References

List of published papers and other sources (books, theses) documenting the development of various features of DIRAC, some interesting applications and various related references.

Reference entries are sorted alphabetically according to the first author’s family name with the year of the publishing. If the first author has several publications in the same year, characters in alphabetical order - “a”, “b”, “c”, etc. - are added after the year.

Please always provide each citation entry with its permanent URL-link. The best web-link is the DOI web identity, used almost for all peer-reviewed papers. For books we recommend to resort to semi-permanent links, like the publisher’s web-site, or the popular Google-Books web-space.

References availability

All references are also available for download as one (big) file in the popular BibTex format. Please keep them in the alphabetical order as described above.

[Agren_CPL1981]Hans Agren, Paul S. Bagus, and Björn O. Roos. Symmetry adapted versus symmetry broken wavefunctions: the 1s core level ions of O$^+_2$. Chem. Phys. Lett., 82(3):505 – 510, 1981. doi:10.1016/0009-2614(81)85429-2.
[Amovilli1998]Claudio Amovilli, Vincenzo Barone, Roberto Cammi, Eric Cancès, Maurizio Cossi, Benedetta Mennucci, Christian S. Pomelli, and Jacopo Tomasi. Recent Advances in the Description of Solvent Effects with the Polarizable Continuum Mode. In Per-Olov Löwdin, editor, Advances in Quantum Chemistry, Vol 32: Quantum Systems in Chemistry and Physics, Part II, volume 32 of Advances in Quantum Chemistry, pages 227 – 261. Academic Press, 1998. URL: http://www.sciencedirect.com/science/article/pii/S0065327608604165, doi:10.1016/S0065-3276(08)60416-5.
[Aucar1999]G. A. Aucar, T. Saue, L. Visscher, and H. J. Aa. Jensen. On the origin and contribution of the diamagnetic term in four-component relativistic calculations of magnetic properties. The Journal of Chemical Physics, 110(13):6208–6218, 1999. URL: http://scitation.aip.org/content/aip/journal/jcp/110/13/10.1063/1.479181, doi:10.1063/1.479181.
[Mennucci2007]R. Cammi B. Mennucci. Front Matter., pages i–xv. John Wiley & Sons, Ltd, 2007. URL: http://dx.doi.org/10.1002/9780470515235.fmatter, doi:10.1002/9780470515235.fmatter.
[Bagus_JCP1971]Paul S. Bagus and Henry F. Schaefer. Direct Near-Hartree-Fock Calculations on the 1s Hole States of NO$^+$. J. Chem. Phys., 55(3):1474–1475, 1971. URL: http://scitation.aip.org/content/aip/journal/jcp/55/3/10.1063/1.1676248, doi:10.1063/1.1676248.
[Bagus_JCP1972]Paul S. Bagus and Henry F. Schaefer. Localized and Delocalized 1s Hole States of the O$_2^+$ Molecular Ion. J. Chem. Phys., 56(1):224–226, 1972. URL: http://scitation.aip.org/content/aip/journal/jcp/56/1/10.1063/1.1676850, doi:10.1063/1.1676850.
[Baker1993]Jon Baker. Techniques for geometry optimization: A comparison of cartesian and natural internal coordinates. Journal of Computational Chemistry, 14(9):1085–1100, 1993. URL: http://dx.doi.org/10.1002/jcc.540140910, doi:10.1002/jcc.540140910.
[Bast2009]Radovan Bast, Hans Jørgen Aa. Jensen, and Trond Saue. Relativistic adiabatic time-dependent density functional theory using hybrid functionals and noncollinear spin magnetization. International Journal of Quantum Chemistry, 109(10):2091–2112, 2009. URL: http://dx.doi.org/10.1002/qua.22065, doi:10.1002/qua.22065.
[Bauschlicher1980]Charles W. Bauschlicher. The construction of modified virtual orbitals (MVOs) which are suited for configuration interaction calculations. The Journal of Chemical Physics, 72(2):880–885, 1980. URL: http://scitation.aip.org/content/aip/journal/jcp/72/2/10.1063/1.439243, doi:10.1063/1.439243.
[Becke1988a]A. D. Becke. A multicenter numerical integration scheme for polyatomic molecules. The Journal of Chemical Physics, 88(4):2547–2553, 1988. URL: http://scitation.aip.org/content/aip/journal/jcp/88/4/10.1063/1.454033, doi:10.1063/1.454033.
[Becke1988]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38:3098–3100, Sep 1988. URL: http://link.aps.org/doi/10.1103/PhysRevA.38.3098, doi:10.1103/PhysRevA.38.3098.
[Boys:1970]S.F. Boys and F. Bernardi. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4):553–566, 1970. URL: http://dx.doi.org/10.1080/00268977000101561, arXiv:http://dx.doi.org/10.1080/00268977000101561, doi:10.1080/00268977000101561.
[Chesnut1994]D.B. Chesnut. Ab Initio Calculations of NMR Chemical Shielding. In G.A. Webb, editor, Annual Reports on NMR Spectroscopy, volume 29 of Annual Reports on NMR Spectroscopy, pages 71 – 122. Academic Press, 1994. URL: http://www.sciencedirect.com/science/article/pii/S0066410308601313, doi:10.1016/S0066-4103(08)60131-3.
[Christiansen2000]O Christiansen, T. M. Nymand, and K. V. Mikkelsen. A theoretical study of the electronic spectrum of water. Chemical Physical Letters, 113(3):8101–, 2000. URL: http://aip.scitation.org/doi/abs/10.1063/1.1316035, doi:doi: http://dx.doi.org/10.1063/1.1316035.
[Fleig2015]M. Denis, M. Nørby, H. J. \Aa . Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, and T. Fleig. Theoretical study on ThF$^+$, a prospective system in search of time-reversal violation. New J. Phys., 17:043005, 2015.
[Dirac1928]P. A. M. Dirac. The Quantum Theory of the Electron. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 117(778):610–624, 1928. doi:10.1098/rspa.1928.0023.
