References

List of published papers and other sources (books, theses) documenting the development of various features of DIRAC, some interesting applications and various related references.

Reference entries are sorted alphabetically according to the first author’s family name with the year of the publishing. If the first author has several publications in the same year, characters in alphabetical order - “a”, “b”, “c”, etc. - are added after the year.

Please always provide each citation entry with its permanent URL-link. The best web-link is the DOI web identity, used almost for all peer-reviewed papers. For books we recommend to resort to semi-permanent links, like the publisher’s web-site, or the popular Google-Books web-space.

References availability

All references are also available for download as one (big) file in the popular BibTex format. Please keep them in the alphabetical order as described above.

Agren_CPL1981

Hans Agren, Paul S. Bagus, and Björn O. Roos. Symmetry adapted versus symmetry broken wavefunctions: the 1s core level ions of O$^+_2$. Chem. Phys. Lett., 82(3):505–510, 1981. doi:10.1016/0009-2614(81)85429-2.

Almoukhalalati:2016b

Adel Almoukhalalati, Avijit Shee, and Trond Saue. Nuclear size effects in vibrational spectra. Phys. Chem. Chem. Phys., 18:15406–15417, 2016. doi:10.1039/C6CP01913G.

Amovilli1998

Claudio Amovilli, Vincenzo Barone, Roberto Cammi, Eric Cancès, Maurizio Cossi, Benedetta Mennucci, Christian S. Pomelli, and Jacopo Tomasi. Recent Advances in the Description of Solvent Effects with the Polarizable Continuum Mode. In Per-Olov Löwdin, editor, Advances in Quantum Chemistry, Vol 32: Quantum Systems in Chemistry and Physics, Part II, volume 32 of Advances in Quantum Chemistry, pages 227 – 261. Academic Press, 1998. doi:10.1016/S0065-3276(08)60416-5.

Aucar1999

G. A. Aucar, T. Saue, L. Visscher, and H. J. Aa. Jensen. On the origin and contribution of the diamagnetic term in four-component relativistic calculations of magnetic properties. J. Chem. Phys., 110(13):6208–6218, 1999. doi:10.1063/1.479181.

AucarChap2019

Gustavo Adolfo Aucar and Ignacio Agustín Aucar. Recent developments in absolute shielding scales for nmr spectroscopy. In Graham A. Webb, editor, Annual Rep. on NMR Spect., volume 96, chapter 3, pages 77–141. Academic Press, 2019. doi:10.1016/bs.arnmr.2018.08.001.

Aucar_JPCL2016

Ignacio Agustín Aucar, Sergio Santiago Gómez, Claudia Gloria Giribet, and Gustavo Adolfo Aucar. The role of spin dependent terms on the relationship among nuclear spin-rotation and nmr magnetic shielding tensors. J. Phys. Chem. Lett., 7:5188–5192, 2016. doi:10.1021/acs.jpclett.6b02361.

Aucar_JCP2014

Ignacio Agustín Aucar, Sergio Santiago Gómez, Claudia Gloria Giribet, and Martín César Ruiz de Azúa. Theoretical study of the relativistic molecular rotational g-tensor. J. Chem. Phys., 141:194103, 2014. doi:10.1063/1.4901422.

Aucar_JCP2012

Ignacio Agustín Aucar, Sergio Santiago Gómez, Martín César Ruiz de Azúa, and Claudia Gloria Giribet. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. J. Chem. Phys., 136:204119, 2012. doi:10.1063/1.4721627.

Bagus_JCP1971

Paul S. Bagus and Henry F. Schaefer. Direct near-hartree-fock calculations on the 1s hole states of NO$^+$. J. Chem. Phys., 55(3):1474–1475, 1971. doi:10.1063/1.1676248.

Bagus_JCP1972

Paul S. Bagus and Henry F. Schaefer. Localized and delocalized 1s hole states of the O$_2^+$ molecular ion. J. Chem. Phys., 56(1):224–226, 1972. doi:10.1063/1.1676850.

Baker1993

Jon Baker. Techniques for geometry optimization: A comparison of cartesian and natural internal coordinates. J. Comput. Chem., 14(9):1085–1100, 1993. doi:10.1002/jcc.540140910.

Bast2009

Radovan Bast, Hans Jørgen Aa. Jensen, and Trond Saue. Relativistic adiabatic time-dependent density functional theory using hybrid functionals and noncollinear spin magnetization. Int. J. Quantum Chem., 109(10):2091–2112, 2009. doi:10.1002/qua.22065.

Bast2011

Radovan Bast, Anton Koers, Andre Severo Pereira Gomes, Miroslav Iliaš, Lucas Visscher, Peter Schwerdtfeger, and Trond Saue. Analysis of parity violation in chiral molecules. Physical Chemistry Chemical Physics, 13:864–876, 2011. doi:10.1039/C0CP01483D.

Bast:2006

Radovan Bast, Peter Schwerdtfeger, and Trond Saue. Parity nonconservation contribution to the nuclear magnetic resonance shielding constants of chiral molecules: A four-component relativistic study. J. Chem. Phys., 125(6):064504, 2006. doi:10.1063/1.2218333.

Bauschlicher1980

Charles W. Bauschlicher. The construction of modified virtual orbitals (MVOs) which are suited for configuration interaction calculations. J. Chem. Phys., 72(2):880–885, 1980. doi:10.1063/1.439243.

