1 Spinor class : virtual 16 16 10 10 5 5 Number of electrons : 33 Total charge of the system : 16 Number of virtual spinors : 165 Complex arithmetic mode : F Do integral sorting : T Do energy calculation : T Do gradient calculation : F Do response calculation : F Debug information : F Timing information : T Print level : 1 Memory limit (MWord) not set in Dirac but by the OS Interface used : DIRAC6 Memory for reading and sorting integrals : 27971043 8-byte words Core used for calculating amplitudes : 8015530 8-byte words Core used for in core evaluation of triples : 8541176 8-byte words Memory used for active modules : 27971043 8-byte words Expanding and sorting integrals to unique types : Type OOOO : 16986 integrals Type VOOO : 173781 integrals Type VVOO : 431664 integrals Type VOVO : 1781415 integrals Type VOVV : 4423754 integrals Type VVVV : 10987112 integrals Start sorting of integral classes at 24 Aug 14 21:54:33 Sorting of first 4 classes done at 24 Aug 14 21:54:52 Need 1 passes to sort VOVV integrals Pass 1 ended at 24 Aug 14 21:55:02 VOVV sorting done at 24 Aug 14 21:55:02 Need 1 passes to sort VVVV integrals Pass 1 ended at 24 Aug 14 21:55:12 VVVV sorting done at 24 Aug 14 21:55:12 Reading Coulomb integrals : File date : 24 Aug 14 File time : 21:55:12 # of integrals 45323066 Finished sorting of integrals Checking the orbital energies, the program computes the diagonal elements of the reconstructed Fock matrix. Differences with the reference orbital energies are given if above a treshold or if iprnt > 1 Spinor Abelian Rep. Energy Recalc. Energy O 1 1 1g -38.6012422613 -38.5962904419 O 2 2 1g -24.4662028652 -24.4724352693 O 3 3 1g -23.8475834460 -23.8464011695 O 1 4 -1g -38.6012422613 -38.6061940789 O 2 5 -1g -24.4662028652 -24.4599704597 O 3 6 -1g -23.8475834460 -23.8487657190 O 1 7 3g -24.4662028667 -24.4849000793 O 2 8 3g -23.8475834456 -23.8440366199 O 1 9 -3g -24.4662028667 -24.4475056505 O 2 10 -3g -23.8475834456 -23.8511302683 O 1 11 5g -23.8475834452 -23.8416720701 O 1 12 -5g -23.8475834452 -23.8534948175 O 1 13 1u -34.4905444312 -34.5280212057 O 2 14 1u -31.2614818649 -31.2595054992 O 3 15 1u -15.0641081741 -15.0672056720 O 4 16 1u -14.9320634879 -14.9312240654 O 5 17 1u -13.3706573946 -13.3706573957 O 1 18 -1u -34.4905444312 -34.4530676550 O 2 19 -1u -31.2614818649 -31.2634582281 O 3 20 -1u -15.0641081741 -15.0610106736 O 4 21 -1u -14.9320634879 -14.9329029065 O 1 22 3u -31.2614818647 -31.2555527702 O 2 23 3u -15.0641081745 -15.0734006707 O 3 24 3u -14.9320634880 -14.9295452242 O 1 25 -3u -31.2614818647 -31.2674109568 O 2 26 -3u -15.0641081745 -15.0548156751 O 3 27 -3u -14.9320634880 -14.9345817477 O 1 28 5u -15.0641081753 -15.0795956700 O 2 29 5u -14.9320634870 -14.9278663828 O 1 30 -5u -15.0641081753 -15.0486206761 O 2 31 -5u -14.9320634870 -14.9362605886 O 1 32 7u -14.9320634875 -14.9261875416 O 1 33 -7u -14.9320634875 -14.9379394297 V 1 34 1g -13.9305083517 -13.8926376946 V 2 35 1g -9.6568948685 -9.6875936392 V 3 36 1g -9.4705989092 -9.4671133708 V 4 37 1g -7.6242053701 -7.6202605904 V 5 38 1g -5.7857527010 -5.7903127490 V 6 39 1g -5.7214340591 -5.7207359451 V 7 40 1g -4.8748356727 -4.8737084366 V 8 41 1g -3.8510643893 -3.8521427775 V 9 42 1g -3.8299878129 -3.8298079342 V 10 43 1g -2.9794458618 -2.9793086906 V 11 44 1g 1.9780825474 1.9697301462 V 12 45 1g 2.3290315758 