[Dirac1930]P. A. M. Dirac. Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedings of the Cambridge Philosophical Society, 26:376–385, 7 1930. URL: http://journals.cambridge.org/article_S0305004100016108, doi:10.1017/S0305004100016108.
[Dubillard2006]S. Dubillard, J.-B. Rota, T. Saue, and K. Faegri. Bonding analysis using localized relativistic orbitals: Water, the ultrarelativistic case and the heavy homologues H2X (X=Te, Po, eka-Po). The Journal of Chemical Physics, 124(15):–, 2006. URL: http://scitation.aip.org/content/aip/journal/jcp/124/15/10.1063/1.2187001, doi:10.1063/1.2187001.
[Dunning1989]Thom H. Dunning. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2):1007–1023, 1989. URL: http://scitation.aip.org/content/aip/journal/jcp/90/2/10.1063/1.456153, doi:10.1063/1.456153.
[GRASP]K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, and E.P. Plummer. GRASP: A general-purpose relativistic atomic structure program. Comput. Phys. Commun., 55(3):425 – 456, 1989. URL: http://www.sciencedirect.com/science/article/pii/0010465589901367, doi:http://dx.doi.org/10.1016/0010-4655(89)90136-7.
[Dyall1994]Kenneth G. Dyall. An exact separation of the spin-free and spin-dependent terms of the Dirac-Coulomb-Breit Hamiltonian. The Journal of Chemical Physics, 100(3):2118–2127, 1994. URL: http://scitation.aip.org/content/aip/journal/jcp/100/3/10.1063/1.466508, doi:10.1063/1.466508.
[Dyall2007]Kenneth G. Dyall and Knut Faegri. Introduction to Relativistic Quantum Chemistry. Oxford University Press, 4 2007. URL: http://amazon.com/o/ASIN/0195140869/.
[Ekstrom2005]Ulf Ekström, Patrick Norman, and Antonio Rizzo. Four-component Hartree–Fock calculations of magnetic-field induced circular birefringence—Faraday effect—in noble gases and dihalogens. The Journal of Chemical Physics, 122(7):–, 2005. URL: http://scitation.aip.org/content/aip/journal/jcp/122/7/10.1063/1.1849167, doi:10.1063/1.1849167.
[Eliav2005]Ephraim Eliav, Marius J. Vilkas, Yasuyuki Ishikawa, and Uzi Kaldor. Extrapolated intermediate Hamiltonian coupled-cluster approach: Theory and pilot application to electron affinities of alkali atoms. The Journal of Chemical Physics, 2005. URL: http://scitation.aip.org/content/aip/journal/jcp/122/22/10.1063/1.1929727, doi:10.1063/1.1929727.
[Ermler1981]Walter C. Ermler, Yoon S. Lee, Phillip A. Christiansen, and Kenneth S. Pitzer. Ab initio effective core potentials including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular wavefunctions. Chemical Physics Letters, 81(1):70 – 74, 1981. URL: http://www.sciencedirect.com/science/article/pii/0009261481853298, doi:10.1016/0009-2614(81)85329-8.
[Fleig2013]T. Fleig and M. K. Nayak. Electron electric-dipole-moment interaction constant for HfF$^+$ from relativistic correlated all-electron theory. Phys. Rev. A, 88:032514, 2013.
[Fleig2014]T. Fleig and M. K. Nayak. Electron electric dipole moment and hyperfine interaction constants for ThO. J. Mol. Spectrosc., 300:16, 2014. URL: http://www.sciencedirect.com/science/article/pii/S0022285214000782, doi:http://dx.doi.org/10.1016/j.jms.2014.03.017.
[Fleig2005]T. Fleig and L. Visscher. Large-scale electron correlation calculations in the framework of the spin-free dirac formalism: the Au$_2$ molecule revisited. Chemical Physics, 311(1–2):113 – 120, 2005. Relativistic Effects in Heavy-Element Chemistry and Physics. In Memoriam Bernd A. Hess (1954–2004). URL: http://www.sciencedirect.com/science/article/pii/S0301010404005580, doi:10.1016/j.chemphys.2004.10.003.
[Fleig2006a]Timo Fleig. Invited review: Relativistic wave-function based electron correlation methods. Chemical Physics, 395(0):2 – 15, 2012. Recent Advances and Applications of Relativistic Quantum Chemistry. URL: http://www.sciencedirect.com/science/article/pii/S0301010411002710, doi:10.1016/j.chemphys.2011.06.032.
[Fleig2006]Timo Fleig, Hans Jørgen Aa. Jensen, Jeppe Olsen, and Lucas Visscher. The generalized active space concept for the relativistic treatment of electron correlation. III. Large-scale configuration interaction and multiconfiguration self-consistent-field four-component methods with application to UO$_2$. The Journal of Chemical Physics, 124(10):–, 2006. URL: http://scitation.aip.org/content/aip/journal/jcp/124/10/10.1063/1.2176609, doi:10.1063/1.2176609.
[Fleig2001]Timo Fleig, Jeppe Olsen, and Christel M. Marian. The generalized active space concept for the relativistic treatment of electron correlation. I. Kramers-restricted two-component configuration interaction. The Journal of Chemical Physics, 114(11):4775–4790, 2001. URL: http://scitation.aip.org/content/aip/journal/jcp/114/11/10.1063/1.1349076, doi:http://dx.doi.org/10.1063/1.1349076.
[Fleig2003]Timo Fleig, Jeppe Olsen, and Lucas Visscher. The generalized active space concept for the relativistic treatment of electron correlation. II. Large-scale configuration interaction implementation based on relativistic 2- and 4-spinors and its application. The Journal of Chemical Physics, 119(6):2963–2971, 2003. URL: http://scitation.aip.org/content/aip/journal/jcp/119/6/10.1063/1.1590636, doi:10.1063/1.1590636.