Becke1988a

A. D. Becke. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys., 88(4):2547–2553, 1988. doi:10.1063/1.454033.

Becke1988

A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38:3098–3100, Sep 1988. doi:10.1103/PhysRevA.38.3098.

Boys:1970

S.F. Boys and F. Bernardi. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 19(4):553–566, 1970. doi:10.1080/00268977000101561.

Chesnut1994

D.B. Chesnut. Ab Initio Calculations of NMR Chemical Shielding. In G.A. Webb, editor, Annual Reports on NMR Spectroscopy, volume 29 of Annual Reports on NMR Spectroscopy, pages 71 – 122. Academic Press, 1994. doi:10.1016/S0066-4103(08)60131-3.

Christiansen2000

O. Christiansen, T. M. Nymand, and K. V. Mikkelsen. A theoretical study of the electronic spectrum of water. Chem. Phys. Lett., 113(3):8101–, 2000. doi:10.1063/1.1316035.

Coriani2015

Sonia Coriani and Henrik Koch. Communication: x-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework. J. Chem. Phys., 143(18):181103, 2015. doi:10.1063/1.4935712.

Fleig2015

M. Denis, M. Nørby, H. J. Aa. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, and T. Fleig. Theoretical study on ThF$^+$, a prospective system in search of time-reversal violation. New J. Phys., 17:043005, 2015. doi:10.1088/1367-2630/17/4/043005.

Dirac1928

P. A. M. Dirac. The Quantum Theory of the Electron. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 117(778):610–624, 1928. doi:10.1098/rspa.1928.0023.

Dirac1930

P. A. M. Dirac. Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedings of the Cambridge Philosophical Society, 26:376–385, 7 1930. doi:10.1017/S0305004100016108.

Dubillard2006

S. Dubillard, J.-B. Rota, T. Saue, and K. Faegri. Bonding analysis using localized relativistic orbitals: Water, the ultrarelativistic case and the heavy homologues H2X (X=Te, Po, eka-Po). J. Chem. Phys., 124(15):154307, 2006. doi:10.1063/1.2187001.

Dunning1989

Thom H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 90(2):1007–1023, 1989. doi:10.1063/1.456153.

GRASP

K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, and E. P. Plummer. Grasp: a general-purpose relativistic atomic structure program. Comput. Phys. Commun., 55(3):425 – 456, 1989. doi:10.1016/0010-4655(89)90136-7.

Dyall1994

Kenneth G. Dyall. An exact separation of the spin-free and spin-dependent terms of the Dirac-Coulomb-Breit Hamiltonian. J. Chem. Phys., 100(3):2118–2127, 1994. doi:10.1063/1.466508.

Dyall2007

Kenneth G. Dyall and Knut Faegri. Introduction to Relativistic Quantum Chemistry. Oxford University Press, 4 2007. ISBN 9780195140866.

Ekstrom2005

Ulf Ekström, Patrick Norman, and Antonio Rizzo. Four-component Hartree-Fock calculations of magnetic-field induced circular birefringence-Faraday effect-in noble gases and dihalogens. J. Chem. Phys., 122(7):074321, 2005. doi:10.1063/1.1849167.

Eliav2005

Ephraim Eliav, Marius J. Vilkas, Yasuyuki Ishikawa, and Uzi Kaldor. Extrapolated intermediate Hamiltonian coupled-cluster approach: Theory and pilot application to electron affinities of alkali atoms. J. Chem. Phys., 122(22):224113, 2005. doi:10.1063/1.1929727.

Ermler1981

Walter C. Ermler, Yoon S. Lee, Phillip A. Christiansen, and Kenneth S. Pitzer. Ab initio effective core potentials including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular wavefunctions. Chem. Phys. Lett., 81(1):70 – 74, 1981. doi:10.1016/0009-2614(81)85329-8.

Fleig2013

T. Fleig and M. K. Nayak. Electron electric-dipole-moment interaction constant for HfF$^+$ from relativistic correlated all-electron theory. Phys. Rev. A, 88:032514, 2013. doi:10.1103/PhysRevA.88.032514.

Fleig2014

T. Fleig and M. K. Nayak. Electron electric dipole moment and hyperfine interaction constants for ThO. J. Mol. Spectrosc., 300:16, 2014. doi:10.1016/j.jms.2014.03.017.

Fleig2016

T. Fleig, M. K. Nayak, and M. G. Kozlov. TaN, a molecular system for probing p,t-violating hadron physics. Phys. Rev. A, 93:012505, 2016. doi:10.1103/PhysRevA.93.012505.

Fleig2005

T. Fleig and L. Visscher. Large-scale electron correlation calculations in the framework of the spin-free dirac formalism: the Au$_2$ molecule revisited. Chem. Phys., 311(1–2):113 – 120, 2005. Relativistic Effects in Heavy-Element Chemistry and Physics. In Memoriam Bernd A. Hess (1954–2004). doi:10.1016/j.chemphys.2004.10.003.

Fleig2006a

Timo Fleig. Wave Function Based Relativistic Multi-Reference Electron Correlation Methods. PhD thesis, Habilitation, Heinrich Heine University Düsseldorf, 2006. Development and Application to Atomic and Molecular Properties. URL: https://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=3730.

Fleig2006

Timo Fleig, Hans Jørgen Aa. Jensen, Jeppe Olsen, and Lucas Visscher. The generalized active space concept for the relativistic treatment of electron correlation. III. Large-scale configuration interaction and multiconfiguration self-consistent-field four-component methods with application to UO$_2$. J. Chem. Phys., 124(10):104106, 2006. doi:10.1063/1.2176609.