2.3305455067 V 13 46 1g 6.3815662589 6.3872070629 V 14 47 1g 33.5203023111 33.5164440932 V 15 48 1g 34.6807543479 34.6815465887 V 1 49 -1g -13.9305083517 -13.9683790077 V 2 50 -1g -9.6568948685 -9.6261960954 V 3 51 -1g -9.4705989092 -9.4740844457 V 4 52 -1g -7.6242053701 -7.6281501492 V 5 53 -1g -5.7857527010 -5.7811926525 V 6 54 -1g -5.7214340591 -5.7221321723 V 7 55 -1g -4.8748356727 -4.8759629085 V 8 56 -1g -3.8510643893 -3.8499860009 V 9 57 -1g -3.8299878129 -3.8301676914 V 10 58 -1g -2.9794458618 -2.9795830330 V 11 59 -1g 1.9780825474 1.9864349504 V 12 60 -1g 2.3290315758 2.3275176476 V 13 61 -1g 6.3815662589 6.3759254564 V 14 62 -1g 33.5203023111 33.5241605309 V 15 63 -1g 34.6807543479 34.6799621100 V 1 64 3g -9.6568948665 -9.7489911821 V 2 65 3g -9.4705989087 -9.4601422958 V 3 66 3g -5.7857527004 -5.7994328452 V 4 67 3g -5.7214340588 -5.7193397178 V 5 68 3g -3.8510643891 -3.8542995541 V 6 69 3g -3.8299878128 -3.8294481770 V 7 70 3g 1.9780825483 1.9530253424 V 8 71 3g 2.3290315765 2.3335733660 V 9 72 3g 33.5203023107 33.5087276554 V 10 73 3g 34.6807543481 34.6831310674 V 1 74 -3g -9.6568948665 -9.5647985513 V 2 75 -3g -9.4705989087 -9.4810555203 V 3 76 -3g -5.7857527004 -5.7720725558 V 4 77 -3g -5.7214340588 -5.7235283994 V 5 78 -3g -3.8510643891 -3.8478292242 V 6 79 -3g -3.8299878128 -3.8305274486 V 7 80 -3g 1.9780825483 2.0031397550 V 8 81 -3g 2.3290315765 2.3244897887 V 9 82 -3g 33.5203023107 33.5318769688 V 10 83 -3g 34.6807543481 34.6783776314 V 1 84 5g -9.4705989077 -9.4531712207 V 2 85 5g -5.7214340583 -5.7179434904 V 3 86 5g -3.8299878126 -3.8290884197 V 4 87 5g 2.3290315776 2.3366012256 V 5 88 5g 34.6807543485 34.6847155463 V 1 89 -5g -9.4705989077 -9.4880265947 V 2 90 -5g -5.7214340583 -5.7249246263 V 3 91 -5g -3.8299878126 -3.8308872057 V 4 92 -5g 2.3290315776 2.3214619301 V 5 93 -5g 34.6807543485 34.6767931530 V 1 94 1u -11.7761294227 -11.7662348092 V 2 95 1u -7.0550207701 -7.0772466376 V 3 96 1u -7.0338034992 -7.0391237922 V 4 97 1u -6.9941358217 -6.9930190201 V 5 98 1u -6.7390285074 -6.7375733815 V 6 99 1u -4.4077452451 -4.4118962210 V 7 100 1u -4.4049141309 -4.4064115155 V 8 101 1u -4.3895282305 -4.3891873274 V 9 102 1u -4.3215579084 -4.3212548173 V 10 103 1u -2.6201530559 -2.6232169598 V 11 104 1u -2.5806789785 -2.5799126208 V 12 105 1u -2.5123121354 -2.5128112805 V 13 106 1u -2.5006609348 -2.5006323010 V 14 107 1u 1.8793083668 1.8418310359 V 15 108 1u 3.5134574568 3.5160635536 V 16 109 1u 8.2983210758 8.2956626264 V 17 110 1u 8.4255165631 8.4263115864 V 18 111 1u 39.5048853522 39.4797283472 V 19 112 1u 39.8009849320 39.7997288999 V 20 113 1u 40.1471334832 40.1475208407 V 21 114 1u 45.5000658644 45.5016132928 V 1 115 -1u -13.3706573946 -12.4131487706 V 2 116 -1u -11.7761294227 -11.7860240326 V 3 117 -1u -7.0550207701 -7.0327949033 V 4 118 -1u -7.0338034992 -7.0284832047 V 5 119 -1u -6.9941358217 -6.9952526217 V 6 120 -1u -6.7390285074 -6.7404836323 V 7 121 -1u -4.4077452451 -4.4035942691 V 8 122 -1u -4.4049141309 -4.4034167457 V 9 123 -1u -4.3895282305 -4.3898691330 V 10 124 -1u -4.3215579084 -4.3218609992 V 11 125 -1u -2.6201530559 -2.6170891509 V 12 126 -1u -2.5806789785 -2.5814453347 V 13 127 -1u -2.5123121354 -2.5118129903 V 14 128 -1u -2.5006609348 -2.5006895686 V 15 129 -1u 1.8793083668 1.9167856989 V 16 130 -1u 3.5134574568 3.5108513623 V 17 131 -1u 8.2983210758 