[Fossgaard2003b]O. Fossgaard, O. Gropen, E. Eliav, and T. Saue. Bonding in the homologous series CsAu, CsAg, and CsCu studied at the 4-component density functional theory and coupled cluster levels. J. Chem. Phys., 119(18):9355–9363, 2003. doi:10.1063/1.1615953.
[Fossgaard2003]O. Fossgaard, O. Gropen, M. Corral Valero, and T. Saue. On the performance of four-component relativistic density functional theory: Spectroscopic constants and dipole moments of the diatomics HX and XY (X,Y=F, Cl, Br, and I). The Journal of Chemical Physics, 118(23):10418–10430, 2003. URL: http://scitation.aip.org/content/aip/journal/jcp/118/23/10.1063/1.1574317, doi:10.1063/1.1574317.
[Faegri2001]Knut Fægri and Trond Saue. Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding. The Journal of Chemical Physics, 115(6):2456–2464, 2001. URL: http://scitation.aip.org/content/aip/journal/jcp/115/6/10.1063/1.1385366, doi:10.1063/1.1385366.
[Gilbert_JPCA2008]Andrew T. B. Gilbert, Nicholas A. Besley, and Peter M. W. Gill. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM). J. Phys. Chem. A, 112(50):13164–13171, 2008. doi:10.1021/jp801738f.
[Gomes2008]Andre Severo Pereira Gomes, Christoph R. Jacob, and Lucas Visscher. Calculation of local excitations in large systems by embedding wave-function theory in density-functional theory. Physical Chemistry Chemical Physics, 10:5353–5362, 2008. URL: http://dx.doi.org/10.1039/B805739G, doi:10.1039/B805739G.
[Gruning2001]M. Grüning, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends. Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region. The Journal of Chemical Physics, 114(2):652–660, 2001. URL: http://scitation.aip.org/content/aip/journal/jcp/114/2/10.1063/1.1327260, doi:10.1063/1.1327260.
[Hamilton1986]Tracy P. Hamilton and Peter Pulay. Direct inversion in the iterative subspace (DIIS) optimization of open-shell, excited-state, and small multiconfiguration SCF wave functions. The Journal of Chemical Physics, 84(10):5728–5734, 1986. URL: http://scitation.aip.org/content/aip/journal/jcp/84/10/10.1063/1.449880, doi:10.1063/1.449880.
[Hedegaard2017]Erik Donovan Hedegård, Radovan Bast, Jacob Kongsted, Jógvan Magnus Haugaard Olsen, and Hans Jørgen Aa. Jensen. Relativistic Polarizable Embedding. Journal of Chemical Theory and Computation, 13(6):2870–2880, 2017. URL: http://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b00162, doi:10.1021/acs.jctc.7b00162.
[Hedegaard2016]Erik Donovan Hedegård and Markus Reiher. Polarizable Embedding Density Matrix Renormalization Group. Journal of Chemical Theory and Computation, 12(9):4242–4253, 2016. URL: http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00476, doi:10.1021/acs.jctc.6b00476.
[Hoffman1963]Roald Hoffmann. An Extended Huckel Theory. I. Hydrocarbons. The Journal of Chemical Physics, 39(6):1397–1412, 1963. URL: http://scitation.aip.org/content/aip/journal/jcp/39/6/10.1063/1.1734456, doi:http://dx.doi.org/10.1063/1.1734456.
[Hofener2013]Sebastian Höfener, André Severo Pereira Gomes, and Lucas Visscher. Solvatochromic shifts from coupled-cluster theory embedded in density functional theory. The Journal of Chemical Physics, 139(10):–, 2013. URL: http://scitation.aip.org/content/aip/journal/jcp/139/10/10.1063/1.4820488, doi:10.1063/1.4820488.
[Hofener2012]Sebastian Höfener, André Severo Pereira Gomes, and Lucas Visscher. Molecular properties via a subsystem density functional theory formulation: A common framework for electronic embedding. The Journal of Chemical Physics, 136(4):–, 2012. URL: http://scitation.aip.org/content/aip/journal/jcp/136/4/10.1063/1.3675845, doi:10.1063/1.3675845.
[IIkura2001]Hisayoshi Iikura, Takao Tsuneda, Takeshi Yanai, and Kimihiko Hirao. A long-range correction scheme for generalized-gradient-approximation exchange functionals. The Journal of Chemical Physics, 115(8):3540–3544, 2001. URL: http://scitation.aip.org/content/aip/journal/jcp/115/8/10.1063/1.1383587, doi:10.1063/1.1383587.
[Ilias2014]Miroslav Iliaš and Miroslav Dobruck\’y. Grid Computing with Relativistic Quantum Chemistry Software. Journal of Grid Computing, 12(4):681–690, 2014. URL: http://dx.doi.org/10.1007/s10723-014-9309-4, doi:10.1007/s10723-014-9309-4.
[Ilias2005]Miroslav Iliaš, Hans Jørgen Aa. Jensen, Vladimir Kellö, Björn O. Roos, and Miroslav Urban. Theoretical study of PbO and the PbO anion. Chemical Physics Letters, 408(4–6):210 – 215, 2005. URL: http://www.sciencedirect.com/science/article/pii/S0009261405005440, doi:10.1016/j.cplett.2005.04.027.
[Ilias2001]Miroslav Iliaš, Vladimír Kellö, Lucas Visscher, and Bernd Schimmelpfennig. Inclusion of mean-field spin–orbit effects based on all-electron two-component spinors: Pilot calculations on atomic and molecular properties. The Journal of Chemical Physics, 115(21):9667–9674, 2001. URL: http://scitation.aip.org/content/aip/journal/jcp/115/21/10.1063/1.1413510, doi:10.1063/1.1413510.
[Ilias2007]Miroslav Iliaš and Trond Saue. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. The Journal of Chemical Physics, 126(6):–, 2007. URL: http://scitation.aip.org/content/aip/journal/jcp/126/6/10.1063/1.2436882, doi:10.1063/1.2436882.