Fleig2001

Timo Fleig, Jeppe Olsen, and Christel M. Marian. The generalized active space concept for the relativistic treatment of electron correlation. I. Kramers-restricted two-component configuration interaction. J. Chem. Phys., 114(11):4775–4790, 2001. doi:http://dx.doi.org/10.1063/1.1349076.

Fleig2003

Timo Fleig, Jeppe Olsen, and Lucas Visscher. The generalized active space concept for the relativistic treatment of electron correlation. II. Large-scale configuration interaction implementation based on relativistic 2- and 4-spinors and its application. J. Chem. Phys., 119(6):2963–2971, 2003. doi:10.1063/1.1590636.

Fossgaard2003b

O. Fossgaard, O. Gropen, E. Eliav, and T. Saue. Bonding in the homologous series CsAu, CsAg, and CsCu studied at the 4-component density functional theory and coupled cluster levels. J. Chem. Phys., 119(18):9355–9363, 2003. doi:10.1063/1.1615953.

Fossgaard2003

O. Fossgaard, O. Gropen, M. Corral Valero, and T. Saue. On the performance of four-component relativistic density functional theory: Spectroscopic constants and dipole moments of the diatomics HX and XY (X,Y=F, Cl, Br, and I). J. Chem. Phys., 118(23):10418–10430, 2003. doi:10.1063/1.1574317.

Faegri2001

Knut Fægri and Trond Saue. Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding. J. Chem. Phys., 115(6):2456–2464, 2001. doi:10.1063/1.1385366.

Gilbert_JPCA2008

Andrew T. B. Gilbert, Nicholas A. Besley, and Peter M. W. Gill. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM). J. Phys. Chem. A, 112(50):13164–13171, 2008. doi:10.1021/jp801738f.

Gomes2012a

Andre Severo Pereira Gomes and Christoph R. Jacob. Quantum-chemical embedding methods for treating local electronic excitations in complex chemical systems. Annual Reports on the Progress of Chemistry Section C, 108:222–277, 2012. doi:10.1039/C2PC90007F.

Gomes2008

Andre Severo Pereira Gomes, Christoph R. Jacob, and Lucas Visscher. Calculation of local excitations in large systems by embedding wave-function theory in density-functional theory. Physical Chemistry Chemical Physics, 10:5353–5362, 2008. doi:10.1039/B805739G.

Gruning2001

M. Grüning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends. Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region. J. Chem. Phys., 114(2):652–660, 2001. doi:10.1063/1.1327260.

Halbert2020

Loic Halbert, Marta Lopez Vidal, Avijit Shee, Sonia Coriani, and Andre Severo Pereira Gomes. Relativistic EOM-CCSD for core-excited and core-ionized state energies based on the 4-component Dirac-Coulomb(-Gaunt) Hamiltonian. unpublished, 2021. doi:10.1021/acs.jctc.0c01203.

Hamilton1986

Tracy P. Hamilton and Peter Pulay. Direct inversion in the iterative subspace (DIIS) optimization of open-shell, excited-state, and small multiconfiguration SCF wave functions. J. Chem. Phys., 84(10):5728–5734, 1986. doi:10.1063/1.449880.

Hedegaard2017

Erik Donovan Hedegård, Radovan Bast, Jacob Kongsted, Jógvan Magnus Haugaard Olsen, and Hans Jørgen Aa. Jensen. Relativistic Polarizable Embedding. J. Chem. Theory Comput., 13(6):2870–2880, 2017. doi:10.1021/acs.jctc.7b00162.

Hedegaard2016

Erik Donovan Hedegård and Markus Reiher. Polarizable Embedding Density Matrix Renormalization Group. J. Chem. Theory Comput., 12(9):4242–4253, 2016. doi:10.1021/acs.jctc.6b00476.

HelmichParis2016

Benjamin Helmich-Paris and Lucas Visscher. Improvements on the minimax algorithm for the Laplace transformation of orbital energy denominators. J. Comput. Phys., 321:927 – 931, 2016. doi:10.1016/j.jcp.2016.06.011.

Henriksson:2005

Johan Henriksson, Patrick Norman, and Hans Jørgen Aa. Jensen. Two-photon absorption in the relativistic four-component Hartree-Fock approximation. J. Chem. Phys., 122(11):114106, 2005. doi:10.1063/1.1869469.

Henriksson:2008

Johan Henriksson, Trond Saue, and Patrick Norman. Quadratic response functions in the relativistic four-component Kohn–Sham approximation. J. Chem. Phys., 128(2):024105, 2008. doi:10.1063/1.2816709.

Hoffman1963

Roald Hoffmann. An Extended Huckel Theory. I. Hydrocarbons. J. Chem. Phys., 39(6):1397–1412, 1963. doi:10.1063/1.1734456.

Hofener2013

Sebastian Höfener, André Severo Pereira Gomes, and Lucas Visscher. Solvatochromic shifts from coupled-cluster theory embedded in density functional theory. J. Chem. Phys., 139(10):104106, 2013. doi:10.1063/1.4820488.

Hofener2012

Sebastian Höfener, André Severo Pereira Gomes, and Lucas Visscher. Molecular properties via a subsystem density functional theory formulation: A common framework for electronic embedding. J. Chem. Phys., 136(4):044104, 2012. doi:10.1063/1.3675845.