8.3009795279 V 18 132 -1u 8.4255165631 8.4247215428 V 19 133 -1u 39.5048853522 39.5300423593 V 20 134 -1u 39.8009849320 39.8022409663 V 21 135 -1u 40.1471334832 40.1467461284 V 22 136 -1u 45.5000658644 45.4985184383 V 1 137 3u -11.7761294207 -11.7464455852 V 2 138 3u -7.0338034988 -7.0497643795 V 3 139 3u -6.9941358215 -6.9907854183 V 4 140 3u -6.7390285065 -6.7346631303 V 5 141 3u -4.4049141307 -4.4094062853 V 6 142 3u -4.3895282304 -4.3885055217 V 7 143 3u -4.3215579082 -4.3206486353 V 8 144 3u -2.6201530556 -2.6293447685 V 9 145 3u -2.5806789783 -2.5783799069 V 10 146 3u -2.5006609348 -2.5005750333 V 11 147 3u 3.5134574581 3.5212757455 V 12 148 3u 8.2983210762 8.2903457250 V 13 149 3u 8.4255165632 8.4279016301 V 14 150 3u 39.8009849319 39.7972168336 V 15 151 3u 40.1471334832 40.1482955531 V 16 152 3u 45.5000658647 45.5047081474 V 1 153 -3u -11.7761294207 -11.8058132558 V 2 154 -3u -7.0338034988 -7.0178426170 V 3 155 -3u -6.9941358215 -6.9974862232 V 4 156 -3u -6.7390285065 -6.7433938829 V 5 157 -3u -4.4049141307 -4.4004219758 V 6 158 -3u -4.3895282304 -4.3905509386 V 7 159 -3u -4.3215579082 -4.3224671810 V 8 160 -3u -2.6201530556 -2.6109613419 V 9 161 -3u -2.5806789783 -2.5829780484 V 10 162 -3u -2.5006609348 -2.5007468362 V 11 163 -3u 3.5134574581 3.5056391715 V 12 164 -3u 8.2983210762 8.3062964296 V 13 165 -3u 8.4255165632 8.4231314993 V 14 166 -3u 39.8009849319 39.8047530327 V 15 167 -3u 40.1471334832 40.1459714160 V 16 168 -3u 45.5000658647 45.4954235841 V 1 169 5u -7.0338034978 -7.0604049667 V 2 170 5u -6.9941358208 -6.9885518165 V 3 171 5u -4.4049141303 -4.4124010550 V 4 172 5u -4.3895282301 -4.3878237160 V 5 173 5u -2.6201530549 -2.6354725771 V 6 174 5u -2.5806789778 -2.5768471929 V 7 175 5u 8.2983210770 8.2850288238 V 8 176 5u 8.4255165640 8.4294916739 V 9 177 5u 39.8009849319 39.7947047674 V 10 178 5u 40.1471334835 40.1490702656 V 1 179 -5u -7.0338034978 -7.0072020292 V 2 180 -5u -6.9941358208 -6.9997198246 V 3 181 -5u -4.4049141303 -4.3974272058 V 4 182 -5u -4.3895282301 -4.3912327441 V 5 183 -5u -2.6201530549 -2.6048335328 V 6 184 -5u -2.5806789778 -2.5845107621 V 7 185 -5u 8.2983210770 8.3116133315 V 8 186 -5u 8.4255165640 8.4215414559 V 9 187 -5u 39.8009849319 39.8072650991 V 10 188 -5u 40.1471334835 40.1451967038 V 1 189 7u -6.9941358201 -6.9863182146 V 2 190 7u -4.3895282299 -4.3871419103 V 3 191 7u -2.5806789773 -2.5753144789 V 4 192 7u 8.4255165646 8.4310817178 V 5 193 7u 40.1471334836 40.1498449781 V 1 194 -7u -6.9941358201 -7.0019534259 V 2 195 -7u -4.3895282299 -4.3919145496 V 3 196 -7u -2.5806789773 -2.5860434757 V 4 197 -7u 8.4255165646 8.4199514126 V 5 198 -7u 40.1471334836 40.1444219915 The original energies (left column) are used in perturbation expressions. Use the perturbative values (MP2, CCSD[T]/(T)/-T) with care, especially in open shell calculations because the orbitals need not always be semi-canonical as was assumed in the derivation of the expressions. The missing terms may be important ! Nuclear repulsion + core energy : -16075.122951197879956 Zero order electronic energy : -735.391627278283863 First order electronic energy : -939.163383743234931 Electronic energy : -1674.555011021518794 SCF energy : -17749.677962219397159 Energy calculations MP2 module active : T CCSD module active : T CCSD(T) module active : T MP2 results SCF energy : -17749.677962219397159 MP2 correlation energy : -0.917745583781937 Total MP2 energy : -17750.595707803178811 T1 diagnostic : 0.002073693146577 CCSD options : Maximum number of iterations : 30 Maximum size of DIIS space : 8 Convergence criterium : 0.1E-06 NIT ENERGY RMS T1-DIAGN 0 -0.917752090984098 1.000000000000000 0.00207 1 -0.776745323857043 0.042957376677416 0.00362 2 -0.809138023599930 0.005324976422836 0.00342 3 -0.811200891964866 0.010616205631674 0.00375 4 -0.810209387195630 0.003850028099251 0.00365 5 -0.810890620238470 0.002173379252091 0.00363 6 -0.810870966885905 0.001056556075453 0.00360 7 -0.810870702435114 0.000766621048928 0.00360 8 -0.810884367884990 0.000746349062114 0.00361 9 -0.810901056542136 0.000085068084863 0.00361 10 -0.810887908085401 0.000019913056401 0.00362 11 -0.810890146560741 0.000006081466648 0.00362 12 -0.810894031233394 0.000011013765920 0.00362 13 -0.810892086463751 0.000001611896331 0.00362 14 -0.810892845587192 0.000002025594600 0.00362 15 -0.810892544251980 0.000001386052832 0.00362 16 -0.810892554331075 0.000000916194762 0.00362 17 -0.810892542187104 0.000001248414779 0.00362 18 -0.810892636815183 0.000000703559138 0.00362 19 -0.810892504709563 0.000000471775538 0.00362 20 -0.810892604454462 0.000000204617887 0.00362 21 -0.810892616643725 0.000000186734935 0.00362 22 -0.810892537494178 0.000000157548920 0.00362 23 -0.810892577695089 0.000000076773571 0.00362 CCSD results SCF energy : -17749.677962219397159 CCSD correlation energy : -0.810892577695089 Total CCSD energy : -17750.488854797091335 T1 diagnostic : 0.003618496188469 Convergence : 0.000000076773571 Number or iterations used : 23 Performance of BLAS GEMM in the largest contractions Contraction type Performance VVVV+VOVV (in B: includes I/O) 1.651 Gflop/s VOVO (in H: only XGEMM) 7.246 Gflop/s VOVO (in T2EQN: includes sort) 2.420 Gflop/s Perturbative treatment of triple excitations SCF energy : -17749.677962219397159 CCSD correlation energy : -0.810892577695089 4th order triples correction : -0.009292240277142 5th order triples (T) correction : 0.000353613132337 5th order triples -T correction : 0.000624364795492 Total CCSD+T energy : -17750.498147037367744 Total CCSD(T) energy : -17750.497793424234260 Total CCSD-T energy : -17750.497522672572813 -------------------------------------------------------------------------------- Today is : 24 Aug 14 The time is : 21:55:34 Status of the calculations Integral sort # 1 : Completed, restartable Integral sort # 2 : Completed, restartable Fock matrix build : Completed, restartable MP2 energy calculation : Completed, restartable CCSD energy calculation : Completed, restartable CCSD(T) energy calculation : Completed, restartable Overview of calculated energies @ SCF energy : -17749.677962219397159 @ MP2 correlation energy : -0.917745583781937 @ CCSD correlation energy : -0.810892577695089 @ 4th order triples correction : -0.009292240277142 @ 5th order triples (T) correction : 0.000353613132337 @ 5th order triples -T correction : 0.000624364795492 @ Total MP2 energy : -17750.595707803178811 @ Total CCSD energy : -17750.488854797091335 @ Total CCSD+T energy : -17750.498147037367744 @ Total CCSD(T) energy : -17750.497793424234260 @ Total CCSD-T energy : -17750.497522672572813 -------------------------------------------------------------------------------- ------ Timing report (in CPU seconds) of module RELCCSD Time in Sorting of integrals 38.597 seconds Time in CCSD equations 110.575 seconds Time in - T1 equations 19.777 seconds Time in --- T1EQNS T*[HOV - F]*T 0.007 seconds Time in --- T1EQNS HOV*T2(A,C,I,K 0.472 seconds Time in --- T1EQNS HV*T / T*HO 0.008 seconds Time in --- T1EQNS VOOO*TAU 1.913 seconds Time in --- T1EQNS VOVV contribution 9.022 seconds Time in --- T1EQNS VOVO * T(C,K) 2.006 seconds Time in - T2 equations 79.356 seconds Time in -- GOINTM 0.257 seconds Time in -- GVINTM 4.337 seconds Time in -- AINTM 1.338 seconds Time in -- HINTM 28.187 seconds Time in --- HINTM: VOVV*T 10.141 seconds Time in --- HINTM: VVOO contribution 4.233 seconds Time in -- T2 EQNS 29.449 seconds Time in --- T2EQNS: TAU*AINTM contract 0.413 seconds Time in --- T2EQNS: VOVV*T1 8.802 seconds Time in --- T2EQNS: HINTM*T2 12.677 seconds Time in -- BINTM 15.763 seconds Time in - DIIS extrapolation 5.511 seconds Time in - synchronizing T1 & T2 amplit 0.002 seconds Time in CCSD(T) evaluation 124.193 seconds Time in -- T3CORR: Integral resorting 0.053 seconds Time in -- T3CORR: VOVV contraction 47.852 seconds Time in -- T3CORR: energy calculation 75.950 seconds Timing of main modules : Wallclock (s) CPU on master (s) Before CC driver : ************ 1542.48 Initialization : 0.00 0.05 Integral sorting : 0.00 38.60 Energy calculation : 128.00 237.18 First order properties : 0.00 0.00 Second order properties : 0.00 0.00 Fock space energies : 0.00 0.00 Untimed parts : 0.00 0.52 Total time in CC driver : 128. 276.35 Statistics for the word-addressable I/O Number of write calls 4911. Number of read calls 4945. Megabytes written 183.364 Megabytes read 4300.284 Seconds spent in reads 0.000 Seconds spent in writes 0.000 average I/O speed for write (Mb/s) 0.000 average I/O speed for read (Mb/s) 0.000 CPU time (seconds) used in RELCCSD: 276.3470 CPU time (seconds) used before RELCCSD: 1542.4845 CPU time (seconds) used in total sofar: 1818.8315 --- Normal end of RELCCSD Run --- ################################################################################ ***************************************************** ********** E N D of D I R A C output ********** ***************************************************** Date and time (Linux) : Sun Aug 24 21:55:34 2014 Host name : comp23 Dynamical Memory Usage Summary Mean allocation size (Mb) : 49.88 Largest 10 allocations 915.53 Mb at subroutine pamtra_+0x185 for WORK in PAMTRA 915.53 Mb at subroutine pamana_+0xa3 for WORK in PAMANA 915.53 Mb at subroutine psidhf_+0xb4 for WORK in PSIDHF 915.53 Mb at subroutine pamset_+0x19f8 for WORK in PAMSET - 2 915.53 Mb at subroutine gmotra_+0x3f59 for WORK in GMOTRA - part 2 915.53 Mb at subroutine gmotra_+0x63a4 for WORK in GMOTRA 915.53 Mb at subroutine pamset_+0xb1 for WORK in PAMSET - 1 915.53 Mb at subroutine MAIN__+0x2a4 for test allocation of work array in DIRAC mai 83.84 Mb at subroutine ccseti_+0xb2c for vta 83.84 Mb at subroutine ccseti_+0xaff for vt Peak memory usage (Mb) : 916.00 reached at subroutine : butobs_no_work_+0x9a for variable : buf in butobs MEMGET high-water mark: 0.00 MB ***************************************************** >>>> Node 0, utime: 1748, stime: 71, minflt: 41371, majflt: 2, nvcsw: 38472, nivcsw: 366311, maxrss: 969852 >>>> Total WALL time used in DIRAC: 4min18s