[Jacob2011]Christoph R. Jacob, S. Maya Beyhan, Rosa E. Bulo, Andre Severo Pereira Gomes, Andreas W. Gatz, Karin Kiewisch, Jetze Sikkema, and Lucas Visscher. PyADF A scripting framework for multiscale quantum chemistry. Journal of Computational Chemistry, 32(10):2328–2338, 2011. URL: http://dx.doi.org/10.1002/jcc.21810, doi:10.1002/jcc.21810.
[Jacob2013]Christoph R. Jacob and Johannes Neugebauer. Subsystem density-functional theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 4(4):325–362, 2014. URL: http://dx.doi.org/10.1002/wcms.1175, doi:10.1002/wcms.1175.
[Jarvie1973]J. Jarvie, W. Willson, J. Doolittle, and C. Edmiston. Tetrahedral methane without $2s\rightarrow 2p$ promotion and hybridization: Direct calculation of the effects of promotion and hybridization in CH$_4$, NH$_3$, H$_2$O and H$_2$S. J. Chem. Phys., 59:3020, 1973. doi:10.1063/1.1680438.
[Jensen1996]Hans Jørgen Aa. Jensen, Kenneth G. Dyall, Trond Saue, and Knut Fægri. Relativistic four-component multiconfigurational self-consistent-field theory for molecules: Formalism. The Journal of Chemical Physics, 104(11):4083–4097, 1996. URL: http://scitation.aip.org/content/aip/journal/jcp/104/11/10.1063/1.471644, doi:10.1063/1.471644.
[Jensen1988]Hans Jørgen Aa. Jensen, Poul Jørgensen, Hans Ågren, and Jeppe Olsen. Second-order Møller-Plesset perturbation theory as a configuration and orbital generator in multiconfiguration self-consistent field calculations. The Journal of Chemical Physics, 88(6):3834–3839, 1988. URL: http://scitation.aip.org/content/aip/journal/jcp/88/6/10.1063/1.453884, doi:10.1063/1.453884.
[Keal2003]Thomas W. Keal and David J. Tozer. The exchange-correlation potential in Kohn–Sham nuclear magnetic resonance shielding calculations. The Journal of Chemical Physics, 119(6):3015–3024, 2003. URL: http://scitation.aip.org/content/aip/journal/jcp/119/6/10.1063/1.1590634, doi:10.1063/1.1590634.
[Knecht2014]Jensen Knecht, Repisky, Ruud, and Saue. Genuine relativistic quantum chemistry with exact two-component Hamiltonians: The easy way to infinite-order two-electron spin-orbit corrections. in preparation, 2014.
[Knecht2010]S. Knecht and T. Saue. X2Cmod: A modular code for Exact-Two-Component Hamiltonian Transformations. 2010-2013 with contributions from M. Ilias, H. J. Aa. Jensen and M. Repisky, 2010.
[Knecht2011]Stefan Knecht, Samuel Fux, Robert van Meer, Lucas Visscher, Markus Reiher, and Trond Saue. Mossbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury. Theoretical Chemistry Accounts, 129(3-5):631–650, 2011. URL: http://dx.doi.org/10.1007/s00214-011-0911-2, doi:10.1007/s00214-011-0911-2.
[Knecht2008]Stefan Knecht, Hans Jøgen Aa. Jensen, and Timo Fleig. Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb–Ba)+. The Journal of Chemical Physics, 128(1):–, 2008. URL: http://scitation.aip.org/content/aip/journal/jcp/128/1/10.1063/1.2805369, doi:10.1063/1.2805369.
[Knecht2010a]Stefan Knecht, Hans Jørgen Aa. Jensen, and Timo Fleig. Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH. The Journal of Chemical Physics, 132(1):–, 2010. URL: http://scitation.aip.org/content/aip/journal/jcp/132/1/10.1063/1.3276157, doi:10.1063/1.3276157.
[Knecht2014a]Stefan Knecht, Örs Legeza, and Markus Reiher. Communication: Four-component density matrix renormalization group. The Journal of Chemical Physics, 140(4):–, 2014. URL: http://scitation.aip.org/content/aip/journal/jcp/140/4/10.1063/1.4862495, doi:10.1063/1.4862495.
[Knecht2009]Stefan R. Knecht. Parallel Relativistic Multiconfiguration Methods: New Powerful Tools for Heavy-Element Electronic-Structure Studies. PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf, 2009. URL: http://docserv.uni-duesseldorf.de/servlets/DocumentServlet?id=13226.
[Knizia2013]Gerald Knizia. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. Journal of Chemical Theory and Computation, 9(11):4834–4843, 2013. URL: http://dx.doi.org/10.1021/ct400687b, doi:10.1021/ct400687b.
[Kongsted2002]J. Kongsted, A. Osted, K. V. Mikkelsen, and O. Christiansen. Dipole and quadrupole moments of liquid water calculated within the coupled cluster/molecular mechanics method. Chemical Physical Letters, 364(3-4):379–386, 2002. URL: https://doi.org/10.1016/S0009-2614(02)01286-1, doi:doi.org/10.1016/S0009-2614(02)01286-1.
[Kullie2011]Ossama Kullie and Trond Saue. Range-separated density functional theory: A 4-component relativistic study of the rare gas dimers He2, Ne2, Ar2, Kr2, Xe2, Rn2 and Uuo2. Chemical Physics, 395(0):54 – 62, 2012. Recent Advances and Applications of Relativistic Quantum Chemistry. URL: http://www.sciencedirect.com/science/article/pii/S0301010411002631, doi:10.1016/j.chemphys.2011.06.024.
[Kutzelnigg1984]Werner Kutzelnigg. Chemical Bonding in Higher Main Group Elements. Angewandte Chemie International Edition in English, 23(4):272–295, 1984. URL: http://dx.doi.org/10.1002/anie.198402721, doi:10.1002/anie.198402721.