IIkura2001

Hisayoshi Iikura, Takao Tsuneda, Takeshi Yanai, and Kimihiko Hirao. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys., 115(8):3540–3544, 2001. doi:10.1063/1.1383587.

Ilias2009

M. Iliaš, T. Saue, T. Enevoldsen, and H. J. Aa. Jensen. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory. J. Chem. Phys., 131:124119, 2009. doi:10.1063/1.3240198.

Ilias2013

Miroslav Iliaš, Hans Jørgen Aa. Jensen, Radovan Bast, and Trond Saue. Gauge origin independent calculations of molecular magnetisabilities in relativistic four-component theory. Mol. Phys., 111(9-11):1373–1381, 2013. doi:10.1080/00268976.2013.798436.

Ilias2005

Miroslav Iliaš, Hans Jørgen Aa. Jensen, Vladimir Kellö, Björn O. Roos, and Miroslav Urban. Theoretical study of PbO and the PbO anion. Chem. Phys. Lett., 408(4–6):210 – 215, 2005. doi:10.1016/j.cplett.2005.04.027.

Ilias2001

Miroslav Iliaš, Vladimír Kellö, Lucas Visscher, and Bernd Schimmelpfennig. Inclusion of mean-field spin–orbit effects based on all-electron two-component spinors: Pilot calculations on atomic and molecular properties. J. Chem. Phys., 115(21):9667–9674, 2001. doi:10.1063/1.1413510.

Ilias2007

Miroslav Iliaš and Trond Saue. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. J. Chem. Phys., 126(6):064102, 2007. doi:10.1063/1.2436882.

Ilias2014

Miroslav Iliaš and Miroslav Dobruck\'y. Grid Computing with Relativistic Quantum Chemistry Software. Journal of Grid Computing, 12(4):681–690, 2014. doi:10.1007/s10723-014-9309-4.

Jacob2011

Christoph R. Jacob, S. Maya Beyhan, Rosa E. Bulo, Andre Severo Pereira Gomes, Andreas W. Gatz, Karin Kiewisch, Jetze Sikkema, and Lucas Visscher. PyADF A scripting framework for multiscale quantum chemistry. J. Comput. Chem., 32(10):2328–2338, 2011. doi:10.1002/jcc.21810.

Jacob2013

Christoph R. Jacob and Johannes Neugebauer. Subsystem density-functional theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 4(4):325–362, 2014. doi:10.1002/wcms.1175.

Jarvie1973

J. Jarvie, W. Willson, J. Doolittle, and C. Edmiston. Tetrahedral methane without $2s\rightarrow 2p$ promotion and hybridization: Direct calculation of the effects of promotion and hybridization in CH$_4$, NH$_3$, H$_2$O and H$_2$S. J. Chem. Phys., 59:3020, 1973. doi:10.1063/1.1680438.

Jensen1996

Hans Jørgen Aa. Jensen, Kenneth G. Dyall, Trond Saue, and Knut Fægri. Relativistic four-component multiconfigurational self-consistent-field theory for molecules: Formalism. J. Chem. Phys., 104(11):4083–4097, 1996. doi:10.1063/1.471644.

Jensen1988

Hans Jørgen Aa. Jensen, Poul Jørgensen, Hans Ågren, and Jeppe Olsen. Second-order Møller-Plesset perturbation theory as a configuration and orbital generator in multiconfiguration self-consistent field calculations. J. Chem. Phys., 88(6):3834–3839, 1988. doi:10.1063/1.453884.

Keal2003

Thomas W. Keal and David J. Tozer. The exchange-correlation potential in Kohn–Sham nuclear magnetic resonance shielding calculations. J. Chem. Phys., 119(6):3015–3024, 2003. doi:10.1063/1.1590634.

Knecht2014

Jensen Knecht, Repisky, Ruud, and Saue. Genuine relativistic quantum chemistry with exact two-component Hamiltonians: The easy way to infinite-order two-electron spin-orbit corrections. in preparation, 2014.

Knecht2010

S. Knecht and T. Saue. X2Cmod: A modular code for Exact-Two-Component Hamiltonian Transformations. 2010-2013 with contributions from M. Ilias, H. J. Aa. Jensen and M. Repisky, 2010.

Knecht2011

Stefan Knecht, Samuel Fux, Robert van Meer, Lucas Visscher, Markus Reiher, and Trond Saue. Mossbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury. Theor. Chem. Acc., 129(3-5):631–650, 2011. doi:10.1007/s00214-011-0911-2.

Knecht2008

Stefan Knecht, Hans Jøgen Aa. Jensen, and Timo Fleig. Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb–Ba)+. J. Chem. Phys., 128(1):014108, 2008. doi:10.1063/1.2805369.

Knecht2010a

Stefan Knecht, Hans Jørgen Aa. Jensen, and Timo Fleig. Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH. J. Chem. Phys., 132(1):014108, 2010. doi:10.1063/1.3276157.

Knecht2014a

Stefan Knecht, Örs Legeza, and Markus Reiher. Communication: Four-component density matrix renormalization group. J. Chem. Phys., 140(4):041101, 2014. doi:10.1063/1.4862495.

Knecht2009

Stefan R. Knecht. Parallel Relativistic Multiconfiguration Methods: New Powerful Tools for Heavy-Element Electronic-Structure Studies. PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf, 2009. URL: http://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=13226.

Knizia2013

Gerald Knizia. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput., 9(11):4834–4843, 2013. doi:10.1021/ct400687b.