[Laerdahl1997]Jon K. Laerdahl, Trond Saue, and Knut Faegri Jr. Direct relativistic MP2: properties of ground state CuF, AgF and AuF. Theoretical Chemistry Accounts, 97(1-4):177–184, 1997. URL: http://dx.doi.org/10.1007/s002140050251, doi:10.1007/s002140050251.
[Laerdahl1999]Jon K. Laerdahl and Peter Schwerdtfeger. Fully relativistic ab initio calculations of the energies of chiral molecules including parity-violating weak interactions. Physical Review A, 60:4439–4453, Dec 1999. URL: http://link.aps.org/doi/10.1103/PhysRevA.60.4439, doi:10.1103/PhysRevA.60.4439.
[Landau2004]Arie Landau, Ephraim Eliav, Yasuyuki Ishikawa, and Uzi Kaldor. Mixed-sector intermediate Hamiltonian Fock-space coupled cluster approach. The Journal of Chemical Physics, 121(14):6634–6639, 2004. URL: http://scitation.aip.org/content/aip/journal/jcp/121/14/10.1063/1.1788652, doi:10.1063/1.1788652.
[Lee1988]Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37:785–789, Jan 1988. URL: http://link.aps.org/doi/10.1103/PhysRevB.37.785, doi:10.1103/PhysRevB.37.785.
[Lee1977]Yoon S. Lee, Walter C. Ermler, and Kenneth S. Pitzer. Abinitio effective core potentials including relativistic effects. I. Formalism and applications to the Xe and Au atoms. The Journal of Chemical Physics, 67(12):5861–5876, 1977. URL: http://scitation.aip.org/content/aip/journal/jcp/67/12/10.1063/1.434793, doi:10.1063/1.434793.
[Lindh2001]Roland Lindh, Per-Ake Malmqvist, and Laura Gagliardi. Molecular integrals by numerical quadrature. I. Radial integration. Theoretical Chemistry Accounts, 106(3):178–187, 2001. URL: http://dx.doi.org/10.1007/s002140100263, doi:10.1007/s002140100263.
[Levy1967]Jean-Marc Lévy-Leblond. Nonrelativistic particles and wave equations. Communications in Mathematical Physics, 6(4):286–311, 1967. URL: http://dx.doi.org/10.1007/BF01646020, doi:10.1007/BF01646020.
[Mayer1996]Markus Mayer, Oliver D. Häberlen, and Notker Rösch. Relevance of relativistic exchange-correlation functionals and of finite nuclei in molecular density-functional calculations. Physical Review A, 54:4775–4782, Dec 1996. URL: http://link.aps.org/doi/10.1103/PhysRevA.54.4775, doi:10.1103/PhysRevA.54.4775.
[Mochizuki_JCP2003]Yuji Mochizuki and Hiroshi Tatewaki. On the electronic structure of CmF$_n$ (n=1–4) by all-electron Dirac–Hartree–Fock calculations. J. Chem. Phys., 118(20):9201–9207, 2003. doi:10.1063/1.1568075.
[Mulliken1955]R. S. Mulliken. Electronic Population Analysis on LCAO MO Molecular Wave Functions. I. The Journal of Chemical Physics, 23(10):1833–1840, 1955. URL: http://scitation.aip.org/content/aip/journal/jcp/23/10/10.1063/1.1740588, doi:10.1063/1.1740588.
[Nielsen_JCP1980]Egon S. Nielsen, Poul Jørgensen, and Jens Oddershede. Transition moments and dynamic polarizabilities in a second order polarization propagator approach. The Journal of Chemical Physics, 73(12):6238–6246, 1980. URL: http://scitation.aip.org/content/aip/journal/jcp/73/12/10.1063/1.440119, doi:10.1063/1.440119.
[Norman2011]Patrick Norman. A perspective on nonresonant and resonant electronic response theory for time-dependent molecular properties. Physical Chemistry Chemical Physics, 13:20519–20535, 2011. URL: http://dx.doi.org/10.1039/C1CP21951K, doi:10.1039/C1CP21951K.
[Norman2012]Patrick Norman Norman and Hans Jørgen Aa. Jensen. Phosphorescence parameters for platinum (II) organometallic chromophores: A study at the non-collinear four-component Kohn-Sham level of theory. Chemical Physics Letters, 531():229 – 235, 2012. URL: http://www.sciencedirect.com/science/article/pii/S0009261412001996, doi:http://dx.doi.org/10.1016/j.cplett.2012.02.012.
[Olejniczak2012]Malgorzata Olejniczak, Radovan Bast, Trond Saue, and Magdalena Pecul. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis. The Journal of Chemical Physics, 136(1):–, 2012. URL: http://scitation.aip.org/content/aip/journal/jcp/136/1/10.1063/1.3671390, doi:10.1063/1.3671390.
[Olsen1990]Jeppe Olsen, Poul Jørgensen, and Jack Simons. Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chemical Physics Letters, 169(6):463 – 472, 1990. URL: http://www.sciencedirect.com/science/article/pii/000926149085633N, doi:10.1016/0009-2614(90)85633-N.
[Olsen2010]Jógvan Magnus Olsen, Ke\k stutis Aidas, and Jacob Kongsted. Excited states in solution through polarizable embedding. Journal of Chemical Theory and Computation, 6(12):3721–3734, 2010. URL: https://doi.org/10.1021/ct1003803, doi:10.1021/ct1003803.
[Olsen2011]Jógvan Magnus Haugaard Olsen and Jacob Kongsted. Molecular properties through polarizable embedding. In Advances in Quantum Chemistry, pages 107–143. 2011. URL: https://doi.org/10.1016/b978-0-12-386013-2.00003-6, doi:10.1016/b978-0-12-386013-2.00003-6.
[Peach2008]Michael J. G. Peach, Peter Benfield, Trygve Helgaker, and David J. Tozer. Excitation energies in density functional theory: An evaluation and a diagnostic test. The Journal of Chemical Physics, 128(4):–, 2008. URL: http://scitation.aip.org/content/aip/journal/jcp/128/4/10.1063/1.2831900, doi:10.1063/1.2831900.