Kongsted2002

J. Kongsted, A. Osted, K. V. Mikkelsen, and O. Christiansen. Dipole and quadrupole moments of liquid water calculated within the coupled cluster/molecular mechanics method. Chem. Phys. Lett., 364(3-4):379–386, 2002. doi:10.1016/S0009-2614(02)01286-1.

Kullie2011

Ossama Kullie and Trond Saue. Range-separated density functional theory: A 4-component relativistic study of the rare gas dimers He2, Ne2, Ar2, Kr2, Xe2, Rn2 and Uuo2. Chemical Physics, 395(0):54 – 62, 2012. Recent Advances and Applications of Relativistic Quantum Chemistry. doi:10.1016/j.chemphys.2011.06.024.

Kutzelnigg1984

Werner Kutzelnigg. Chemical Bonding in Higher Main Group Elements. Angewandte Chemie International Edition in English, 23(4):272–295, 1984. doi:10.1002/anie.198402721.

Laerdahl1997

Jon K. Laerdahl, Trond Saue, and Knut Faegri Jr. Direct relativistic MP2: properties of ground state CuF, AgF and AuF. Theor. Chem. Acc., 97(1-4):177–184, 1997. doi:10.1007/s002140050251.

Laerdahl1999

Jon K. Laerdahl and Peter Schwerdtfeger. Fully relativistic ab initio calculations of the energies of chiral molecules including parity-violating weak interactions. Phys. Rev. A, 60:4439–4453, Dec 1999. doi:10.1103/PhysRevA.60.4439.

Landau2004

Arie Landau, Ephraim Eliav, Yasuyuki Ishikawa, and Uzi Kaldor. Mixed-sector intermediate Hamiltonian Fock-space coupled cluster approach. J. Chem. Phys., 121(14):6634–6639, 2004. doi:10.1063/1.1788652.

Lee1988

Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37:785–789, Jan 1988. doi:10.1103/PhysRevB.37.785.

Lee1977

Yoon S. Lee, Walter C. Ermler, and Kenneth S. Pitzer. Abinitio effective core potentials including relativistic effects. I. Formalism and applications to the Xe and Au atoms. J. Chem. Phys., 67(12):5861–5876, 1977. doi:10.1063/1.434793.

Lestrange_JChemPhys2015

Patrick J. Lestrange, Franco Egidi, and Xiaosong Li. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation. J. Chem. Phys., 143(23):234103, 2015. doi:10.1063/1.4937410.

Lindh2001

Roland Lindh, Per-Ake Malmqvist, and Laura Gagliardi. Molecular integrals by numerical quadrature. I. Radial integration. Theor. Chem. Acc., 106(3):178–187, 2001. doi:10.1007/s002140100263.

List_JCP2020

Nanna Holmgaard List, Timothé Romain Léo Melin, Martin van Horn, and Trond Saue. Beyond the electric-dipole approximation in simulations of x-ray absorption spectroscopy: Lessons from relativistic theory. J. Chem. Phys., 152(18):184110, 2020. doi:10.1063/5.0003103.

Levy1967

Jean-Marc Lévy-Leblond. Nonrelativistic particles and wave equations. Communications in Mathematical Physics, 6(4):286–311, 1967. doi:10.1007/BF01646020.

Mayer1996

Markus Mayer, Oliver D. Häberlen, and Notker Rösch. Relevance of relativistic exchange-correlation functionals and of finite nuclei in molecular density-functional calculations. Phys. Rev. A, 54:4775–4782, Dec 1996. doi:10.1103/PhysRevA.54.4775.

Mennucci2007

B. Mennucci and R. Cammi. Front Matter, pages i–xv. John Wiley & Sons, Ltd, 2007. doi:10.1002/9780470515235.fmatter.

Mochizuki_JCP2003

Yuji Mochizuki and Hiroshi Tatewaki. On the electronic structure of CmF$_n$ (n=1–4) by all-electron Dirac–Hartree–Fock calculations. J. Chem. Phys., 118(20):9201–9207, 2003. doi:10.1063/1.1568075.

Mulliken1955

R. S. Mulliken. Electronic Population Analysis on LCAO MO Molecular Wave Functions. I. J. Chem. Phys., 23(10):1833–1840, 1955. doi:10.1063/1.1740588.

Nayak2006

Malaya K. Nayak and Rajat K. Chaudhuri. Ab initio calculation of p,t-odd effects in ybf molecule. Chem. Phys. Lett., 419(1):191 – 194, 2006. doi:https://doi.org/10.1016/j.cplett.2005.11.065.

Nayak2007

Malaya K. Nayak, Rajat K. Chaudhuri, and B. P. Das. Ab initio calculation of the electron-nucleus scalar-pseudoscalar interaction constant $w_s$ in heavy polar molecules. Phys. Rev. A, 75:022510, Feb 2007. doi:10.1103/PhysRevA.75.022510.

Nayak2009

Malaya K. Nayak and B. P. Das. Relativistic configuration-interaction study of the nuclear-spin-dependent parity-nonconserving electron-nucleus interaction constant $w_\text A$ in baf. Phys. Rev. A, 79:060502, Jun 2009. doi:10.1103/PhysRevA.79.060502.

Nielsen_JCP1980

Egon S. Nielsen, Poul Jørgensen, and Jens Oddershede. Transition moments and dynamic polarizabilities in a second order polarization propagator approach. J. Chem. Phys., 73(12):6238–6246, 1980. doi:10.1063/1.440119.

Norman2011

Patrick Norman. A perspective on nonresonant and resonant electronic response theory for time-dependent molecular properties. Physical Chemistry Chemical Physics, 13:20519–20535, 2011. doi:10.1039/C1CP21951K.

Norman_JCP2004

Patrick Norman and Hans Jørgen Aa. Jensen. Quadratic response functions in the time-dependent four-component Hartree-Fock approximation. J. Chem. Phys., 121(13):6145–6154, 2004. doi:10.1063/1.1785774.

Norman2012

Patrick Norman Norman and Hans Jørgen Aa. Jensen. Phosphorescence parameters for platinum (II) organometallic chromophores: A study at the non-collinear four-component Kohn-Sham level of theory. Chem. Phys. Lett., 531():229 – 235, 2012. doi:10.1016/j.cplett.2012.02.012.

Olejniczak2012

Malgorzata Olejniczak, Radovan Bast, Trond Saue, and Magdalena Pecul. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis. J. Chem. Phys., 136(1):014108, 2012. doi:10.1063/1.3671390.

Olsen1990

Jeppe Olsen, Poul Jørgensen, and Jack Simons. Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem. Phys. Lett., 169(6):463 – 472, 1990. doi:10.1016/0009-2614(90)85633-N.

Olsen2010

Jógvan Magnus Olsen, Ke\k stutis Aidas, and Jacob Kongsted. Excited states in solution through polarizable embedding. J. Chem. Theory Comput., 6(12):3721–3734, 2010. doi:10.1021/ct1003803.

Olsen2011

Jógvan Magnus Haugaard Olsen and Jacob Kongsted. Molecular properties through polarizable embedding. In Advances in Quantum Chemistry, pages 107–143. 2011. doi:10.1016/b978-0-12-386013-2.00003-6.

Park2012

Y. C. Park, I. S. Lim, and Y. S. Lee. Two-Component Spin-orbit Effective Core Potential Calculations with an All-electron Relativistic Program DIRAC. Bulletin of the Korean Chemical Society, 33(3):803 – 808, 2012. doi:10.5012/bkcs.2012.33.3.803.

Peach2008

Michael J. G. Peach, Peter Benfield, Trygve Helgaker, and David J. Tozer. Excitation energies in density functional theory: An evaluation and a diagnostic test. J. Chem. Phys., 128(4):044118, 2008. doi:10.1063/1.2831900.

Pecul2004

Magdalena Pecul, Trond Saue, Kenneth Ruud, and Antonio Rizzo. Electric field effects on the shielding constants of noble gases: A four-component relativistic Hartree-Fock study. J. Chem. Phys., 121(7):3051–3057, 2004. doi:10.1063/1.1771635.

Peng2012

Daoling Peng and Markus Reiher. Local relativistic exact decoupling. J. Chem. Phys., 136(24):244108, 2012. doi:10.1063/1.4729788.

Perdew1986

John P. Perdew and Wang Yue. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B, 33:8800–8802, Jun 1986. doi:10.1103/PhysRevB.33.8800.

Pernpointner2014

Markus Pernpointner. The relativistic polarization propagator for the calculation of electronic excitations in heavy systems. J. Chem. Phys., 140:084108, 2014. doi:10.1063/1.4865964.

Pernpointner2003

Markus Pernpointner and Lucas Visscher. Parallelization of four-component calculations. II. Symmetry-driven parallelization of the 4-Spinor CCSD algorithm. J. Comput. Chem., 24(6):754–759, 2003. doi:10.1002/jcc.10215.

Pernpointner2017

Markus Pernpointner, Lucas Visscher, and Alexander B. Trofimov. Four-component polarization propagator calculations of electron excitations: spectroscopic implications of spin–orbit coupling effects. J. Chem. Theory Comput., 14:1510–1522, 2018. doi:10.1021/acs.jctc.7b01056.

Pulay1982

P. Pulay. Improved SCF convergence acceleration. J. Comput. Chem., 3(4):556–560, 1982. doi:10.1002/jcc.540030413.

Pulay1980

Péter Pulay. Convergence acceleration of iterative sequences. the case of SCF iteration. Chem. Phys. Lett., 73(2):393 – 398, 1980. doi:10.1016/0009-2614(80)80396-4.

Reiher2009

Markus Reiher and Alexander Wolf. Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science. Wiley-VCH, 1 edition, 2 2009. ISBN 9783527312924.

Salek2005

P. Salek, T. Helgaker, and T. Saue. Linear response at the 4-component relativistic density functional level: Application to the frequency-dependent dipole polarizability of Hg, AuH and PtH$_2$ . Chem. Phys., 311:187, 2005. doi:10.1016/j.chemphys.2004.10.011.

Saue1997

T. Saue, K. Faegri, T. Helgaker, and O. Gropen. Principles of direct 4-component relativistic SCF: application to caesium auride. Mol. Phys., 91(5):937–950, 1997. doi:10.1080/002689797171058.

Saue1999

T. Saue and H. J. Aa. Jensen. Quaternion symmetry in relativistic molecular calculations: I. The Dirac-Fock method. J. Chem. Phys., 111:6211, 1999. doi:10.1063/1.479958.

Saue2000

T. Saue and H. J. Aa. Jensen. Quaternion symmetry of the Dirac equation. In Mathematical Models and Methods for Ab Initio Quantum Chemistry, volume 74 of Lecture Notes in Chemistry, pages 227–246. Springer Berlin Heidelberg, 2000. doi:10.1007/978-3-642-57237-1_11.