[Pecul2004]Magdalena Pecul, Trond Saue, Kenneth Ruud, and Antonio Rizzo. Electric field effects on the shielding constants of noble gases: A four-component relativistic Hartree-Fock study. The Journal of Chemical Physics, 121(7):3051–3057, 2004. URL: http://scitation.aip.org/content/aip/journal/jcp/121/7/10.1063/1.1771635, doi:10.1063/1.1771635.
[Peng2012]Daoling Peng and Markus Reiher. Local relativistic exact decoupling. The Journal of Chemical Physics, 136(24):–, 2012. URL: http://scitation.aip.org/content/aip/journal/jcp/136/24/10.1063/1.4729788, doi:10.1063/1.4729788.
[Perdew1986]John P. Perdew and Wang Yue. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical Review B, 33:8800–8802, Jun 1986. URL: http://link.aps.org/doi/10.1103/PhysRevB.33.8800, doi:10.1103/PhysRevB.33.8800.
[Pernpointner2014]Markus Pernpointner. The relativistic polarization propagator for the calculation of electronic excitations in heavy systems. The Journal of Chemical Physics, 140:084108, 2014. URL: http://dx.doi.org/10.1063/1.4865964, doi:10.1063/1.4865964.
[Pernpointner2003]Markus Pernpointner and Lucas Visscher. Parallelization of four-component calculations. II. Symmetry-driven parallelization of the 4-Spinor CCSD algorithm. Journal of Computational Chemistry, 24(6):754–759, 2003. URL: http://dx.doi.org/10.1002/jcc.10215, doi:10.1002/jcc.10215.
[Pernpointner2017]Markus Pernpointner, Lucas Visscher, and Alexander B. Trofimov. Influence of Spin-Orbit Coupling on Electronic Transition Moments obtained by the Four-component Polarization Propagator. Journal of Chemical Theory and Computation, to be published, 000:000000, 2017. URL: http://, doi:xxx.
[Pulay1982]P. Pulay. Improved SCF convergence acceleration. Journal of Computational Chemistry, 3(4):556–560, 1982. URL: http://dx.doi.org/10.1002/jcc.540030413, doi:10.1002/jcc.540030413.
[Pulay1980]Péter Pulay. Convergence acceleration of iterative sequences. the case of SCF iteration. Chemical Physics Letters, 73(2):393 – 398, 1980. URL: http://www.sciencedirect.com/science/article/pii/0009261480803964, doi:10.1016/0009-2614(80)80396-4.
[Reiher2009]Markus Reiher and Alexander Wolf. Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science. Wiley-VCH, 1 edition, 2 2009. URL: http://amazon.com/o/ASIN/3527312927/.
[DiRemigio2015]Roberto Di Remigio, Radovan Bast, Luca Frediani, and Trond Saue. Four-Component Relativistic Calculations in Solution with the Polarizable Continuum Model of Solvation: Theory, Implementation, and Application to the Group 16 Dihydrides H2X (X = O, S, Se, Te, Po). The Journal of Physical Chemistry A, 119(21):5061–5077, 2015. PMID: 25412410. URL: http://dx.doi.org/10.1021/jp507279y, doi:10.1021/jp507279y.
[Salek2005]P. Salek, T. Helgaker, and T. Saue. Linear response at the 4-component relativistic density functional level: Application to the frequency-dependent dipole polarizability of Hg, AuH and PtH$_2$ . Chem. Phys., 311:187, 2005. doi:10.1016/j.chemphys.2004.10.011.
[Saue1997]By T. SAUE, K. FAEGRI, T. HELGAKER, and O. GROPEN. Principles of direct 4-component relativistic SCF: application to caesium auride. Molecular Physics, 91(5):937–950, 1997. URL: http://www.tandfonline.com/doi/abs/10.1080/002689797171058, doi:10.1080/002689797171058.
[Saue1999]T. Saue and H. J. Aa Jensen. Quaternion symmetry in relativistic molecular calculations: I. The Dirac-Fock method.. J. Chem. Phys., 111:6211, 1999. doi:10.1063/1.479958.
[Saue2000]T. Saue and H. J. Aa. Jensen. Quaternion symmetry of the Dirac equation. In Mathematical Models and Methods for Ab Initio Quantum Chemistry, volume 74 of Lecture Notes in Chemistry, pages 227–246. Springer Berlin Heidelberg, 2000. URL: http://dx.doi.org/10.1007/978-3-642-57237-1_11, doi:10.1007/978-3-642-57237-1_11.
[Saue2003]T. Saue and H. J. Aa. Jensen. Linear response at the 4-component relativistic level: Application to the frequency-dependent dipole polarizabilities of the coinage metal dimers. The Journal of Chemical Physics, 118(2):522–536, 2003. URL: http://scitation.aip.org/content/aip/journal/jcp/118/2/10.1063/1.1522407, doi:10.1063/1.1522407.
[Saue2002a]Trond Saue. Chapter 7 Post Dirac-Hartree-Fock methods—properties. In Peter Schwerdtfeger, editor, Relativistic Electronic Structure Theory, volume 11 of Theoretical and Computational Chemistry, pages 332 – 400. Elsevier, 2002. URL: http://www.sciencedirect.com/science/article/pii/S1380732302800334, doi:10.1016/S1380-7323(02)80033-4.
[Saue2011]Trond Saue. Relativistic Hamiltonians for Chemistry: A Primer. ChemPhysChem, 12(17):3077–3094, 2011. URL: http://dx.doi.org/10.1002/cphc.201100682, doi:10.1002/cphc.201100682.
[Saue2002]Trond Saue and Trygve Helgaker. Four-component relativistic Kohn-Sham theory. Journal of Computational Chemistry, 23(8):814–823, 2002. URL: http://dx.doi.org/10.1002/jcc.10066, doi:10.1002/jcc.10066.