Saue2003

T. Saue and H. J. Aa. Jensen. Linear response at the 4-component relativistic level: Application to the frequency-dependent dipole polarizabilities of the coinage metal dimers. J. Chem. Phys., 118(2):522–536, 2003. doi:10.1063/1.1522407.

Saue2002a

Trond Saue. Chapter 7 Post Dirac-Hartree-Fock methods—properties. In Peter Schwerdtfeger, editor, Relativistic Electronic Structure Theory, volume 11 of Theoretical and Computational Chemistry, pages 332 – 400. Elsevier, 2002. doi:10.1016/S1380-7323(02)80033-4.

Saue2011

Trond Saue. Relativistic Hamiltonians for Chemistry: A Primer. ChemPhysChem, 12(17):3077–3094, 2011. doi:10.1002/cphc.201100682.

Saue2002

Trond Saue and Trygve Helgaker. Four-component relativistic Kohn-Sham theory. J. Comput. Chem., 23(8):814–823, 2002. doi:10.1002/jcc.10066.

Schipper2000

P. R. T. Schipper, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends. Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials. J. Chem. Phys., 112(3):1344–1352, 2000. doi:10.1063/1.480688.

Shee2018

Avijit Shee, Trond Saue, Lucas Visscher, and Andre Severo Pereira Gomes. Equation-of-Motion Coupled-Cluster Theory based on the 4-component Dirac-Coulomb(-Gaunt) Hamiltonian. J. Chem. Phys., 145(17):174113, 2018. doi:10.1063/1.5053846.

Shee2016

Avijit Shee, Lucas Visscher, and Trond Saue. Analytic one-electron properties at the 4-component relativistic coupled cluster level with inclusion of spin-orbit coupling. J. Chem. Phys., 145(18):184107, 2016. doi:10.1063/1.4966643.

Siegbahn1969

Kai Siegbahn. E. S. C. A. applied to free molecules. North-Holland Pub. Co. Amsterdam, 1969. ISBN 0-7204-0160-7.

Sikkema2009

Jetze Sikkema, Lucas Visscher, Trond Saue, and Miroslav Ilias. The molecular mean-field approach for correlated relativistic calculations. J. Chem. Phys., 131(12):124116, 2009. doi:10.1063/1.3239505.

Stanton1984

Richard E. Stanton and Stephen Havriliak. Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations. J. Chem. Phys., 81(4):1910–1918, 1984. doi:10.1063/1.447865.

Stone1969

Robert George Stone, J. M. Pochan, and Willis H. Flygare. Zeeman studies including the molecular g values, magnetic susceptibilities, and molecular quadrupole moments in phosphorus and nitrogen trifluorides and phosphoryl, thionyl, and sulfuryl fluorides. Inorganic Chemistry, 8(12):2647–2655, 1969. doi:10.1021/ic50082a021.

Takatsuka2008

Akio Takatsuka, Seiichiro Ten-no, and Wolfgang Hackbusch. Minimax approximation for the decomposition of energy denominators in Laplace-transformed Møller–Plesset perturbation theories. J. Chem. Phys., 129(4):044112, 2008. doi:10.1063/1.2958921.

Thyssen1998

J. Thyssen and H. J. Aa. Jensen. Average-of-configurations SCF manuscript. unpublished, 1998.

Thyssen2004

Jørn Thyssen. Development and Applications of Methods for Correlated Relativistic Calculations of Molecular Properties. PhD thesis, University of Southern Denmark, 2001. URL: http://dirac.chem.sdu.dk/thesis/thesis-jth2001.pdf.

Thyssen2008

Jørn Thyssen, Timo Fleig, and Hans Jørgen Aa. Jensen. A direct relativistic four-component multiconfiguration self-consistent-field method for molecules. J. Chem. Phys., 129(3):034109, 2008. doi:10.1063/1.2943670.

Tomasi2005

Jacopo Tomasi, Benedetta Mennucci, and Roberto Cammi. Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8):2999–3094, 2005. PMID: 16092826. doi:10.1021/cr9904009.

Tomasi1994

Jacopo Tomasi and Maurizio Persico. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews, 94(7):2027–2094, 1994. doi:10.1021/cr00031a013.

Tozer_JCP1998

David J. Tozer and Nicholas C. Handy. Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. J. Chem. Phys., 109(23):10180–10189, 1998. doi:10.1063/1.477711.

vanduijnen1998

Piet Th. van Duijnen and Marcel Swart. Molecular and Atomic Polarizabilities: Thole's Model Revisited. J. Phys. Chem. A, 102(14):2399–2407, 1998. doi:10.1021/jp980221f.

vanHorn2021probing

Martin van Horn, Trond Saue, and Nanna Holmgaard List. Probing chirality across the electromagnetic spectrum with the full semiclassical light-matter interaction. J. Chem. Phys., 2021.

vanLenthe1994

E. van Lenthe, E. J. Baerends, and J. G. Snijders. Relativistic total energy using regular approximations. J. Chem. Phys., 101(11):9783–9792, 1994. doi:10.1063/1.467943.

vanLenthe1996

E. van Lenthe, J. G. Snijders, and E. J. Baerends. The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules. J. Chem. Phys., 105(15):6505–6516, 1996. doi:10.1063/1.472460.

vanLenthe2006

J. H. Van Lenthe, R. Zwaans, H. J. J. Van Dam, and M. F. Guest. Starting SCF calculations by superposition of atomic densities. J. Comput. Chem., 27(8):926–932, 2006. doi:10.1002/jcc.20393.

vanStralen2005

Joost N. P. van Stralen, Lucas Visscher, Christoffer Vaaben Larsen, and Hans Jørgen Aa. Jensen. First-order MP2 molecular properties in a relativistic framework. Chemical Physics, 311(1-2):81–95, 2005. Relativistic Effects in Heavy-Element Chemistry and Physics. In Memoriam Bernd A. Hess (1954-2004). doi:10.1016/j.chemphys.2004.10.018.

Varga1999

S. Varga, E. Engel, W.-D. Sepp, and B. Fricke. Systematic study of the ib diatomic molecules cu$_2$, ag$_2$, and au$_2$ using advanced relativistic density functionals. Phys. Rev. A, 59:4288–4294, Jun 1999. doi:10.1103/PhysRevA.59.4288.

Varga2000

S. Varga, B. Fricke, H. Nakamatsu, T. Mukoyama, J. Anton, D. Geschke, A. Heitmann, E. Engel, and Baştug T. Four-component relativistic density functional calculations of heavy diatomic molecules. J. Chem. Phys., 112(8):3499–3506, 2000. doi:10.1063/1.480934.

Villaume2010

Sebastien Villaume, Trond Saue, and Patrick Norman. Linear complex polarization propagator in a four-component Kohn-Sham framework. J. Chem. Phys., 133(6):064105, 2010. doi:10.1063/1.3461163.

Visscher1997b

L. Visscher and K.G. Dyall. Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions. Atomic Data and Nuclear Data Tables, 67(2):207 – 224, 1997. doi:10.1006/adnd.1997.0751.

MOLFDIR

L. Visscher, O. Visser, P. J. C. Aerts, H. Merenga, and W. C. Nieuwpoort. Relativistic quantum chemistry: the MOLFDIR program package. Comput. Phys. Commun., 81(1 - 2):120 – 144, 1994. doi:10.1016/0010-4655(94)90115-5.

Visscher1997a

Lucas Visscher. Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction. Theor. Chem. Acc., 98(2-3):68–70, 1997. doi:10.1007/s002140050280.

Visscher2002

Lucas Visscher. The Dirac equation in quantum chemistry: Strategies to overcome the current computational problems. J. Comput. Chem., 23(8):759–766, 2002. doi:10.1002/jcc.10036.

Visscher2001

Lucas Visscher, Ephraim Eliav, and Uzi Kaldor. Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules. J. Chem. Phys., 115(21):9720–9726, 2001. doi:10.1063/1.1415746.

Visscher_jcc1999

Lucas Visscher, Thomas Enevoldsen, Trond Saue, Hans Jørgen Aagaard Jensen, and Jens Oddershede. Full four-component relativistic calculations of NMR shielding and indirect spin-spin coupling tensors in hydrogen halides. J. Comput. Chem., 20(12):1262–1273, 1999. doi:10.1002/(SICI)1096-987X(199909)20:12<1262::AID-JCC6>3.0.CO;2-H.

Visscher_JCP1998

Lucas Visscher, Thomas Enevoldsen, Trond Saue, and Jens Oddershede. Molecular relativistic calculations of the electric field gradients at the nuclei in the hydrogen halides. J. Chem. Phys., 109(22):9677–9684, 1998. doi:10.1063/1.477637.

Visscher1996

Lucas Visscher, Timothy J. Lee, and Kenneth G. Dyall. Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples. J. Chem. Phys., 105(19):8769–8776, 1996. doi:10.1063/1.472655.

Visscher2000

Lucas Visscher and Trond Saue. Approximate relativistic electronic structure methods based on the quaternion modified Dirac equation. J. Chem. Phys., 113(10):3996–4002, 2000. doi:10.1063/1.1288371.

Visser1992

O. Visser, L. Visscher, P. J. C. Aerts, and W. C. Nieuwpoort. Molecular open shell configuration interaction calculations using the Dirac-Coulomb Hamiltonian: The f6-manifold of an embedded EuO6(9-) cluster. J. Chem. Phys., 96(4):2910–2919, 1992. doi:10.1063/1.461987.

Vosko1980

S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58(8):1200–1211, 1980. doi:10.1139/p80-159.

Wheeler2009

Steven E. Wheeler and K. N. Houk. Through-Space Effects of Substituents Dominate Molecular Electrostatic Potentials of Substituted Arenes. J. Chem. Theory Comput., 5(9):2301–2312, 2009. doi:10.1021/ct900344g.

Wight_JEPRP1972

G.R. Wight, C.E. Brion, and M.J. Van Der Wiel. K-shell energy loss spectra of 2.5 keV electrons in N2 and CO. J. Electron. Spectrosc. Relat. Phenom., 1(5):457 – 469, 1972. doi:10.1016/0368-2048(72)80016-1.

Yanai_CPL2004

Takeshi Yanai, David P Tew, and Nicholas C Handy. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett., 393(1-3):51 – 57, 2004. doi:10.1016/j.cplett.2004.06.011.

DiRemigio2015

Roberto Di Remigio, Radovan Bast, Luca Frediani, and Trond Saue. Four-Component Relativistic Calculations in Solution with the Polarizable Continuum Model of Solvation: Theory, Implementation, and Application to the Group 16 Dihydrides H2X (X = O, S, Se, Te, Po). J. Phys. Chem. A, 119(21):5061–5077, 2015. PMID: 25412410. doi:10.1021/jp507279y.