[Schipper2000]P. R. T. Schipper, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends. Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials. The Journal of Chemical Physics, 112(3):1344–1352, 2000. URL: http://scitation.aip.org/content/aip/journal/jcp/112/3/10.1063/1.480688, doi:10.1063/1.480688.
[Gomes2012a]Andre Severo Pereira Gomes and Christoph R. Jacob. Quantum-chemical embedding methods for treating local electronic excitations in complex chemical systems. Annual Reports on the Progress of Chemistry Section C, 108:222–277, 2012. URL: http://dx.doi.org/10.1039/C2PC90007F, doi:10.1039/C2PC90007F.
[Shee2016]Avijit Shee, Lucas Visscher, and Trond Saue. Analytic one-electron properties at the 4-component relativistic coupled cluster level with inclusion of spin-orbit coupling. The Journal of Chemical Physics, 2016. doi:10.1063/1.4966643.
[Siegbahn1969]Kai Siegbahn. E. S. C. A. applied to free molecules. North-Holland Pub. Co. Amsterdam, 1969. URL: https://www.worldcat.org/title/e-s-c-a-applied-to-free-molecules/oclc/257983763.
[Sikkema2009]Jetze Sikkema, Lucas Visscher, Trond Saue, and Miroslav Ilias. The molecular mean-field approach for correlated relativistic calculations. The Journal of Chemical Physics, 131(12):–, 2009. URL: http://scitation.aip.org/content/aip/journal/jcp/131/12/10.1063/1.3239505, doi:10.1063/1.3239505.
[Stanton1984]Richard E. Stanton and Stephen Havriliak. Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations. The Journal of Chemical Physics, 81(4):1910–1918, 1984. URL: http://scitation.aip.org/content/aip/journal/jcp/81/4/10.1063/1.447865, doi:10.1063/1.447865.
[Stone1969]Robert George Stone, J. M. Pochan, and Willis H. Flygare. Zeeman studies including the molecular g values, magnetic susceptibilities, and molecular quadrupole moments in phosphorus and nitrogen trifluorides and phosphoryl, thionyl, and sulfuryl fluorides. Inorganic Chemistry, 8(12):2647–2655, 1969. URL: http://dx.doi.org/10.1021/ic50082a021, arXiv:http://dx.doi.org/10.1021/ic50082a021, doi:10.1021/ic50082a021.
[Thyssen1998]J. Thyssen and H. J. Aa. Jensen. Average-of-configurations SCF manuscript. unpublished, 1998.
[Thyssen2004]Jørn Thyssen. Development and Applications of Methods for Correlated Relativistic Calculations of Molecular Properties. PhD thesis, University of Southern Denmark, 2001. URL: http://dirac.chem.sdu.dk/thesis/thesis-jth2001.pdf.
[Thyssen2008]Jørn Thyssen, Timo Fleig, and Hans Jørgen Aa. Jensen. A direct relativistic four-component multiconfiguration self-consistent-field method for molecules. The Journal of Chemical Physics, 129(3):–, 2008. URL: http://scitation.aip.org/content/aip/journal/jcp/129/3/10.1063/1.2943670, doi:10.1063/1.2943670.
[Tomasi2005]Jacopo Tomasi, Benedetta Mennucci, and Roberto Cammi. Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8):2999–3094, 2005. PMID: 16092826. URL: http://dx.doi.org/10.1021/cr9904009, arXiv:http://dx.doi.org/10.1021/cr9904009, doi:10.1021/cr9904009.
[Tomasi1994]Jacopo Tomasi and Maurizio Persico. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews, 94(7):2027–2094, 1994. URL: http://dx.doi.org/10.1021/cr00031a013, arXiv:http://dx.doi.org/10.1021/cr00031a013, doi:10.1021/cr00031a013.
[Tozer_JCP1998]David J. Tozer and Nicholas C. Handy. Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. The Journal of Chemical Physics, 109(23):10180–10189, 1998. URL: http://scitation.aip.org/content/aip/journal/jcp/109/23/10.1063/1.477711, doi:10.1063/1.477711.
[vanduijnen1998]Piet Th. van Duijnen and Marcel Swart. Molecular and Atomic Polarizabilities:  Thole’s Model Revisited. J. Phys. Chem. A, 102(14):2399–2407, 1998. URL: https://doi.org/10.1021/jp980221f, doi:10.1021/jp980221f.
[vanLenthe1994]E. van Lenthe, E. J. Baerends, and J. G. Snijders. Relativistic total energy using regular approximations. The Journal of Chemical Physics, 101(11):9783–9792, 1994. URL: http://scitation.aip.org/content/aip/journal/jcp/101/11/10.1063/1.467943, doi:10.1063/1.467943.
[vanLenthe1996]E. van Lenthe, J. G. Snijders, and E. J. Baerends. The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules. The Journal of Chemical Physics, 105(15):6505–6516, 1996. URL: http://scitation.aip.org/content/aip/journal/jcp/105/15/10.1063/1.472460, doi:10.1063/1.472460.
[vanLenthe2006]J. H. Van Lenthe, R. Zwaans, H. J. J. Van Dam, and M. F. Guest. Starting SCF calculations by superposition of atomic densities. Journal of Computational Chemistry, 27(8):926–932, 2006. URL: http://dx.doi.org/10.1002/jcc.20393, doi:10.1002/jcc.20393.
[vanStralen2005]Joost N. P. van Stralen, Lucas Visscher, Christoffer Vaaben Larsen, and Hans Jørgen Aa. Jensen. First-order MP2 molecular properties in a relativistic framework. Chemical Physics, 311(1-2):81–95, 2005. Relativistic Effects in Heavy-Element Chemistry and Physics. In Memoriam Bernd A. Hess (1954-2004). URL: http://www.sciencedirect.com/science/article/pii/S0301010404005762, doi:http://dx.doi.org/10.1016/j.chemphys.2004.10.018.
[Varga1999]S. Varga, E. Engel, W.-D. Sepp, and B. Fricke. Systematic study of the Ib diatomic molecules $\mathrm Cu_2,$ $\mathrm Ag_2$, and $\mathrm Au_2$ using advanced relativistic density functionals. Physical Review A, 59:4288–4294, Jun 1999. URL: http://link.aps.org/doi/10.1103/PhysRevA.59.4288, doi:10.1103/PhysRevA.59.4288.
[Varga2000]S. Varga, B. Fricke, H. Nakamatsu, T. Mukoyama, J. Anton, D. Geschke, A. Heitmann, E. Engel, and Baştug T. Four-component relativistic density functional calculations of heavy diatomic molecules. The Journal of Chemical Physics, 112(8):3499–3506, 2000. URL: http://scitation.aip.org/content/aip/journal/jcp/112/8/10.1063/1.480934, doi:10.1063/1.480934.
[Villaume2010]Sebastien Villaume, Trond Saue, and Patrick Norman. Linear complex polarization propagator in a four-component Kohn-Sham framework. The Journal of Chemical Physics, 133(6):–, 2010. URL: http://scitation.aip.org/content/aip/journal/jcp/133/6/10.1063/1.3461163, doi:10.1063/1.3461163.
[Visscher1997b]L. Visscher and K.G. Dyall. Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions. Atomic Data and Nuclear Data Tables, 67(2):207 – 224, 1997. URL: http://www.sciencedirect.com/science/article/pii/S0092640X97907518, doi:10.1006/adnd.1997.0751.
[MOLFDIR]L. Visscher, O. Visser, P.J.C. Aerts, H. Merenga, and W.C. Nieuwpoort. Relativistic quantum chemistry: the MOLFDIR program package. Computer Physics Communications, 81(1 - 2):120 – 144, 1994. URL: http://www.sciencedirect.com/science/article/pii/0010465594901155, doi:10.1016/0010-4655(94)90115-5.
[Visscher1997a]Lucas Visscher. Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction. Theoretical Chemistry Accounts, 98(2-3):68–70, 1997. URL: http://dx.doi.org/10.1007/s002140050280, doi:10.1007/s002140050280.
[Visscher2002]Lucas Visscher. The Dirac equation in quantum chemistry: Strategies to overcome the current computational problems. Journal of Computational Chemistry, 23(8):759–766, 2002. URL: http://dx.doi.org/10.1002/jcc.10036, doi:10.1002/jcc.10036.
[Visscher2001]Lucas Visscher, Ephraim Eliav, and Uzi Kaldor. Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules. The Journal of Chemical Physics, 115(21):9720–9726, 2001. URL: http://scitation.aip.org/content/aip/journal/jcp/115/21/10.1063/1.1415746, doi:10.1063/1.1415746.
[Visscher1996]Lucas Visscher, Timothy J. Lee, and Kenneth G. Dyall. Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples. The Journal of Chemical Physics, 105(19):8769–8776, 1996. URL: http://scitation.aip.org/content/aip/journal/jcp/105/19/10.1063/1.472655, doi:10.1063/1.472655.
[Visscher2000]Lucas Visscher and Trond Saue. Approximate relativistic electronic structure methods based on the quaternion modified Dirac equation. The Journal of Chemical Physics, 113(10):3996–4002, 2000. URL: http://scitation.aip.org/content/aip/journal/jcp/113/10/10.1063/1.1288371, doi:10.1063/1.1288371.
[Visser1992]O. Visser, L. Visscher, P. J. C. Aerts, and W. C. Nieuwpoort. Molecular open shell configuration interaction calculations using the Dirac-Coulomb Hamiltonian: The f6-manifold of an embedded EuO6(9-) cluster. The Journal of Chemical Physics, 96(4):2910–2919, 1992. URL: http://scitation.aip.org/content/aip/journal/jcp/96/4/10.1063/1.461987, doi:http://dx.doi.org/10.1063/1.461987.
[Vosko1980]S. H. Vosko, L. Wilk, and M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58(8):1200–1211, 1980. URL: http://dx.doi.org/10.1139/p80-159, arXiv:http://dx.doi.org/10.1139/p80-159, doi:10.1139/p80-159.
[Wheeler2009]Steven E. Wheeler and K. N. Houk. Through-Space Effects of Substituents Dominate Molecular Electrostatic Potentials of Substituted Arenes. Journal of Chemical Theory and Computation, 5(9):2301–2312, 2009. URL: http://dx.doi.org/10.1021/ct900344g, arXiv:http://dx.doi.org/10.1021/ct900344g, doi:10.1021/ct900344g.
[Wight_JEPRP1972]G.R. Wight, C.E. Brion, and M.J. Van Der Wiel. K-shell energy loss spectra of 2.5 keV electrons in N2 and CO. J. Electron. Spectrosc. Relat. Phenom., 1(5):457 – 469, 1972. doi:10.1016/0368-2048(72)80016-1.
[Park2012]I. S. Lim, Y. C. Park and Y. S. Lee. Two-Component Spin-orbit Effective Core Potential Calculations with an All-electron Relativistic Program DIRAC. Bulletin of the Korean Chemical Society, 33(3):803 – 808, 2012. URL: http://dx.doi.org/10.5012/bkcs.2012.33.3.803, doi:10.5012/bkcs.2012.33.3.803.
[Yanai_CPL2004]Takeshi Yanai, David P Tew, and Nicholas C Handy. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3):51 – 57, 2004. URL: http://www.sciencedirect.com/science/article/pii/S0009261404008620, doi:10.1016/j.cplett.2004.06.011.
[Ilias2013]Miroslav Iliaš, Hans Jørgen Aa. Jensen, Radovan Bast, and Trond Saue. Gauge origin independent calculations of molecular magnetisabilities in relativistic four-component theory. Molecular Physics, 111(9-11):1373–1381, 2013. URL: http://dx.doi.org/10.1080/00268976.2013.798436, arXiv:http://dx.doi.org/10.1080/00268976.2013.798436, doi:10.1080/00268976.2013.798436.